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In the frame of this presentation, we explore the development of a novel compact Laser-Plasma Accelerator (LPA) based Free Electron Laser
(FEL) operating in the extreme ultraviolet (EUV) range of the radiation spectrum. Achieving the desired electron beam parameters within a
single-unit Swiss-FEL type undulator (as a commercially available option) presents a significant challenge. The presentation covers
requirements of the LPA-based electron beam parameters for the LPA-based FEL and various options for capturing electron beams from a
compact laser-plasma accelerator to reach the saturation of the FEL power.

Sigma matrix formalism in order to find the optimal settings for the quadrupole magnets and
APL, namely the current values required to achieve a focused beam at the center of the
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Inverse relationship between the focusing of the beam in the horizontal and vertical plane. Large
degradation of beam emittance, up to 10 m mm mrad, due to intrinsic emittance growth and
chromatic aberration.

* Evolution of the Beam Size and Emittance in the Beamline setup with Active
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The multi-particel tracking simulation using an ideal electron beam was preformed using 10 Beam Size with APL Transverse Emittance with APL
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CONCLUSION
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From this observations, active plasma lenses show higher potential for effectively capturing and focusing electron beams in EUV FEL applications. It is clear that active plasma lens provide kT/m focusing
fields, orders of magnitude stronger focusing compare to conventional quadrupole magnets. Furthermore, the aberration is fully suppressed by using a heavier gas species like Argon. Moreover, the
highly diverging beam produced from the laser-plasma interaction which combined with high energy spread leads to minorer beam size and emittance growth in case of the active plasma lens. However,
further optimizations and analysis as well as reducing the distance between the LPA and the APL, are necessary to fully achieve electron beam parameters in the required range.
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