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Introduction

Nowadays we accept the idea that GR is the classical limit of an effective quantum
theory of gravity, in which the Einstein-Hilbert action is the leading order in a
higher-derivative expansion.

[t has been proven that a static metric in
arbitrary dimensions is recovered from 3-
point amplitudes of massive scalars
emitting gravitons.

We extend this program in the case of spinning geometries at quadrupole order:
* No Birkhoff theorem for stationary objects.
* No black-hole uniqueness in D > 4.



[ Donoghue, gr-qc/9310024]
[ Mougiakakos, Vanhove, 2010.08882]

Metrics from scattering amplitudes
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scattering amplitudes




| Bern, Luna, Roiban, Shen, Zeng, 2005.03071]

Dressed vertex

In the stationary and classical limit it is verified that [p1) = |pp) + O()

Leading to the definition of the spin tensor $#* as the classical limit of the Lorentz
generators M
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& In D > 4 the angular momentum is an

anti-symmetric rank-2 tensor

4



Spin-l /, S = 595, + O(K)
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K=0 =p —_— The “simplest” metric
(metric associated to a minimally coupled field)



| Bjerrum-Bohr, Donoghue, Holstein, hep-th/0211071]

Expanding the metric in a multipole series, we get
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This metric depends on four different arbitrary parameters. Are they all physical?

Spoiler, no!



Eliminating gauge parameters

Consider an infinitesimal coordinate transformation as x’ = x + &(x) such that the
metric transforms like ,, = h,, — (9,5, + 9, p).

By definition in the harmonic gauge [ ]x* = 0, we can define a coordinate
transformation inside the gauge if

(1x"=0 - [ =0

. G g N
Clp(r) =0 —> &= 2(26,8%50+ O 878,00 )0p() & =0

m

With this coordinate transformation
q

. H, and H hysical ¢
we can cancel the C/s from the metric | and i are piysical parametets



Rotating metric at quadrupole order

We are observing for the first time that in GR there exist two
independent quadrupole moments! But we can say more...
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|[Thorne, Rev.Mod.Phys. 52 (1980) 299-339]

Multipole expansion in arbitrary dimensions

We conjecture the existence of a new “gauge invariant” multipole tensor never observed before

Anything which is
gauge dependent

d d
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ady m2
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N

IMPORTANT

NOTIGE D = 4 is a special case since we can rewrite S¥ = €S,

M2 N = 3(H, + H,)(S - x)* + --- G% N = 5; ML N + -

didy "didy j,a1a, 419 didy “didy
d=3 d=3 =3

In D > 4 there are two independent In D = 4 there is only one

but

quadrupole moments quadrupole moment

We can extend this result at every multipole order, and saying that in GR there are
three different kinds of multipoles:

Mass multipoles, Current multipoles... and new ones, Space multipoles(?)
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[ Hartle, Thorne, Astrophys.J. 153 (1968) 807]

Matching the Hartle-Thorne metricin D = 4

To test our formalism we match the amplitude-based metric with the one associated with the most
generic rotating solution at quadrupole order (HT) in harmonic gauge.
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Spgp = 1 SI(O) 2r We do not need to fix H; and H,

independently!

are able to reproduce it by fixing
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Kerr limit of the Hartle-Thorne metric

For a specific value of the quadrupole we can recover the Kerr metric.

corresponds to

—

Kerr Limit

k=1

The Kerr metric, the only black hole solution in D = 4, is reproduced by an
infinite number of non-minimal actions and by the minimally coupled theory.

Minimal limit —=—)

H,=1)+(H,=0)=1

“Simplest” metric

N Kerr black hole
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[ Myers, Perry, Annals Phys. 172 (1986) 304]

Myers-Perry black holes in D = 5

Myers-Perry solutions are a class of black holes defined in arbitrary dimensions
constructed in such a way that the limit D = 4 corresponds to Kerr.
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The solution now has two independent angular momenta 1o _2[-a0 0 0
since the group of the rotation SO(4) has two Casimir m*’ 310 0 0 b
0 0 —=b 0

We need to fix H,; and H,
independently!

The Myers-Perry solution
is not the “simplest” one
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Simplest metric in higher dimension

If the simplest metric in D = 4 is the Kerr black hole, to what it does correspond in
higher dimensions?

The simplest
metric in arbitrary
dimension

KEEP IT
SIMPL
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Take home message

w In literature is known that in GR in D = 4 there are two class of
-Q‘ . multipoles. We proved that in D > 4 there are three of them.

o
\_./

A Kerr black hole is the simplest metric in D = 4. What is the
simplest metric in D > 47? Is it a fundamental concept?

Thank you!
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