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Einstein-Maxwell-scalar theory (EMS)

Consider the general action for the Einstein-Maxwell-scalar theory

S =
1

16π

∫
d4x

√
−g [R − 2∂µϕ∂µϕ− F[ϕ]FµνFµν ] ,

where Fµν = ∇µAν−∇νAµ, F[ϕ] is a general coupling function.
Scalar field equation:

2ϕ =
1
4
δF[ϕ]
δϕ

FµνFµν .

Classification of the EMS models:

1 dilatonic-type: ϕ(r) = 0 does not solve the field equations, e.g.
F[ϕ] = e2αϕ,

• α =
√

3 four-dimensional reduction of Kaluza-Klein;

• α = 1 low energy limit of superstring theory.

2 scalarized-type: ϕ(r) = 0 is a solution of the field equations.
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Spontaneous scalarization

The linearized scalar field equation for a small δϕ perturbation is

(2− µ2
eff )δϕ = 0 , µ2

eff =
FµνFµν

4
δ2F[ϕ]
δϕ2

∣∣∣∣
ϕ=0

.

If µ2
eff < 0 we encounter a tachyonic instability and δϕ exponentially

grows

:
• nonlinear contributions become important −→ scalarization.

The Reissner-Nordstrom BH solutions acquire a non-trivial scalar hair.

Types of scalarization [Doneva+ arXiv:2211.01766]

• Induced by curvature (e.g. scalar-tensor-Gauss-Bonnet theory);
• Induced by spin ;
• Induced by matter or coupling to other field (EMS theory);
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A specific EMS model

If we consider a spherically symmetric ansatz for the scalarized BH
solution, i.e.

ds2 = −N(r)e−2δ(r)dt2 +
1

N(r)
dr2 + r2(dθ2 + sin2 θdφ2) ,

A(r) = V(r)dt, ϕ = ϕ(r).

we get the field equations (with N(r) = 1 − 2m(r)/r)

δ′ + rϕ′2 = 0 ,

V′ = − Q
r2F[ϕ] eδ

,

r(r − 2m)ϕ′2 + r2V′2e2δF[ϕ]− 2m′ = 0 ,

r(r − 2m)ϕ′′ − [2(m + rm′ − r) + (r2 − 2mr)δ′]ϕ′ +
r2V′2e2δ

2
δF[ϕ]
δϕ

= 0 .

An example of EMS models that exhibits spontaneous scalarization is
given by the following coupling function

F[ϕ] = eαϕ
2
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The F[ϕ] = eαϕ
2

EMS model is
characterized by a
domain of scalarization.
• for Q/M ≤ 1 the RN

solutions is not unique.

• the scalarized solution can
be overcharged

Herdeiro+ PRL 121, 101102 (2018)

The field equations are solved
numerically requiring asymptotic
flatness at infinity and regularity
at the black hole horizon.
Example of scalarized BH solution
with α = 20 and
q = Q/M = 0.7.



Why black hole spectroscopy?
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Illustration for GW150914 by Nutsinee Kijbunchoo
https://www.ligo.org/magazine/LIGO-magazine-issue-8.pdf

The ringdown produced by the final BH
of a merger is described by superposi-
tion of quasi-normal modes (QNMs):
ωlmn = ωR,lmn + iωI,lmn.

• The QNMs strongly depend on the
photon sphere.

For scalarized BH in the EMS model
F[ϕ] = eαϕ

2
there exist

two unstable photon spheres
outside the horizon in a small
region of the parameter space.

Two photon spheres may trigger
long-lived modes!

Gan+ PRD 104, 044049 (2021)

https://www.ligo.org/magazine/LIGO-magazine-issue-8.pdf


Linear and spherical perturbations

Consider spherically symmetric and linear perturbations of the fields

ds2 = −Ñ(t, r) e−2δ̃(t,r)dt2 +
dr2

Ñ(t, r)
+ r2(dθ2 + sin2 θdφ2) ,

A = Ṽ(t, r)dt , ϕ = ϕ̃(t, r) ,

Ñ(t, r) = N(r) + ϵN1(r)e−iΩt , δ̃(t, r) = δ(r) + ϵδ1(r)e−iΩt ,

ϕ̃(t, r) = ϕ(r) + ϵϕ1(r)e−iΩt , Ṽ(t, r) = V(r) + ϵV1(r)e−iΩt .
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We get a single one-dimensional
time independent
Schrödinger-like equation(

d2

dr2
∗
+Ω2

)
Ψ = VϕΨ
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Scalar QNMs

For the QNMs computation we use direct integration with proper
boundary conditions:

• outgoing wave at infinity (r∗ → +∞),

• ingoing wave at the horizon (r∗ → −∞).
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Smaller the coupling constant α
less damped the QNMs.



Linear and non-spherical perturbations

Derivation of the linearized perturbed equations
• Consider perturbed fields as gµν = ḡµν + hµν , Aµ = Āµ + δAµ,
ϕ = ϕ̄+ δϕ;

• Decompose the field perturbations in terms of scalar, vector and
tensor spherical harmonics;

• The perturbations are split into “axial” (−1)l+1 and “polar” (−1)l.

The linearized perturbed equations divide into two sectors.

Axial sector: system of two coupled ODEs of the second order(
d2

dr2
∗
+ ω2

)
U(r) =VUUU(r) + VUHH(r) , U(r) gravitational perturbation(

d2

dr2
∗
+ ω2

)
H(r) =VUHU(r) + VHHH(r) , H(r) EM perturbation .

Polar sector: system of six coupled ODEs.
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Axial sector QNMs (EM and Gravitational perturbations)
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Summary and next steps

• Einstein-Maxwell-scalar theory admits black hole solutions with
scalar hair: two photon spheres in a region of the parameter
space!

• The effective potential of linear and spherical perturbations
presents a double peak in the same region of the parameter
space.

• The associated QNMs present a small imaginary part: less
damped than RN QNMs.

• We studied linear non-spherical perturbations and computed the
QNMs for the axial sector.

• Study time evolution of linear and spherical perturbation for the
effective potential with a double peak.

• Compute the QNMs for the polar sector.

• Search for long-lived QNMs (axial and polar) in the parameter
space of the BH with two photon spheres.
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Thank you for the attention!
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Additional material:
Spherical harmonics decomposition and Regge-Wheeler gauge

Expansion of the metric tensor, vector potential and scalar field per-
turbations in scalar, vector and tensor spherical harmonics using the
Regge-Wheeler gauge.

hµν = hA
µν + hP

µν ,

hA
µν =

∑
l,m

∫
dω e−iωt


0 0 − h0(r)∂φYm

l
sin θ h0(r) sin θ∂θYm

l

∗ 0 − h1(r)∂φYm
l

sin θ h1(r) sin θ∂θYm
l

∗ ∗ 0 0

∗ ∗ ∗ 0

 ,

hP
µν =

∑
l,m

∫
dω e−iωtYm

l


e−2δ(r)N(r)H0(r) H1(r) 0 0

∗ H2(r)
N(r) 0 0

∗ ∗ r2K(r) 0
∗ ∗ ∗ r2 sin2 θK(r)

 ,
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δFµν = δFA
µν + δFB

µν ,

δFA
µν =

∑
l,m

∫
dω e−iωt


0 0 − iωu4(r)∂φYm

l
sin θ iωu4(r) sin θ∂θYm

l

∗ 0 u′
4(r)∂φYm

l
sin θ −u′

4(r) sin θ∂θYm
l

∗ ∗ 0 l(l + 1)u4(r) sin θYm
l

∗ ∗ ∗ 0

 ,

δFP
µν =

∑
l,m

∫
dω e−iωt


0 f01(r)Ym

l f02(r)∂θYm
l f02(r)∂φYm

l

∗ 0 f12(r)∂θYm
l f12(r)∂θYm

l

∗ ∗ 0 0

∗ ∗ ∗ 0

 ,

δϕ =
∑
l,m

∫
dω e−iωtz(r)Ym

l .
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