

L'esperimento NA62 per la misura di BR(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$)

Andrea Salamon andrea.salamon@roma2.infn.it

Roberto Ammendola roberto.ammendola@roma2.infn.it

II decadimento $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

Niente panico!

- Ultra-rare decays with the highest CKM suppression Very clean from the theoretical point of view [Buras. et. al., JHEP11 (2015) 033]
 - BR_{SM}(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$)=(8.6±0.4)·10⁻¹¹

Previous measurement by E787/E949 at BNL [Artamonov et al., Phys.Rev.Lett. 101 (2008) 191802], [Artamonov et al., Phys.Rev.D 79 (2008) 092004]

 $- BR(K^{+} \rightarrow \pi^{+} \nu \overline{\nu}) = (17.3 + 11.5) \cdot 10^{-11}$

Very sensible to many NP models

- Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM non-MFV [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27],[Isidori et al. JHEP 0608 (2006) 064]
- Simplified Z, Z' models [Buras, Buttazzo, Knegjens, JHEP11(2015)166]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- LFU violation models [Isidori et al., Eur. Phys. J. C (2017) 77: 618]
- Leptoquarks [S. Fajfer, N. Košnik, L. Vale Silva, arXiv:1802.00786v1 (2018)]

NA62 (

NA62 The NA62 experiment at CERN SPS

NA62 Collaboration (~ 200 participants): Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Merced, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, SLAC, Sofia, TRIUMF, Turin, Vancouver (UBC)

Goal: O(10%) precision measurement of BR(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$)

- Statistics: O(100) events
- K⁺: decays 10¹³
- Signal acceptance: O(10%)
- Background rejection: > 10¹¹

19.02.2024

NA62 Come misurare BR(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$)?

Identificare una variabile discriminante (la massa mancante dei due neutrini), trovare alcune regioni in cui sia possibile "salvare" gli eventi di segnale e "buttare" gli eventi di background ricordando che il BR che vogliamo misurare è $\sim 10^{-10}$

Come si traduce in una strategia di analisi?

19.02.2024

NA62 [

Roma Tor Vergata

INFN

New in flight decay technique!

- $\mathsf{K}^{\scriptscriptstyle +}$ $\pi^{\scriptscriptstyle +}$ time and space matching
- Two m^2_{miss} =(P_K-P_π)² regions
- Cut based analysis

Requirements

- O(100 ps) timing between sub-detectors
- O(10⁴) background suppression with kinematics
- O(10⁷) μ -suppression K⁺ $\rightarrow \mu^+ \nu$
- O(10⁷) y-suppression K⁺ $\rightarrow \pi^{+}\pi^{0}$, $\pi^{0} \rightarrow \gamma\gamma$

19.02.2024

[NA62 Detector Paper, 2017 JINST 12 P05025]

SPS beam

- 400 GeV/c protons
- 2x10¹² protons/spill
- 3.5 s spill
- ~1018 POT/year

Secondary beam

- 75 GeV/c momentum, 1% bite
- 100 μ rad divergence (RMS)
- 60x30 mm² transverse size
- K⁺(6%)/π⁺(70%)/p(24%)
- 750 MHz of particles at GTK3

Decay region

- 60 m fiducial region
- ~5 MHz K⁺ decay rate
- Vacuum ~10⁻⁶ mbar

19.02.2024

45

Data

SM $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

2016 + 2017 + 2018 data

Observed 20 (1+2+17) K⁺ $\rightarrow \pi^+ vv$ candidates SES = $(8.39 \pm 0.53_{syst}) \times 10^{-12}$ Expected signal: $10.01 \pm 0.42_{syst} \pm 1.19_{ext}$ Expected background: $7.03^{+1.05}_{-0.82}$

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4\,stat} \pm 0.9_{syst}) \times 10^{-11}$$

3.4 σ significance most precise measurement to date! [JHEP06 (2021) 093]

S. Martellotti

 π^+ momentum [GeV/c]

35

NA62 The NA62 kaon factory physics program

Oltre alla misura principale c'è un vasto programma di fisica da esplorare...

- Main goal: O(10%) precision measurement of BR(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$)
- Standard kaon physics:
 - Branching fraction measurements of all main K⁺ decay modes
 - $\quad \chi_{\text{PT}} : \ K^{\scriptscriptstyle +} \ \rightarrow \ \pi^{\scriptscriptstyle +} \gamma \gamma, \ K^{\scriptscriptstyle +} \ \rightarrow \ \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0} e^{\scriptscriptstyle +} e^{\scriptscriptstyle -}$
 - Lepton universality: $R_K = \Gamma(K^+ \rightarrow e^+\nu_e)/\Gamma(K^+ \rightarrow \mu^+\nu_\mu)$
- Rare and forbidden K^+ and π^0 decays:
 - K⁺ physics: K⁺ $\rightarrow \pi^+ l^+ l^-$, K⁺ $\rightarrow \pi^+ \gamma l^+ l^-$, K⁺ $\rightarrow l^+ \nu \gamma$, [I = e, µ]
 - $\text{ LNV/LFV searches: } \mathsf{K}^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +}\mu^{\scriptscriptstyle +\text{-}}e^{\scriptscriptstyle -\text{+}}, \, \mathsf{K}^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle -}\mu^{\scriptscriptstyle +}e^{\scriptscriptstyle +}, \, \mathsf{K}^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle -}I^{\scriptscriptstyle +}I^{\scriptscriptstyle +} \, [I = e, \, \mu]$
 - $\pi^{0} \text{ physics: } \mathsf{K}^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle 0}, \, \pi^{\scriptscriptstyle 0} \rightarrow e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}, \, \pi^{\scriptscriptstyle 0} \rightarrow e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}e^{\scriptscriptstyle +}e^{\scriptscriptstyle -}, \, \pi^{\scriptscriptstyle 0} \rightarrow \gamma\gamma\gamma(\gamma)$
- Exotics searches:
 - Heavy Neutral Lepton (HNL) production: $K^+ \rightarrow l^+\nu h$
 - − Dark photon (A'): K⁺ → $\pi^+\pi^0$, π^0 → A'γ, A' → invisible

$K^+ \rightarrow \pi^+ \pi^0$ VETO

For $K^+ \rightarrow \pi^+ \pi^0$ decays in the decay fiducial region and for $E_{\pi} < 35$ GeV 80% of the photons are in the Lkr acceptance

13248 channels 27 X₀ $\frac{\sigma_E}{E} = \frac{0.032}{\sqrt{E}} + \frac{0.09}{E} + 0.0042$ $\sigma_{X,Y} = \frac{0.42}{\sqrt{E}} + 0.06$ $\sigma_t = \frac{2.5}{\sqrt{E}}$ (GeV, cm and ns)

Photon veto in the angular decay region 1-8.5 mrad

For $K^+ \rightarrow \pi^+ \pi^0$ decays in the decay fiducial region and for $E_{\pi} < 35$ GeV 80% of the photons are in the Lkr acceptance Inefficiency < 10⁻⁵ for $E_{\pi} > 10$ GeV

19.02.2024

70 deserializer cards (collaborazione con INFN Pg)

TX-RX cabling (1 crate 9U, 64 cavi, 3.4 Gbps per cavo)

19.02.2024

Time Offset for all supercells, good corrected

Grazie per l'attenzione!

