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® The analysis of the strong-coupling regime in an interacting gauge
theory is a very difficult problem but, when there is a high amount of
symmetry, remarkable progress can be made.

® |n particular this happens for N' = 4 SYM theory, where many exact
results have been found over the years, especially in the planar limit

N — oo and \=gyy, N fixed

Less is known about strong-coupling results in 4d N’ =2




N = 2 quiver gauge theory

Gauge group: SU(N) x --- x SU(N)

M times

® The links represent
hypermultiplets in the
bifundamental representation.

® |t arises as a Z ), orbifold
projection from N = 4 SYM.

® This is a conformal gauge
theory.

® \We consider the symmetric
configuration: \; = A V /.




N = 2 quiver gauge theory

Half-BPS circular Wilson loop

() — % tr P exp { g j[C dr [iAl(j)(x)x“(r) + \%(qb(’)(X) 1 ¢(')(X))] }

It is convenient to introduce the following change of basis for the operators

M—-1
1 N
Wo=—=> p Wl —a=o0..,M-1
MI:O

Untwisted Twisted
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N = 2 quiver gauge theory

Untwisted Wilson loop correlators = planar equivalent to A = 4

p on Mn/2
(Wo Wo -+ Wo) ~ (VM (W)o)" = N

n

(h(V )",

[Rey, Suyama, 2011]
[Galvagno, Preti, 2021]

n-point correlators of coincident Wilson loops

(Way Wa, ... Wa,) Y & =0modM
=1

¥

Supersymmetric localization maps the computation of these correlators
in the gauge theory to a matrix model on S%. [Pestun, 2007]
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Matrix model

Matrix model representation for the 1/2-BPS Wilson loop [Pestun, 2007]
k M—1
l=1/X)\2 1 —al,. kK
Wa = N kz_% Ll (2N) Adk 5 Aak = \/—M /z—; p —tray
Al = Au-ak

<W@1 . .. W@n> — <A@1’k1 . A@n’kn>

Change the operator basis As x — Ps k




Interacting matrix model

>

T _ (&) (&) _ 1 2w
() <POA"”PBA,m> = 5@,6Dn’m Dn,m = (15&)() S5 — S111 ( N )

[Billo, Frau, Galvagno, Lerda, Pini, 2021]

56&4—6 ’Yd(a)d(ﬂ)d(’” dg(&) — Zk/ \/7D§<a/2’

. Py
<PPP>\/_N

B,m" ,p

[Billo, Frau, Lerda, Pini, PV, 2022]

® Higher-pt functions factorized a la Wick in terms of 2- and 3-pt.

ntm+2nm e’ tVA VA
=—-8(—-1) 2 \/7/ t (et —1)2 J”( 27 ) (%)

Exact dependence on A through the X-matrix
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2-point functions of coincident twisted Wilson loops

Exact expression in the 't Hooft limit

(W, WY ~ ZZ VA)I(VA)Vke DY)

in ' =4 SYM(S;,; — 0) this quantity becomes

W) = (W Wo — (W)} = Y2 h(VR) (V)

(W Wi )

Ratio:
W2\

=1+ Awl¥(M,)\)
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Strong-coupling regime

00 S(P)(Sa)

KVY) S Qulk) o 2
~ AW\ Y (M N ~ —
/1(\/X) A3 00 ; 2\S/2 — w ( ) ) A 00 \/X P 2\P/2

S®P)(s,) = Bessel operator

\U/ [Beccaria, Korchemsky, Tseytlin, 2023]

Analytic computation at strong coupling

L+ AW (M, 2) ~ (Iji—sz))z Ho (%)

[Pini, PV, 2023]

> dz T

—2
IO(Soz) — / —z0, |0g(1 — Sa Sinh(g) ) E.g. Z> quiver: Io(l) — 5
0

T
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Numerical check for Z> quiver

A
III| 1 IIIIIII| 1 1 11 | | 1 1 IIIIII| 1 IIIIIII| 1 11 1 1 111

1 11 | —_—
10 100 1000 104 10° 105 2

2 . IE
_____ "'{—6 — 1~ -0.38315
Pisosa)(Aw(2,4))

Very good agreement

-0.4r ~ -




3-point functions

Wy Wa, WI —
Ratio: (Way 2(3) ax+d2) = 1 + Awl®%2)(M, ))
\/MWconn()\)

Win = (W W W )g — 3 (W)W W + 2 (W)3

Studying this ratio in terms of the Bessel operator

0 > Io(Sa ) 1
1 _|_ AW(al’az)(M, )\) ~ . Oél‘|—0427043 H P _|_ O T
A— 00 38 b1 Sap, \/X
3
E.g. Z3 quiver: 1+ Aw(b1)(3,)) Ny (%) [Pini, PV, 2023]
—00
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Conclusions and outlook

e \We derived an expression valid for all values of X\ in the 't Hooft limit
and found analytically

__:Zb(sbﬁ)
2./Sa;

Simple rule at strong coupling W, —

® |t would be interesting to study non-planar corrections to these
observables and also subleading corrections in the strong-coupling
expansion.

® |t would be nice to check our localization results from the gravity dual
through AdS/CFT correspondence.
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Thanks for your attention!




Matrix model

In the quiver gauge theory we have in the large-N limit

M—-1 4.2 C

where a; = af’ T, are N x N traceless Hermitean matrices and

oo 2m

Sint = Z [5& Z Z (8772N) Fomi(tras™™ K tr a%fl_k)(tr af —tr 3;(+1)]

m=2 k=2

Fmk = 2(—1)k+m< ;(n) <2:7—1 , 55 = sin? (7;\;)

Hence for a generic function f

fH/Ai_oldal e~ tr 3~ Sin f RCEREAN
[TIY tday e —Sm — (eSim)g

(f) =

where ()o stands for the expectation value in the free matrix model.



Pa.k operators

, M-l
Sint = —5 > > s P(];,n Xn,m Pé,m

&a=0 n,m

[Beccaria, Billo, Galvagno, Hasan, Lerda, 2020]

Po.k operators —> Normal-ordered operators in the free matrix model

/]\

Gram-Schmidt orthogonalization procedure

The change of basis between the A, x and the P, \ operators reads




n-point functions

k+2

2-point (As, kAT >o ~ N2 04,4,

k+€+P 1
5072 +&2,03

3-point (Aa, kAL Assplo > N 2
Higher-point — Factorization a la Wick

Example (A, &, Aoy Ao ks Ao kg )o

1y 92 lo=-=--2 la 2
1 1 w7
I I + + //\.\
3é & 0= ==/ Ry 1 »/
{ A L A )0l A s A ko (A i A k) ol A koA iy o

[Billo, Frau, Lerda, Pini, PV, 2022]

n > 4-point functions of Ps j inherit properties of As x = Wick's

contractions



Bessel operator

The truncated Bessel operator is defined as

Kf(X)Z/OOOdy/C(X,y)X<\2/§) fy), X(2g> - e (g)z

where the kernel is given by

K(x,y) = te()vu(y)

k>1

N

and the orthonormal basis is defined as

r(x) = (—1)§(k1)\/;ka/¢;)

[Belitsky, Korchemsky, 2020]
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Bessel operator

The Bessel operator can be realized as a semi-infinite matrix on the space
of functions spanned by 1,(x) and its matrix elements

Kn,m — <¢n‘K‘¢m>

can be written as

Knim = (=1 [ 5 (55) VR Inl5)

[Beccaria, Korchemsky, Tseytlin, 2022]

which exactly correpond to the matrix elements of X after the change of

variable \/x = 2gt, where g = \/—; is a rescaling of the 't Hooft coupling.




Strong-coupling Wilson loop correlators

The Wilson loop correlators can be written in terms of the function

sP(s) = 3 SEs) = 3 (s (s) + sLd(s)

L+J=P [+J=P
where
(L,J) (1) even (2) even SaX
st (s ;;FQ (k) V20 Q5™ (D) (W] T~ g2

and it turns out that

Z\/iQ(l)even( )¢2n(X) _

[(—2)" 7 (x8x)" + (=2)"° (2L = L2)(x8x) " + ... ] (VX))
Z\/iQQ) even( )w2n(X) _

[(—2)1 1 (x0)E + (=2)F3(=3 4 2L — L2)(x0) 1 + ... ] h(VX)
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Strong-coupling Wilson loop correlators

so that the building blocks of these correlators can be expressed in terms of
the following matrix elements

nm(50) = (0" 3 (V)| 12225 [ (x0)™ ()

For instance

SO (su) = SO0 su) = 3 (wh(s0) + w3(s0))
5(1)(5a) = 5(1’0)( o) + s 1)(5a) =3 (go)(soz) — g W(g,zo)(SO‘)

) (Wl( ())(Sa) + Wy 1)(5a) + W( )(Sa) + W(g,zl)(soz))
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Strong-coupling Wilson loop correlators

They satisfy two differential equations, i.e.

ag WO,n(Sa) — _8g/0 dz ZZCIO (z,8,54) Gn(2, &, 5a) O2(5aX(2))

1 1
qn—f—l(zagvsa) — _ZqO(Zaga Soz)WO,n(Soz) + §g8gqn(zag75a)

[Beccaria, Korchemsky, Tseytlin, 2023]
where qo(z, g, s.) is a known solution of a different differential equation.

As a final step one can prove that the WL correlators can be written in

terms of the generating function of these coefficients G(s,, x, y) evaluated
in x =y = —27

> S(P)(Sa Wn m(Sa
> oy Z -

P=0 A / n=0 m=0 27T) 27T)
which takes the precise value

G(sy, —2m, —2m) = ;Io(soé)2 —
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