Attività INFN-NA su acceleratori: stato e prospettive

04/04/2024

Istituto Nazionale di Fisica Nucleare The Italian National Institute for Nuclear Physics

Andrea Passarelli

ÍNFŃ

Activity framework - Napoli

-31.8 -36.4 -40.9 -45.5 3

ARYA (2020-23) Resp. nazionale dal 2021 laia Masullo

SurfAce and mateRial studies for Accelerator TechnologY And related topics

- Reducing instabilities due to interaction beam and vacuum chamber. Instabilities can be caused by:
 - impedance (both geometric and due to the conductivity of the surface);
 - dynamic vacuum effects (thermal or electron induced desorption);
 - formation of cloud of electrons (known as e-cloud) which interacts with the beam.
- The project is subdivided in **4 Working Packages (WP's)**. Each dedicated to the study of a part of the problem in international collaborations for **HL-LHC**, **FCC and other accelerators**.

WP	Titolo	Unità coinvolte	Responsabile
WP1	Studio comparativo e caratterizzazione del desorbimento stimolato indotto da elettroni e fotoni.	LNF-INFN CERN	M Angelucci L. Spallino
WP2	Dinamica di fascio e materiali innovativi per acceleratori	Roma1-INFN Na-INFN LNF-INFN CERN	M. Migliorati
WP3	Studi di Impedenza e metodologie di riduzione; realizzazione e caratterizzazione di superfici strutturate per ablazione laser	Na-INFN Roma1-INFN CERN LNF-INFN	M.R. Masullo A. Passarelli
WP4	LHCspin: Validazione delle proprietà di superficie della cella di accumulazione con H atomico.	CERN LNF-INFN	R. Cimino

ARYA Project

Coated and laser structured surfaces in particle accelerators to avoid undesirable effects and maximize machine performance

- Non-Evaporable Getter (NEG): ultrahigh vacuum and e-cloud
- Amorphous Carbon (a-C): e-cloud
- Laser Induced Periodic Surface Structures (LIPSS): e-cloud

J.J. Nivas et al.

INFN

Electromagnetic characterization: two different methods

Dielectric resonator

high sensitivity

Sub-THz waveguide

small skin-depth

NEG (Non-Evaporable Getter) homogeneous coating

a-C (Amorphous carbon) coating thickness issues

LIPSS: Laser Induced Periodic Surface Structure conductivity compared with copper

000

Collaboration

• small samples

Andrea Passarelli

Electromagnetic characterization of coatings in sub-THz

Electromagnetic characterization of LIPSS with dielectric cavity ⁸

Pure copper as reference material-use a calibration curve

 $+\frac{1}{Q_d}+\frac{1}{Q_{LIPSS}}$ \overline{Q} Q_{met}

Inside dielectric

On sample

Elettra 2.0 upgrade – beam coupling impedance evaluation

BriXSinO

Andrea Passarell

PNRR - Anthem

11

Anthem

AdvaNced Technologies for Human-centrEd Medicine

Future work

- Tuning of the RFQ cavities
- RFQ Cavity Radio Frequency
 Power Amplification System
 Test
- Collaboration with construction engineers for the construction of the bunker for the accelerator installation

Andrea Passarelli

Analytical improvement of laser wakefield acceleration

G. Fiore, R. Fedele, S. De Nicola

- General goal: to find out promising regions in the space of input data (= initial plasma density \tilde{n}_0 , laser pulse profile ϵ^{\perp}) for an efficient LWFA, before running PIC simulations/experiments.
- We have recently elaborated a (numerically light) procedure in 4 steps to tailor ñ₀ to ε[⊥] so as to maximize the LWFA of bunches of electrons self-injected by the first wave-breaking (WB) occurring on the density down-ramp.
- To this end we use an improved, fully relativistic plane model whereby the light-like coordinate ξ = ct-z replaces time t as the independent variable, and the Lorentz-Maxwell and continuity PDEs are reduced to a continuous family of pairs of Hamilton equations; these are decoupled up to WB. We extend crucial results to realistic 3D situations by causality arguments.

• a) laser pulse ε^{\perp} ; **EUPRAXIA**

• b) associated optimal plasma density ñ₀

Tandem Accelerator Laboratory Research Laboratory Hub (POLAR),14Dept. of Mathematics and Physics, University of Campania - Luigi Vanvitelli

Santa Maria Capua Vetere

Caserta

3 MV TANDEM-PELLETRON ELECTROSTATIC MACHINE 1 source SNICS 1 source SNICS for radionuclide

1 SOURCE APLPHATROSS (WORKING IN PROGRESS)

Main fields of research:

- ✤ Nuclear astrophysics
- ✤ Biophysics
- ✤ AMS (14C+Actinides) for environmental

science, cultural heritage and forensics

- ✤ Ion Beam Analysis
- ✤ Ion implantation

Production of any type of beam that makes negative ions

Staff:

- L. Gialanella Scientific responsible
- R. Buompane Deputy
- G. Porzio Technical infrastructure manager
- F. Marzaioli Head of the AMS service
- Post. Doc: C. Santonastaso, I. Passariello
- PhD. Students: L. Bagnale, E. Formicola, M.L. Mitsou, F. Molitierno.

IONS	INTENSITY (uA)		
¹ H	100		
⁷ Li	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
⁷ Be			
⁹ Be			
¹⁰ Be			
¹¹ B			
¹² C			
¹³ C			
CN(¹⁵ N)N			
Si			
P			
Al ₂			
VH			
Ni			
Cu			
As	30		
Au	150		
^{23B} Unat	0,1		
He ⁻	4		

SCADA COOPERATION SYSTEMS AND AI: MEDIUM AND LARGE ACCELERATORS PLANT

AcceleNet (NEC)

2.724 MV

SCADA Data Bridge: Hardware and Software tools

ULISSE User Light Interface for Systems coordination and SurveillancE

Database that logging 437 parameters 1 Hz of SR

HIT-MAN*

Host In The Middle As iNterface

A framework designed **to extend the lifespan** of sensors and actuators within the plant

- Anomalies and maintenance prediction
- Trigger alarms and Events coincidence
- Quality prediction with AI on 14C AMS measure
- Hardware and Software obsolescence Fighting (HIT-MAN)

Finanziato dall'Unione europea NextGenerationEU

18

Test Facility for Large Magnets and Superconducting Line at INFN – NA / Gr. Coll. SA

- University of Salerno, Campus Fisciano, Physics Department E. R. Caianiello.
- THOR (Test in HORizontal) facility is the existing test stand for large superconducting magnets. The civil construction started in 2014 and nowadays the facility is operational for GSI/FAIR SIS100 magnets.
- IRIS (Innovative Research Infrastructure on applied Superconductivity): PNRR program devoted to extend the already existing facility with a dedicated infrastructure to test superconducting transmission line. The civil construction will start in 2024.

The team: A. Chiuchiolo^a, D. D'Agostino^a, A. Ferrentino^{b, a}, U. Gambardella^a, R. Gargiulo^a, M. Imran^{b, a}, E. Leo^a, A. Saggese^{b, a}, C. Severino^a, F. Severino^a

19

THOR facility for SIS100 QDM testing

- The facility is designed with 2 horizontal test lines for parallel cooldown and operation of 2 QDMs
- Electronics and software development for sensors monitoring and control (temperature sensors, voltage taps, vacuum gauges, heaters)

- 450 m² working area plus control room and workshop;
- External Helium gas tank (30 m³ @ 14 bar) and precooling liquid Nitrogen tank (3000 l);
- Kaeser compressor (70 g/s @ 10 bar);
- Cooling tower (20 m³/h of water at 25°C, 300 kW);
- Cold Box supercritical He (3-7 bar, 200 W @ 4.5 K + 500 W @ 60 K w/o precooling);
- Power converter DC/AC (300 A, 10.5 V, +/- 1250 A/s)
- 300 kW UPS

SIS100 quadrupole doublet modules

QDMs are composed of 2 main quadrupoles and from 2 to 5 corrector magnets (steering dipoles, sextupole and multipoles) integrated in the same cryostat, all based on Nuclotron cable

Magnet	quantity	Maximal Current	Main field at I _{max}	Inductance, mH
Main Quadrupole	169	10.5 kA	28 T/m	0.41 mH
Chromaticity Sextupole	42	± 250 A	232 T/m ²	43 mH
Steerer	83			
Horizontal coil		± 250 A	0.37 T	21 mH
Vertical coil		± 250 A	0.37 T	21 mH
Multipole corrector	12			
Coil 1 (quadrupole)		± 250 A	0.91 T/m	1.1 mH
Coil 2 (sextupole)		± 250 A	31.8 T/m ²	5.6 mH
Coil 3 (octupole)		± 250 A	446 T/m ³	7.4 mH
γt- jump quadrupole	12	±250 A	**)	0.33 mH

GSI

Finanziato dall'Unione europea NextGenerationEU

Test Facility for Superconducting line – The IRIS program

- Within the PNRR-IRIS program, the Salerno Pole (UniSA, INFN and CNR) is in charge to set up a **new** test facility for **130 m long superconducting cable** able to carry up to 40 kA of current at 25 kV (i.e. a **1 GW power**)
- In 2023 procurement and hiring process has started
- In 2024 civil works will start as well as the production of the MgB2 line in ASG (Genova) led by LASA (Milano).
- The superconducting transmission line will be a demonstrator for the commissioning of the test facility
- The facility will be maintained at least 10 years giving open access to research institutes and companies

- 130 m long **bunker for cable**
- He refrigerator for a total power up to 500 W @ 20 K GHe gas (about 23 g/s)
- Power converter up to 40 kA with isolation up to 50 kV
- He storage dewars / LN2 for cable current leads

21