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Conclusion

Introduction
• Nowadays high-energy particle accelerators suffers two major problems: The injected power must be limited to avoid 

cavity breakdown and their enormous size (and consequently, their cost).

• Dielectric Laser-driven Accelerators (DLAs) work under a different, novel acceleration concept to propel particles to high 

energies [1]. Dielectric materials possess a higher damage threshold than metals [2]. This feature allows for more intense 

electric fields inside the structure, enhancing the accelerator’s performance. In 2013, it has been the first demonstration of  

a high accelerating gradient using a grating DLA [3], surpassing the values commonly found in RF cavities.

• Generally, the accelerating structure is fed using optical lasers. Thanks to their short wavelength, the accelerator 

dimensions can be reduced by several order of  magnitudes. On the other hand, operating at these frequencies pose several 

challenges quite difficult to solve in practice [4].

• Thanks to the advance of  the terahertz (THz) science in the last decades, they offers several advantages compared with 

infrared (IR) lasers, while keeping the benefits of  structure-based laser-driven accelerators. 

• A high percentage of  laser-structure coupling is needed to attain high-gradient accelerators. Our work combines a simple 

optical system to focus the generated THz pulse and a homemade metallic waveguide to generate a THz electric 

field suitable for particle acceleration.
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A six-cycle terahertz pulse is generated using a 6 pairs of  ppLN 

waffers by quasi-phase-matched (QPM). The crystal consists of  12 

wafers stacked alternating the direction of  their optical axis. The 

central frequency is around 0.65 THz.
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A simple reflective  

EOS setup to 

measure the electric 

field of  the terahertz 

pulse  pulse after 

traversing the 

waveguide. 

The pump laser 

pulse energy is 1 mJ. 

Optical power 

modulation was 

achieved using an 

optical chopper.

Electron acceleration can be attained by combining a multicycle THz source (ppLN in this case) and a home-made 

waveguide,  to couple the laser pulse to a Dielectric Accelerator structure by feeding the symmetric waveguide with two 

pulses laterally.

The THz pulse was measured for three different configurations. 

The first corresponds to a standard EOS, where the pulse is focused 

onto the EOS crystal. After this, we focused the THz pulse at the 

entrance of  the waveguide and at 1-inch behind the entrance. In these 

two cases the EOS crystal was placed 3 mm after the waveguide to 

measure the electric field of  the outgoing pulse.

Photo of  waveguide alignment by using visible light. A clear diffraction 

pattern can be observed on the laser’s blocker

The optimization of  the DLA 

parameters such as the channel 

gap, the pillar height and width 

were carried out minding the 

figure of  merits acceleration 

factor (AF). The accelerating 

gradient is calculated in one 

period (λp), for the optimal 

electron path z(t). Exciting the 

waveguide with a THz pulse with 

peak field near 3 MV/cm results 

in an energy gain of  0.175 MeV 

in approximately 5 mm length for 

a initial bunch energy of  6 MeV.

• An electric field suited for particle acceleration was generated using a multi-cycle terahertz pulse with a metallic 

waveguide.

• Simulations reproduce very well the experimental results. Simulations can provide insight of  the accelerating structure 

when the experimental techniques are unviable, and they can be used for 

• The devised structure performance could be further improved by employing higher pump intensities, waveguide and 

DLA optimizations.

Off-axis parabolic mirror

The waveguide’s geometry dictates the propagation and transmission of  the 

terahertz pulse. The THz pulse will be transmitted or not according to the 

waveguide’s gap value (distance between the upper and lower parts of  the 

waveguide, parameter “a” in equation).

The waveguide was excited using the 

measured THz pulse with our 

experimental setup. As a result of  the 

interaction with the waveguide, the 

THz peak electric field is amplified. 

The measured and simulated electric 

field for focus at entrance are in good 

agreement, validating the simulation 

results of  the electric fields.

Left: Probes position inside the waveguide to study the pulse evolution inside the waveguide. Right: Electric field at 

the probes positions. The values are normalized to the entrance’s peak electric field.

Experimental and simulation pulse for the entrance focus configu-

ration. The shape resemblance between the pulses can be noted.

Left: Structure parameters optimized for acceleration. Right: Energy profile at 

different time instants with respect to the THz pulse excitation. 
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Electric field map for a waveguide with gap equals to 400 μm (left), and 150 μm (right).  
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