

1

Programmi ed Esperimenti Strategici sugli Acceleleratori in CSN5

Alberto Quaranta – Cristina Vaccarezza

Alberto Quaranta

Type of Projects in CSN5

- Standard Projects: 2-3 years with medium-low budget (~ 50k€/y).
 - Development of new ideas.
 - R&D activities supporting larger scale projects.
 - Road from fundamental research to interdisciplinary activities of societal interest.

 \blacktriangleright Grants for Young Researchers: 2 years, for young researchers (PhD \leq 6y).

- Competitive selection of 6 new Grants every year.
- Funds for project (max 75 k€/y) and Grant.
- Development of new ideas and leadership skills.

Call: High budget and large networks (Max 1M€ max/3y).

- High level competitive selection.
- Funding of Grants supporting the activity.
- Pushing strategic topics.
- Preparation to larger european and international projects.

Numero di Sigle

	2017	2018	2019	2020	2021	2022	2023				
Standard Experiments	57	59	60	62	83	73	63	Budget	2021	2022	2023
								A 1 .			
CALLS	7	6	6	6	9	12	9	Accelerators	21%	22%	22%
GRANTs	12	12	12	13	19	12	12	Detectors	48%	52%	44%
тот	76	77	78	81	111	97	84	Interdisciplinary			
People	1118	1184	1162	1166	1367	NP	NP	interdisciplinary	31%	26%	34%
FTE	567	597	564	550	606	600	602				-

Alberto Quaranta

notes for discussion: Accelerators Landscape

NFN	Sigle	2021-2023			
	2021	2022	2023		
FTE (Tot)	100.1(su 696.4)	88.76(su 670.23)	116.2. (su 622.9)		
FTE (%)	14 %	13.2 %	18.6 %		
Budget (Tot)	867 k€	865 k€	1543 k€ 32 %		
Budget (%)	19 %	18 %			
Experiments	1. ACTIS 2. ARYA 3. ASIDI (PR) 4. ASTRACT 2021-2023 5. BISCOTTO 6. ION2NEUTRAL 7. IONS 2021-2023 8. LEMMAACC 9. LPA2 10. MOPEA 11. NUCLEAAR (PR) 12. SALVIA 2021-2022 13. SHERPA 14. SINGULARITY 15. SL_COMB2FEL 16. SL_EXIN 17. STORM 19. TERA 20. TRAMM 21. TUAREG	1. ACTIS (PR) 2. ARYA 3. ASTRACT 4. ETHIOPIA 2022-2024 5. GALORE 2022-2023 6. HSMDIS 2022-2024 7. IMPACT 2022-2023 8. ION2NEUTRAL 9 9. IONS 10 10. LPA2 11 11. MOPEA (PR) 12. 12. SALVIA 13. 13. SAMARA 2022-2024 14. SHERPA (PR) 15. 15. SIG (Call) 2022-2024 16. SINGULARITY 17. 17. SL_COMB2FEL 18. 18. SL_EXIN 19. 19. STORM 20. 20. TRAMM 21. 21. TUAREG	1. Alpha_DTL_BETA 2023-2025 2. ARYA 2020-2023 3. ETHIOPIA 2022-2024 4. FUSION 2023-2025 5. GALORE 2022-2024 6. H2BTF (Call) 2023-2025 7. HISOL 2023-2024 8. HSMDIS 2022-2024 9. IMPACT 2022-2023 10. ION2NEUTRAL 2020-2023 11. IONS 2021-2023 12. MICRON 2022-2024 13. PBT 2022-2024 14. SAMARA 2022-2024 15. SIG (Call) 2022-2024 16. SINGULARITY 2020-2022 17. SL_COMB2FEL 2019-2023 18. TUAREG 2020-2022 19. FRIDA (CALL-INT) 2022-2024		

III Giornata Acceleratori – Frascati – 4 Aprile 2024

Situazione 2024

		2024							
FTE (Tot) 95.7 (su 587.17)									
FTE (%)	[−] E (%) 16.3 % (↓ 2.3)								
Budget (Tot)		10)75.5 k€ (over	4521 k€)					
Budget (%)	23.8 % (<mark>↓ 8.2</mark>)								
Experiments	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	Alpha_DTL_BETA ASTRACT CROWN ETHIOPIA FUSION H2BTF (Call) HISOL HSMDIS IONS MICRON PLASMA4BEAM2 PBT SAMARA SL_BETATEST	20 20 20 20 20 20 20 20 20 20 20 20 20 2	23-2025 21-2024 24-2026 22-2024 23-2025 23-2025 23-2024 22-2024 22-2024 22-2024 22-2024 22-2024 22-2024 22-2024 22-2024 22-2024 22-2024					

Tematiche Principali

Innovation and improvement for «traditional» acceleration technologies.

- High gradient/current accelerators.
- Targets and materials for RF technologies.
- Innovative acceleration technologies and methods.
 - Laser based methods.
 - Miniaturization.
 - Plasma acceleration.
- Applications of acceleration technologies.
 - Accelerators for innovative medical treatments.
 - Accelerator technologies for energy (fusion).

- High duty cicle LINAC.
- > Alpha particles 0.5 mA at variable energy up to 40 MeV.
- Only 2 stages: RFQ DTL.
- > (Total cost 15M€ + infrastructures).

ALPHA_DTL PI: Francesco Grespan

- Key: vacuum modulating post-couplers (simulations and design of motors an controllers).
- He2+ source from AISHA.
- > RF sources adapting kylstrons from ESS (re-optimization).

CSN5

Alberto Quaranta

ALPHA_DTL PI: Francesco Grespan

					W/D2	DE avetem day	alanman			Ion Source						
WP1	Movable Post coupler p	rototypin	g		VVP2	RF System dev	velopmen	ii ii			Description			rom T0		
MS# or DI V#	Description		N	lonths om T0	MS# or DLV#	Descri	Description			He2+ productio	frequency		6			
MS2.1.a	Mech. Design of motorized	post coup	bler	6	MS2.2.a	Set up develop program with E	Set up development 6 He2+ production with the optimized frequency at different extraction voltage					mized voltages	d 12 ages 12			
MS2.1.b	Production of 1 motorized and vacuum charr	post coup iber	ler	18		Technical speci	fications o	of a		Simulation of plasma dynamics in AISHA				12		
MS2.1.c	Test in vacuum of 1 moto coupler	orized pos	t	24	MS2.2.b	modulator and l compliant with a	RF syster alpha-Lina	n ac	15	He2+ produc	oduction with an Al liner at the			8		
DLV2.1	Report of test in vacuum of PC	f a motoriz	ed	24		Proliminanto				Simulatio	n of beam extraction in					
						Preliminary De	esign of			exper	imental conditions	conditions 1		8		
WP1	Movable Post coupler prototyping	2022	2023	Tot	DLV2.2	for apha-DTL	I RF Syste	em	24	Report on AISI	rt on AISHA characterization in single			24		
		kEuro	kEuro	kEuro		BE overterm				iie	equency nearing					
consumables	Motorized post coupler mech.design	5	0	5	WP2	developemnt	2022	2023	3 Tot	WP3	Ion Source	2022 kEuro	2023 kEuro	Tot kEur		
equipment	Motorized post coupler production	25	10	35			kEuro	kEuro	kEuro	travels	Experiment at	10	10	20		
consumables	Test motorized PC in vacuum chamber	0	10	10	services	Modulator technical design	0	1(0 10	eeneumek le	Experiment at	E	F	10		
Tot		30	20	50	Tot	5	0	1(0 10	consumable	AISHALNS	5	5	10		
			_0		101		0	10	0 10	Tot		15	15	30		

- > Injector for high power and high brightness CW ERL electron beams (mAs for FEL).
- Photocathode gun.
- Pulsed laser excitation.

INFN

HB2TF (Call) PI: Dario Giove

Foreseen risk mitigation measures

	involved and time	
Organization: the	All, always	A co-leadership has been foreseen in each
oordination activities of each subsystem working group should be guaranteed		working group
Organization: the coordination activity of PI should be guaranteed	All, always	A steering board (composed of the subsystems working group leaders) has been foreseen to coordinate all the activities and to take general decisions. In case the PI is not in condition to operate the Steering board will drive the project for the time necessary with the same prerogative of the PI
Technical: DC Gun performances	DC Gun Subsystem	The design and the technological challenges related to the DC Gun are one of the major areas of risk in the project. We faced these aspects starting the analysis as soon as we could and signing a joint development program with the people of the JLAB laboratory.
Technical: photocathode performances at very high repetition rates	Photocathode Subsystem	Photocathodes constitute one of the more relevant area of expertise in our group. People working on this subsystem are well recognized in the worldwide scenario as pioneers and still act as a reference in providing these components for a lot of laboratories.
Technical: laser performance	Laser Subsystem	The laser subsystem is in advance phase of realization as a result of other activities. In any case a considerable support may be obtained from experts at the University of Paris Saclay.
Technical: Injector buncher and booster	The RF system	The people involved in these subsystems have more than 20 years' experience in designing, constructing, and testing cavities for several worldwide laboratories. Buncher cavities and RF power supplies will be developed starting from a well known situation and taking experience from the internal expertise and collaboration with KEK (Japan), Raja Ramana Centre for Advanced Technology (India) laboratories and at least by a private company in Italy.

Description of risk Subsystems

Alberto Quaranta

Alberto Quaranta

- Collinear coprapagation of laser and particle beams.
- Metallic structure from Ka to W-band (35-200 GHz, mm-WL) modeling and prototyping.
- > DLA structures at optical WL (1-5 μ m) test of fabrication technologies.

MICRON

PI: Giuseppe Torrisi

ANNO	MISSIONI	CONSUMO	INVENTARIO	LICENZE-SW	TOTAL
2022	20	20	56,5	0	96,5
2023	20	20	0	0	40
2024	20	36	0	15	71
тот	60	76	56,5	15	207,5

Мо	nth	1	3	6	9	12	15	18	21	24	27	30	33	36		
\A/D1	T1.1										D1					Design of optical low- and high-ß dielectric structures
WPI	T1.2						M1									RF design of metallic Ka and W-band cells and mode launcher
14/02	T2.1						M1									Beam dynamics and Wakefield in dielectric structures
VVPZ	T2.2															Beam dynamics and Wakefield in metallic structures
14/02	T3.1						M2									Manufacturability
WP5	T3.2												D2	D3		Fabrication and morphological characterization
	T4.1									D1						Fabrication, Optimization
WP4	T4.2											D2				RF cold test of metallic prototype and Characterization of T vs welding
WP0	T0															NETWORKING, MANAGEMENT, DISSEMINATION
	DIELE	CTRIC						M1	full-w	ave m	odel (E	EM+BD) and	execut	tive drawing	
								M1	first p	relimir	ary m	odel F	RF (HFS	5S) - Be	eam Dynami	cs (ASTRA)
	META	LS						M2	dielec	tric sai	nple f	abrica	tion te	st		
	NETW	ORK														
								D1	full-w	ave m	odel (E	EM+BD))			
								D1	Ka-ba	nd me	tallic p	rotoyp	be (35	GHz)		
								D2	Repor	t of th	ie meta	allic pr	otoyp	e chara	acterization	
								D2	dielec	tric pr	otoype	2				
								D3	Repor	t of th	e diele	ectric s	tudy			

Alberto Quaranta

ASTRACT

- High multipolar magnetic fields through superconductors.
- High Jc (Nb3Sn) and Tc superconducting materials for cables.
- A S T R A C T Wires of precursors wired to form cables and thermally treated for the formation of the Scompound.

Alberto Quaranta

- 4y proposal (2024-2027).
- Physics and R&D case: Generation of betatron radiation from beam-driven PWFA at SPARC_LAB.
- > Betatron motion of electrons in an ion-channel to emulate an undulator compact device.

SL_COMB2FEL

PI: Enrica Chiadroni

5y activity (2019-2023).

5 cm drift

- First experimental observation of the gain growth of a plasma-driven FEL both in Self Amplified Spontaneous Emission (SASE-FEL) and in Seeded configuration.
- First EuPRAXIA plasma source enabling 1.1 GeV (1.5 GV/m) in 40 cm length capillary (n = 10¹⁶ cm⁻³)
- Active Plasma Lenses (APL) based final focus and extraction line.

Alberto Quaranta

STtrOng cRystalline electroMagnetic fields

PI: Laura Bandiera

- Intense positron sources for future colliders based on crystal channeling.
- Intense axial Channeling Radiation in a thin tungsten crystal results in higher e+ rate, with less deposited energy in the converter.
- Enhancement of photon generation in crystals in channeling conditions and reduction of the Peak Energy Deposition Density (PEDD) in the target material.

Bent Crystals for Beam Steering

Collimation & Extraction

Bent Si crystal – 4 mm

long

.....

Ferrara bent crystals have been installed in the LHC and are currently under test for the HI-LUMI ion beam collimation

Extraction Fermilab	🛟 Fermilab	MU2e	2
muons t	Electrostatic Septum		
decay μ +	Cathode	Deflected beam	Crystal
with a b	E		Crystal
losses			
-> increa			
intensity			
muon be			

Extraction of protons from ermilab's Delivery Ring, which are used to produce nuons to search for the rare ecay $\mu \rightarrow e\gamma$:

with a bent crystal, the beam osses can be decreased > increases the proton beam ntensity and therefore the muon beam intensity

Collaboration with the **FCC-ee Injector Studies Group** (I. Chaikovska, IJCLab) Moll signed between INEN Ferrara and III ab in Sept. 202

MoU signed between INFN Ferrara and IJLab in Sept. 2022

Alberto Quaranta

PLASMA4BEAM2

PI: Marco Cavenago

- Study of ion, plasma and gas collision physics for transport of beams into collisional media (RFQC cooler), negative ion beams (NIO1) relevant to fusion and photon detectors (GEM) for High Voltage breakdown survey.
- Beam and plasma manipulation.
- High intensity beams for fusion and Neutral Beam Injectors.
- Beam-Plasma Interaction modelling.

Alberto Quaranta

- Design of a RF structure for electron pulses (160 MeV).
- Design of pulse compressor.
- Design of ICT + quadrupole laser-matter interaction & transport.
- > W anode suitable for high currents to produce high intensity photon beams via bremsstrahlung.
- Collimation systems.

III Giornata Acceleratori – Frascati – 4 Aprile 2024

- > p-¹¹B reaction study for applications in plasma energy processes.
- > Efficiency maximization of the reaction and alpha particle production.

FUSION

PI: Pablo Cirrone – Fabrizio Consoli

New borated targets

- WP1: Study of the laser triggered interaction.
- Stopping Power Measurements d interaction.
- WP2: measuring the stopping power in plasma.
- WP3: development and simulation for new targets.
- > WP4: plasma and radiation diagnostics.

III Giornata Acceleratori – Frascati – 4 Aprile 2024

Summary

Advantages of CSN5 projects.

- Allow to explore new ideas.
- Give scientific validation to ideas and teams.
- Foreseen budget is necessary.
- Strenghten collaborations and proposal for larger scale applications..
- Short timelines allow to set measurable goals and deliverables step by step.
- Visibility of groups and researchers.

Drawbacks.

- No funds for large apparatuses.
- Deadlines for purchasing or tests may extend the project timeline.
- Foreseen budget is necessary.

Proposal Submission

- Every year there is an open call for the submission of new proposals (20-30 new proposals).
- > The proposal has to fit a template.
- Project management approaches are required only for Calls.
- Proposals (as written) are ranked during the July meeting:
 - Project motivations. Scientific/technical Impact. Clarity in explaining novelty and advancements over the state of the art. Relevance to INFN and CSN5 mission. (1-10)
 - Clarity in explanation of methodologies and expected results. Methods for evaluating the activity progress. Risk analysis and mitigation. (1-10)
 - Experiment sustainability. Consistency and justification of financial requests. Consistency of engaged personnel with the planned activities. Competence of the proponents regarding the proposal topic. (1-10).

- If the ranking is sufficient (total ≥ 18) 2-3 referees are assigned to the project (at least one among the Coordinators).
- A meeting between referees and proponents before the September meeting setting milestones, personel and costs.
- CSN5 meeting in september: the PI gives a seminar to the whole CSN5 and after questions and discussion a new final ranking is formulated.
- Taking into account of both the ranking and the economical availability the projects are approved and funded by the Commission.
- Referees follow the project along its whole life helping the proponents to set the milestones and to overcome problems along the road.