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Introduction

The recent experimental verification of gravitational waves renewed the
interest in theoretical studies of General Relativity and black hole
perturbation theory.
In particular, we look for exact computational techniques to produce
high-precision tests of General Relativity equations by computing
analytical expressions for significant gravitational quantities.
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The QNM frequencies

The QNMs are quantized frequencies that can be seen as characteristic
oscillations of black holes, and are responsible for the damped
oscillations appearing, for example, in the ringdown phase of two
colliding black holes.

Mathematically, the QNMs arise in the analysis of a linear perturbation
around fixed gravitational backgrounds. The perturbation usually obeys
linear 2nd order differential equations with singularities, whose
symmetry properties are dictated by the symmetries of the background.
The quasinormal modes are obtained by imposing suitable boundary
conditions to the perturbation fields.
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Schwarzschild (anti-)de Sitter black holes

The relevant differential equation describing the conformally-coupled scalar
perturbation around S(A)dS4 black holes is described by a Heun equation(

d2

dz2 +
(
γ

z + δ

z − 1 + ϵ

z − t

) d
dz + αβz − q

z(z − 1)(z − t)

)
ψ(z) = 0,

α+ β + 1 = γ + δ + ϵ.

(1)

In the asymptotically de Sitter case, taking into account the boundary
conditions, the connection coefficient between ψhor

in and ψcosm.hor.
in has to be

set equal to zero:

ψhor
in (z) = Min,outψ

cosm.hor.
out (z) + Min,in︸ ︷︷ ︸

=0

ψcosm.hor.
in (z). (2)

Thanks to Liouville CFT (BPZ equation and crossing symmetry) and the
AGT correspondence, we have concrete expressions for these connection
coefficients.
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Connection Problem for asymptotically AdS

In the asymptotically anti-de Sitter case, the second boundary condition is
imposed at a regular point of the differential equation.

Therefore, the quantization condition involves not only the expressions of
the connection coefficients but also the values of the local solutions (e.g.
Heun functions) in the regular point:

ψhor
in (z) = M1 ψ

sing.
1 (z) + M2 ψ

sing.
2 (z)

∣∣∣∣
z=AdS boundary

= 0. (3)
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The multi polylog method I

We divide the radial space in several regions, and expand in each region the
differential equation and its wave solution in series in a small parameter α,

ψ(z) = f0(z) +
∑
K≥1

fK (z)αK . (4)

At each order in α, ψ(z) is determined by a second-order equation

(fK (z))′′ + φ(z) (fK (z))′ + ν(z)fK (z) + ηK (z) = 0, (5)

which we solve by using the method of variation of parameters.
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The multi polylog method II

Let f0, g0 be the two solutions of the homogeneous part of (5).Then we
write the generic solution to (5) as

fK (z) = cK g0(z) − g0(z)
∫ z

f0(z ′) ηK (z ′)
W0(z ′) dz ′ + f0(z)

∫ z
g0(z ′) ηK (z ′)

W0(z ′) dz ′, (6)

where W0 is the Wronskian of the two leading order solutions

W0(z) ≡ f0(z)(g0(z))′ − (f0(z))′g0(z). (7)

Imposing the boundary conditions and gluing together the local expansions
in different regions, it is possible to fix the integration constants and obtain
the analytic expansion of the QNMs.
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Multiple Polylogarithms in a single variable

The integrals in (6) are described in terms of multiple polylogarithms

Lis1,...,sk (z) =
∞∑

n1>n2>···>nk≥1

zn1

ns1
1 . . . n

sk
k
. (8)

The latter satisfies the following relation for s1 ≥ 2:

z d
d z Lis1,...,sk (z) = Lis1−1,...,sk (z) (9)

and the following relation for s1 = 1, k ≥ 2:

(1 − z) d
d z Li1,s2,...,sk (z) = Lis2,...,sk (z). (10)
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Summary of results I

In the SdS case, the quantization condition depends only on the
connection coefficient, and we found a branch of purely imaginary
modes, providing analytical confirmation of the results obtained
through previous numerical studies.

ω(n,ℓ,s) =
∞∑

k=0
ω

(n,ℓ,s)
k Rk

h , ω
(n,ℓ,s)
k ∈ iR<0. (11)

Because of the different boundary condition, the method is less
effective in the anti-de Sitter case, therefore we switched to the multi
polylog method.

ω(n,ℓ,s) =
∞∑

k=0
ω

(n,ℓ,s)
k Rk

h , Im
(
ω(n,ℓ,s)

)
∼ R2ℓ+2

h . (12)
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Summary of results II

In the SAdS4 case, we also considered the scalar sector of gravitational
perturbation, in the large horizon regime. We computed the so-called
low-lying frequencies, which, after taking the double scaling limit

Rh, ℓ → ∞, q = 2 ℓ
3 Rh

and w = 2ω
3 Rh

finite, (13)

are related to the hydrodynamic sound mode on the thermal 3-dimensional
CFT living on the boundary

w =
∑
k≥1

wk q
k . (14)

We could compute more analytic corrections in the expansion of the
frequency w.r.t. the results presently available in the literature, obtaining
finite spin predictions for the dual 3d CFT.
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Further Directions

Both methods can be in principle applied also in different BH
geometries (including charged and/or rotating BHs).
We are applying the first method to SAdS7, where the differential
equation has five regular singularities, and the associated gauge theory
is a SU(2) × SU(2) quiver theory.
We are extending the multi-polylog method to problems involving the
presence of irregular singularities.
For example, in the study of quasinormal modes of Schwarzschild and
Kerr black holes, the relevant differential equation is a confluent
Heun equation. Around an irregular singularity, the expansion of the
wave solution involves multiple polyexponential functions.
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Multiple Polyexponential functions
Let s1, . . . , sn ∈ Z≥1. We define

eLs1,...,sn(z) =
∞∑

k1=1

k1−1∑
k2=1

· · ·
kn−1−1∑

kn=1

1
ks1

1 . . . ksnn

zk1

k1! . (15)

If s1 > 1, the following relation holds:

z d
dz eLs1,...,sn(z) = eLs1−1,...,sn(z). (16)

If s1 = 1, the relation is more involved:

z d
dz eL1,s2,...,sn(z) = −eLs2,...,sn(z) − (−1)nez

2s2−1∑
j2=1

· · ·
2sn−1∑
jn=1

eLop(s2)j2 ,...,op(sn)jn
(−z),

(17)
where, given s ∈ N, we denoted with op(s) the set of ordered partitions of
s. For example,

op(1) = {1}, op(2) = {2, (1, 1)}, op(3) = {3, (2, 1), (1, 2), (1, 1, 1)}.
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Quantization condition for SdS4 QNMs
The quantization condition in the SdS4 case is given by
∑
σ=±

Γ (1 + 2at) Γ (−2a1) Γ (−2σv) Γ (1 − 2σv)∏
± Γ (1/2 − σv + at ± a0)

∏
± Γ (1/2 − σv − a1 ± a∞) tσv e− σ

2 ∂v F (t) = 0,

(18)
where

a0 = 1 − γ

2 , a1 = 1 − δ

2 ,

at = 1 − ϵ

2 , a∞ = α− β

2 ,

(19)

F (t) =
(
4v2 − 4a2

0 + 4a2
t − 1

) (
4v2 + 4a2

1 − 4a2
∞ − 1

)
8 − 32v2 t + O

(
t2) ,

v = ±

{√
−1

4 − u + a2
t + a2

0 +

( 1
2 + u − a2

t − a2
0 − a2

1 + a2
∞

)(
1
2 + u − 2a2

t

)
2(1 + 2u − 2a2

t − 2a2
0)
√

− 1
4 − u + a2

t + a2
0

t + O(t2)
}
,

with u = −2q + 2tαβ + γϵ− t(γ + δ)ϵ
2(t − 1) .
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QNMs results for Schwarzschild de Sitter

The results for the imaginary part of the quasinormal mode frequencies
ωn,ℓ,s in the SdS4 case, for n = 0, are

Im (ω0,0,0) = − 1 − 5
8R2

h − 3R3
h −

[
1287
128 + 2 log (2Rh)

]
R4

h + O
(
R5

h
)
,

Im (ω0,1,1) = − 2 − 7
12 R2

h + 7123
1728 R4

h + 8 R5
h +

[
2 757 809
124 416 + 32

3 log (2Rh)
]

R6
h + O

(
R7

h
)
,

Im (ω0,2,2) = − 3 − 27
40R2

h + 51 423
16 000R4

h − 72 333 747
3 200 000 R6

h − 72
5 R7

h +

+
[

60 278 884 503
512 000 000 − 144

5 log (2Rh)
]

R8
h + O

(
R9

h
)
.

(20)
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Example of expansion of wave solution in Schwarzschild
anti-de Sitter

For ℓ = s = 1 and n = 0,

f L
0 (z) =

(z − 2)z2

2(z − 1)3 ,

f L
1 (z) =

3(z − 2)z2 log(z)

4
(√

z − 1
)3 (√

z + 1
)3 −

(
3πz4 − 6πz3 − 8iz + 4i

)
log(z − 1)

4π
(√

z − 1
)3 (√

z + 1
)3

z
−

4iz3 + 5πz3 − 12iz2 + 8iz − 16πz + 8π

8
[

π
(√

z − 1
)3 (√

z + 1
)3

z
] ,

f L
2 (z) = − 3i(z − 2)z2Li2(1 − z)

2
(
π
(√

z − 1
)3 (√z + 1

)3
) + 9(z − 2)z2 log2(z)

16
(√

z − 1
)3 (√z + 1

)3 +

+
(3π + 4i)

(
3πz4 − 6πz3 − 8iz + 4i

)
log2(z − 1)

16π2
(√

z − 1
)3 (√z + 1

)3 z
−

3
(
4iz4 + 3πz4 − 8iz3 − 6πz3 − 8iz + 4i

)
log(z − 1) log(z)

8π
(√

z − 1
)3 (√z + 1

)3 z
+ . . .
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QNMs results for Schwarzschild anti-de Sitter

In all the computed cases, the imaginary part is delayed with respect to the
real one, and it does not appear before order 2ℓ+ 2 in Rh:

Im (ωn,ℓ,s) ∼ R2ℓ+2
h . (21)

For example, for ℓ = s = 1 and n = 0,

Re
(

ω0,1,1
)

= 3 −
4
π

Rh +
(

27
8

−
140
3 π2

)
R2

h −
(

3 π −
601
12 π

−
18
π

log(2) +
2020
3 π3 −

168
π3 ζ(3)

)
R3

h + O
(

R4
h

)
,

Im
(

ω0,1,1
)

= −
16
π

R4
h −
(

24 +
96
π2

)
R5

h −
(

60 π +
579
π

−
264
π

log(2 Rh) +
11 536
9 π3 −

1344
π3 ζ(3)

)
R6

h + O
(

R7
h

)
.

The irrational numbers entering these QNM frequencies are log(2), π, and
Euler sums.
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Results for QNMs Scalar sector of gravitational
perturbations

We obtained the frequency corrections ω0, . . . , ω6 in the expansion
ω =

∑
K≥0 ωK/RK

h :

ω0 =
√

m + 2
2 , ω1 = − im

6 ,

ω2 =
√

2 m
36

√
m + 2

+ m
√

m + 2
108

√
2

[
15 +

√
3π − 9 log(3)

]
,

ω3 = − m(m + 2)
18

√
3

[Li1,1 (u1, u1) + u1Li1,1 (u2, u1) − u2Li1,1 (u1, u2)] +

+ m(m + 2)
1296

√
3

[
π2 − 6i π log(3) + 9(u2 − 3 u1) log(3)2

]
+ im(m + 3)

162

[
9 +

√
3π − 9 log(3)

]
.

(22)
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Results for QNMs II

Upon taking the scaling limit

Rh → ∞, ℓ → ∞,
2 ℓ

3 Rh
→ q, (23)

where q stays constant, and rescaling the frequency as

w = 2ω
3 Rh

, (24)

we obtain an expansion of w in q

w =
∑
k≥1

wk q
k , (25)

(up to w7) reproducing the results for the QNM frequencies of the M2-brane
in the AdS4 background which are directly linked to hydrodynamics.
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Results for QNMs III

The numerical values of these coefficients are

w1 = 1√
2
,

w2 = − i
4 ,

w3 = 0.155473446153645...,
w4 = 0.067690388847266... · i ,
w5 = −0.010733416957692...,
w6 = 0.013959543659902... · i ,
w7 = −0.016615814626711... .

(26)

These alternate between real and imaginary parts, precisely as predicted by
previous works.
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