

Particle accelerators

A. Cianchi

A. Cianchi

Particle Accelerators For Science And Interdisciplinary Applications

• It is a device that transfers energy to charged particle by electromagnetic or electrostatic fields. The particles are injected at initial energy of T_i and they arrive to final energy T_f .

Accelerators in the world

Accelerators Installed Worldwide

Doyle, Barney L., Floyd "Del McDaniel, and Robert W. Hamm. "The Future of Industrial Accelerators and Applications." Reviews of Accelerator Science and Technology 10.01 (2019): 93-116.

• "A beam of the right particles with the right energy at the right intensity can shrink a tumor, produce cleaner energy, spot suspicious cargo, make a better radial tire, clean up dirty drinking water, map a protein, study a nuclear explosion, design a new drug, make a heatresistant automotive cable, diagnose a disease, reduce nuclear waste, detect an art forgery, implant ions in a semiconductor, prospect for oil, date an archaeological find, package a Thanksgiving turkey or...

...discover the secrets of the universe."

-Accelerators for Americas Future Report, pp. 4, DoE, USA, 2011

- 1 eV: energy of a particle di charge e, initially at rest, after the acceleration by a potential of 1 V
- 1 eV= 1.60219 10⁻¹⁹ J

Units

- 1 keV = 10³ eV ; 1 MeV = 10⁶ eV
- 1 GeV = 10^9 eV ; 1 TeV = 10^{12} eV
- Energy of a proton in the LHC: 7 TeV =1.12 x 10⁻⁶J
- the same energy of a body of mass = 1 mg moving at speed = 1.5 m /s (a mosquito!)

γ factor

$$\gamma = \frac{E + E_0}{E_0}$$

- E_0 Elettrone = 0.511 MeV
- E_0 Protone = 938 MeV
- Elettrone 1 GeV, γ =1958
- Protone 1 TeV, γ=1067

Collider vs fixed target

$$E_{cm}^{2} = \left(\sum_{i} E_{i}\right)^{2} - \left(\sum_{i} cp_{i}\right)^{2}$$

$$E_{cm}^{2} = (\gamma_{1}m_{1} + \gamma_{2}m_{2})^{2}c^{4} - (\gamma_{1}\beta_{1}m_{1} + \gamma_{2}\beta_{2}m_{2})^{2}c^{4}$$

Stationary target

$$\gamma_{2} = 1 \quad \beta_{2} = 0 \quad \beta \gamma = \sqrt{\gamma^{2} - 1}$$

$$E_{cm}^{2} = (\gamma + 1)^{2} m^{2} c^{4} - (\gamma^{2} - 1) m^{2} c^{4}$$

$$E_{cm} = \sqrt{2(\gamma + 1)} m c^{2}$$

$$E_{avail} = E_{CM} - 2mc^{2} = (\sqrt{2(\gamma + 1)} - 2) m c^{2}$$

Colliding beam

$$\gamma_1 = \gamma_2 = \gamma \quad \beta_1 = -\beta_2$$

 $E_{cm} = 2\gamma mc^2$

1954 Fermi Globatron

What can we lover with bi en accelerators? Jour 29 1954 Multiple production N, N V aug distribution V Hult prod NT Strange particles (aug, mom - Double Intermeleous V Generalities tune > M& discoveries Ilide cornos versus machines Clid a simple Feynman diagram - Slide Hi energy collesion

• 5000 TeV, fixed target 3 TeV cm

Università di Roma

First e⁺e⁻

Bruno Touschek

AdA the first electron positron storage ring. Built and operated at Frascati, and later moved to take advantage of a more powerful source of positrons in France.

Linar vs circular accelerator

10

Synchrotron

- The solution is to keep the radius constant
- The magnetic field is generated by small magnetic element around the ring

Beyond $2T \rightarrow$ Superconductive magnets

- 2835 bunches with 1.15 *10¹¹ protons each;
- 332 MJ per beam;
- 1232 dipoles of 8.3 T;
- more than 400 quadrupoles;
- 0.58 A per beam
- Energy up to 14 TeV in the center of mass;
- Luminosity 10^{34} cm⁻² s⁻¹;

POWER IN THE LHC

- Energy of A380 at 700 km/h corresponds to energy stored in the LHC magnet system!
- Sufficient to heat up and melt 12 tons of copper!

• Magnets power (600 MJ) + Beam Power (362 MJ) about 1 GJ

few magnets, many cavities → need efficient power production •higher gradient → shorter linac •single pass → need small cross-section •exceptional beam quality, alignment and stabilization

Accelerator history

SLAC Now and Tomorrow?

2023

20??