

The AWAKE Experiment at CERN

Edda Gschwendtner, CERN

EuPRAXIA-DN School on Plasma Accelerators April 22 – 26, 2024 Orto Botanico di Roma, Italy

AWAKE at CERN

Advanced WAKEfield Experiment

- → Accelerator R&D experiment at CERN.
- ➔Unique facility driving wakefields in plasma with a proton bunch.
 - → At CERN highly relativistic protons with high energy (> kJ) available

TI2

→Accelerating externally injected electrons to GeV scale.

(CERN)

AWAKE at CERN is Unique

→ AWAKE addresses technology development for particle physics application, i.e. core business of CERN

Proton drivers: large energy content in proton bunches
→ single stage acceleration to accelerate electrons to TeV level

SPS Driver (19 kJ): ~ 150 GeV in ~200 m, 10⁹ e⁻

LHC Driver (112 kJ): ~ 5 TeV in ~7 km, ~ 10⁹ e⁻

Many opportunities for first particle physics applications in the nearer future: search for dark photons with beam dump experiments

AWAKI

Flagship Today: The Large Hadron Collider

• 27 km circumference

- Collision of protons (or lead) at 13.6 TeV c.o.m.
- High Luminosity upgrade in 2026-2028 to increase the integrated luminosity by a factor of 10
- Operating until 2042

Higgs Boson Discovery at the LHC in 2012 → Nobel Prize in 2013

(CERN)

Open Questions

Despite of impressive progress and discoveries in the past decades several fundamental question remain open.

Is there only a single type of **Higgs** boson and does it behave exactly as predicted? Why is the universe composed only of matter? Where has the **anti-matter** gone that was produced simultaneously in the big bang?

Most of the **mass of the universe** is unknown. What is the universe made of? Why is the **gravitation** so much smaller than the other forces? How to reconcile gravitation with quantum mechanics?

To Discover New Physics: Accelerate Particles to even Higher Energies

Circular Accelerators

Conventional RF cavities ok for circular colliders:

- beam passes accelerating section several times.
- F Limitations of electron-positron circular colliders:
- Circular machines are limited by synchrotron radiation in the case of electronpositron colliders.
- These machines are unfeasible for collision energies beyond ~350 GeV in case of FCCee.

 $P_{synchr} = \frac{e^2}{6\pi\varepsilon_0 c^7} \frac{E^4}{R^2 m^4}$

AWAK

Linear Colliders

Favorable for acceleration of low mass particles to high energies.

Limitations to linear colliders:

Linear machines accelerate particles in a **single pass.** The amount of acceleration achieved in a given distance is the *accelerating gradient*. This number is **limited to 100 MV/m** for conventional copper cavities.

Particle energy = accelerating gradient*distance

e.g. accelerate electrons to 1 TeV (10¹² eV): 100 MeV/m x 10000 m or 100 GeV/m x 10 m

CLIC, electron-positron collider with 3 TeV energy

AWAK

Plasma Wakefield Acceleration

The **high gradient of plasma wakefield acceleration** makes this technology very interesting for reducing the size (and cost) for future linear colliders.

100 MV/m → 100 GV/m

A WAKE

Plasma Wakefield Accelerators – Electron/Laser Drivers

A IVAKE CERN

Witness beams (Surfers): Electrons: 10¹⁰ particles @ 1 TeV ~few kJ **Drive beams (Boat):**

Lasers: ~40 J/pulse Electron drive beam: 30 J/bunch

Plasma Wakefield Accelerators – Electron/Laser Drivers

Witness beams (Surfers): Electrons: 10¹⁰ particles @ 1 TeV ~few kJ **Drive beams (Boat):**

Lasers: ~40 J/pulse Electron drive beam: 30 J/bunch

To reach TeV scale:

- Electron/laser driven PWA: need several stages, and challenging wrt to relative timing, tolerances, matching, etc...
 - effective gradient reduced because of long sections between accelerating elements....

(CERN)

Plasma Wakefield Accelerators – Proton Drivers

Witness beams (Surfers): Electrons: 10¹⁰ particles @ 1 TeV ~few kJ

Drive beams (Boat):

Lasers: ~40 J/pulse Electron drive beam: 30 J/bunch **Proton drive beam: SPS 19kJ/pulse, LHC 300kJ/bunch**

Plasma Wakefield Accelerators – Proton Drivers

Witness beams (Surfers): Electrons: 10¹⁰ particles @ 1 TeV ~few kJ

Drive beams (Boat):

Lasers: ~40 J/pulse Electron drive beam: 30 J/bunch Proton drive beam: SPS 19kJ/pulse, LHC 300kJ/bunch

To reach TeV scale:

- **Proton drivers**: large energy content in proton bunches \rightarrow allows to consider single stage acceleration:
 - A single SPS/LHC bunch could produce an ILC bunch in a single PDWA stage.

With existing proton beams the energy frontier with electrons can be reached!

- SPS p⁺ (450 GeV): accelerate to 200 GeV electrons.
- LHC p⁺ can yield to 5 TeV electrons

The AWAKE Experiment

AWAKE is an International Collaboration

(CERN)

AWAKE

AWAKE's Strong Scientific and Educational Output

22 AWAKE Collaboration papers in high-level journals

Authors	Title	Journal	Year
L. Verra, et al. (AWAKE Collaboration)	Filamentation of a Relativistic Proton Bunch in Plasma		2023
T. Nechaeva, et al. (AWAKE Collaboration)	Hosing of a long relativistic particle bunch in plasma		2023
L. Verra, et al. (AWAKE Collaboration)	Development of the Self-Modulation Instability of a Relativistic Proton Bunch in Plasma	PoP	2023
E. Gschwendtner, et al. (AWAKE Collaboration)	The AWAKE Run 2 programme and beyond	Symmetry	2022
L. Verra, et al. (AWAKE Collaboration)	Controlled Growth of the Self-Modulation of a Relativistic Proton Bunch in Plasma	PRL	2022
S. Gessner, et al. (AWAKE Collaboration)	Evolution of a plasma column measured through modulation of a high-energy proton beam		2020
V. Hafych, et al. (AWAKE Collaboration)	Analysis of Proton Bunch Parameters in the AWAKE Experiment	JINST	2021
P.I. Morales Guzman, et al. (AWAKE Collaboration)	Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients	PRAB	2021
F. Batsch, et al. (AWAKE Collaboration)	Transition between Instability and Seeded Self-Modulation of a Relativistic Particle Bunch in Plasma	PRL	2021
J. Chappell, et al. (AWAKE Collaboration)	Experimental study of extended timescale dynamics of a plasma wakefield driven by a self-modulated proton bunch	PRAB	2021
F. Braunmüller, et al. (AWAKE Collaboration)	Proton Bunch Self-Modulation in Plasma with Density Gradient	PRL	2020
A. A. Gorn, et al. (AWAKE Collaboration)	Proton beam defocusing in AWAKE: comparison of simulations and measurements	PPCF	2020
M. Turner, et al. (AWAKE Collaboration)	Experimental study of wakefields driven by a self-modulating proton bunch in plasma	PRAB	2020
E. Gschwendtner, et al. (AWAKE Collaboration)	Proton-driven plasma wakefield acceleration in AWAKE	PTRSA	2019
M. Turner, et al. (AWAKE Collaboration)	Experimental Observation of Plasma Wakefield Growth Driven by the Seeded Self-Modulation of a Proton Bunch	PRL	2019
AWAKE Collaboration	Experimental Observation of Proton Bunch Modulation in a Plasma at Varying Plasma Densities	PRL	2019
AWAKE Collaboration	Acceleration of electrons in the plasma wakefield of a proton bunch	Nature	2018
P. Muggli, et al. (AWAKE Collaboration)	AWAKE readiness for the study of the seeded self-modulation of a 400 GeV proton bunch	PPCF	2018
E. Gschwendtner, et al. (AWAKE Collaboration)	AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN	NIMA	2016
A. Caldwell, et al. (AWAKE Collaboration)	Path to AWAKE: Evolution of the concept	NIMA	2016
C. Bracco, et al. (AWAKE Collaboration)	AWAKE: A Proton-Driven Plasma Wakefield Acceleration Experiment at CERN	NPPP	2016
AWAKE Collaboration	Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics	PPCF	2014

> 70 papers related to AWAKE> 90 Conference proceedings and papers

→ 4 doctoral thesis prizes, 2 early career awards!

> 28 PhD students
> 11 Master students
> 20 Post-docs

Outreach: Newspapers, TEDX, ...

AWAKE

→ Proton bunch from SPS is extracted to AWAKE

Proton Bunch as a Drive Beam

In order to create high wakefield amplitudes, the drive bunch length must be in the order of the plasma wavelength.

18

Proton Bunch as a Drive Beam

In order to create high wakefield amplitudes, the drive bunch length must be in the order of the plasma wavelength.

CERN SPS proton bunch: very long! ($\sigma_z = 6 - 10 \text{ cm}$) \rightarrow much longer than plasma wavelength ($\lambda = 1 \text{ mm}$) \rightarrow Would create only small wakefield amplitudes

Self-Modulation of the Proton Bunch

Self-Modulation Instability:

Self-Modulation of the Proton Bunch

Self-Modulation Instability:

Self-Modulation of the Proton Bunch

Self-Modulation Instability:

E_z GV/m

10-1

Saturation

Pukhov, PRL107 145003 (2011)

→ Immediate use of SPS proton bunch for driving strong wakefields!

AWAKE at CERN

AWAKE installed in CERN underground area

RUN 1 (2016-2018)

p+ self-modulation 2 GeV e- acceleration

(CÉRN

AWAKE

AWAKE has a Well-Defined Program

RUN 1 (2016-2018)

AWAKE has a Well-Defined Program

RUN 1 (2016-2018)

AWAKE is Part of the European Strategy Roadmap

Single-stage accelerators (proton-driven)	O-10 y Demonstr Preserved beam quality, accel plasma uniformity (long	Vears ration of: leration in very long plasmas, gitudinal & transverse) U:	line (approximate/aspirational) 10-20 years Fixed-target experiment (AWAKE) c-photon searh, strong-field QED experiment etc. (50-200 GeV e-) Demonstration of: Jse of LHC beams, TeV acceleration, beam delivery	20-30 Energy -from 10 TeV c.o.m electro	R&D (exp & theory) HEP facility tier collider ron-proton collider	→ AWAKE is part of the roadmap of the European Strategy for Particle Physics
Single/multi-stage accelerators for light sources (electron & laser-driven)	0-10 Demonst Demonst uitra-low emittances, high rep-r laser drivers, Long-term operat (LuPN	Yeans ration of: ate/high efficiency e-beam and ion, potential staging, positrons AXIA)			e-p collider	
	Timeline (approximate/aspirational)					
Multi-stage		Demonstration of: scalabe staging, driver distribution, stabil (active and passive)	Isation Strong-field QED experiment (25-100 GeV e-)	Facility upgrade	Feasibility study R&D (exp & theory) HEP facility (earlist start of construction)	
accelerators (Electron-driven or laser-driven)	Simulation study to determine self-consistent parameters	Demonstration of: High wall-plug efficiency(edrivers), preserved beam quality & spin polarization, high rep.rate, plasma temporal uniformity & cell cooling		Higgs Factory (HALHF) Asymmetric, plasma-RF hybrid collider (250-380 GeV co.m)	Facility upgrade	
	(demonstration goals)	Energy-efficient positron accelera energy	Demonstration of: nergy-efficient positron acceleration in plasma, high wall-plug efficiency (laser-drivers), ultra-low emittances, energy recovery schemes, compact beam delivery systems			

R. Pattathil, presented at EAAC 2023

→ AWAKE allows to bridge the gap between the PWFA development in general and a e+/e- collider.

(CERN)

AWAKE Run 1

RUN 1 (2016-2018)

p+ self-modulation 2 GeV e- acceleration

AWAKE Experiment

AWAKE Proton Beam Line

The AWAKE beamline is designed to deliver **a high-quality beam** to the experiment. The proton beam must be steered around a mirror which **couples a terawatt class laser** into the beamline.

Further downstream, the **witness electron beam** will be injected into the same beamline.

E. Gschwendtner, CERN

AWAKE Plasma Cell

- 10 m long, 4 cm diameter Rubidium vapour source
- Laser ionizes Rb vapour to become Rb plasma.
- Density adjustable from $10^{14} 10^{15}$ cm⁻³ \rightarrow desired: 7x 10¹⁴ cm⁻³
- Density uniformity: < 0.2%

Downstream Expansion Chamber

AWAKE Plasma Source

Laser and Laser Line

AWAKE uses a short-**pulse Titanium:Sapphire laser** to ionize the rubidium source. → Seeding of the self-modulation with the relativistic ionization front. The laser can deliver up **to 500 mJ in a 120 fs pulse envelope**.

AWAKI

Diagnostics for Proton Bunch Self-Modulation

AWAKE Experiment and Run 1 Results

(CERN)

AWAKE

Results Run 1: Direct Seeded Self-Modulation Measurement

- Effect starts at laser timing → SM seeding
- Density modulation at the ps-scale visible
- Micro-bunches present over long time scale from seed point
- **Reproducibility** of the μ-bunch process against bunch parameters variation
- **Phase stability** essential for e⁻ external injection.

→ 1st AWAKE Milestone reached

AWAKE Collaboration, Phys. Rev. Lett. 122, 054802 (2019).

- M. Turner et al. (AWAKE Collaboration), 'Phys. Rev. Lett. 122, 054801 (2019).
- M. Turner, P. Muggli et al. (AWAKE Collaboration), Phys. Rev. Accel. Beams 23, 081302 (2020)
- F. Braunmueller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. July 30 (2020).
- A.A. Gorn, M. Turner et al. (AWAKE Collaboration), Plasma Phys. Control Fusion, Vol. 62, Nr 12 (2020). F. Batsch, P. Muggli et al. (AWAKE Collaboration), Phys. Rev. Lett. 126, 164802 (2021).

Electron Beam System

Electron source system

A Photo-injector originally built for a CLIC test facility is now used as electron source for AWAKE producing **short electron bunches at an energy of ~20 MeV/c.**

A completely new 12 m long electron beam line was designed and built to connect the electrons from the e-source with the plasma cell.

Challenge: cross the electron beam with the proton beam inside the plasma at a precision of ~100 μ m.

Electron Acceleration Diagnostics

camera

Electrons will be accelerated in the plasma. To measure the energy the electrons pass through a **dipole spectrometer and the dispersed electron impact on the scintillator screen.** The resulting light is collected with an intensified CCD camera.

E. Gschwendtner, CERN

Run 1 Results: Electron Acceleration

#2: Demonstration of Electron Acceleration in Plasma Wakefield

E. Gschwendtner, CERN

Run 1 Results: Electron Acceleration

(CÉRN

AWAKE

→AWAKE has developed a clear scientific roadmap towards first particle physics applications within the next decade !

➔In AWAKE many general issues are studied, which are relevant for concepts that are based on plasma wakefield acceleration.

Paradigm change:

→ Move from 'acceleration R&D' to an 'accelerator'

AWAKE Program

AWAKE Run 2

Accelerate an electron beam to **high energies**, while controlling the electron beam quality and demonstrate scalable plasma source technology.

•

•

AWAKI

AWAKE Program

V Run 2a (2021-2022): CONTROL: demonstrate the seeding of the self-modulation of the entire proton bunch with an electron bunch

Run 2a Results – Seeding the Self-Modulation

A WAKE CERN

→ Proton-bunch self-modulation process must be **reproducible**, reliable and stable.

Run 2a Results – Seeding the Self-Modulation

→ Proton-bunch self-modulation process must be **reproducible**, reliable and stable.

E. Gschwendtner, CERN

(CERN)

AWAKE

Run 2a Results – Seeding the Self-Modulation

→ Proton-bunch self-modulation process must be **reproducible**, reliable and stable.

(CÉRN

AWAKE

AWAKE Program

V Run 2a (2021-2022): CONTROL: demonstrate the seeding of the self-modulation of the entire proton bunch with an electron bunch

Run 2b (2023-2024): STABILIZATION: maintain large wakefield amplitudes over long plasma distances by introducing a step in the plasma density

Introducing a density step in the plasma cell

- → stabilization of the micro-bunches
- ➔ Increased wakefield amplitudes after SSM saturation

K. V. Lotov and P. V. Tuev 2021 PPFC 63 125027

Introducing a density step in the plasma cell

- ➔ stabilization of the micro-bunches
- ➔ Increased wakefield amplitudes after SSM saturation

K. V. Lotov and P. V. Tuev 2021 PPFC 63 125027

New Rubidium vapour source with density step installed in 2023

- Length: ~ 10 m, independent electrical heater of 50 cm from 0.25 to 4.75 m, Step height up to $\pm 10\%$
- 10 diagnostic viewport → to measure light emitted by wakefields dissipating after the passage of the proton bunch

Physics program: study the effect of the plasma density and test whether wakefields maintain a larger amplitude

 plasma density step clearly influences seeded self-modulation: Longer bunch train with more charge

Physics program: study the effect of the plasma density and test whether wakefields maintain a larger amplitude

52

Physics program: study the effect of the plasma density and test whether wakefields maintain a larger amplitude

Electron Acceleration

External injection downstream of the density step

→ Plasma density step clearly influences energy of the accelerated electrons: electron energy much higher

Complete the measurements during 2024 run! 53

AWAKE Program

Run 2a (2021-2022): CONTROL: demonstrate the seeding of the self-modulation of the entire proton bunch with an electron bunch
 Run 2b (2023-2024): STABILIZATION: maintain large wakefield amplitudes over long plasma distances by introducing a step in the plasma density

→ (2025-2027): CNGS dismantling, CERN Long Shutdown LS3, installation of Run 2c

→ Run 2c (2028-2031): QUALITY: demonstrate *electron acceleration and emittance control of externally injected electrons*.

AWAKE Run 2c – Demonstrate Electron Acceleration and Emittance Control

New electron beam: 150 MeV, 200 fs, 100 pC, σ = 5.75 μ m

Blow-out regime
Beam loading: reach small ∂E/E
Match electron beam transverse properties to the plasma

AWAKE Run 2c – Ongoing Studies

Run 2 – Broader Impact

A WAKE CERN

Examples of technological advancements

Machine Learning

→ Running test-bed for operation efficiency studies and Machine Learning

Synergy with CERN and external institutes:

- Low energy e-beam line perfect for testing ML techniques
- Setup available in between runs used by users Outcome:
- Development of beyond state-of-the art ML tools for accelerators
- 8 publications + proceedings

Run 2 – Broader Impact

Examples of technological advancements

Machine Learning

→ Running test-bed for operation efficiency studies and Machine Learning

Synergy with CERN and external institutes:

- Low energy e-beam line perfect for testing ML techniques
- Setup available in between runs used by users Outcome:
- Development of beyond state-of-the art ML tools for accelerators
- 8 publications + proceedings

Simulations

→ External injection of witness electron relevant
 for any plasma-based collider concept
 → Validation of simulation tools

Simulations predict broad tolerances for SMI control via a density step and for emittance control in quasilinear wakefield.

AW-A-K-

AWAKE Program

✓ Run 2a (2021-2022): CONTROL: demonstrate the seeding of the self-modulation of the entire proton bunch with an electron bunch

-> Run 2b (2023-2024): STABILIZATION: maintain large wakefield amplitudes over long plasma distances by introducing a step in the plasma density

→ (2025-2027): CNGS dismantling, CERN Long Shutdown LS3, installation of Run 2c

→ Run 2c (2028-2031): QUALITY: demonstrate *electron acceleration and emittance control of externally injected electrons*.

→ Run 2d (2032- LS4): SCALABILITY: development of scalable plasma sources with sub-% level plasma density uniformity.

AWAKE Run 2d: Demonstrate Scalable Plasma Sources

10 m DPS run May 2023

m HPS in CERN

10 m Discharge Plasma Source in AWAKE

→ Possible candidate for plasma source in Run 2c/d and particle physics applications

Unique opportunity to test the discharge plasma source in May 2023 with protons in the AWAKE facility

Successfully installed, commissioned and operated the 10m long discharge prototype plasma source

- → Demonstrated self-modulation of the proton bunch
- → Flexible operation allowed to study various physics effects.

DPS Ion Motion Studies

DPS Ion Motion Studies

DPS Current Filamentation Studies

AWAKE Program

→ First applications >2033

Applications with AWAKE-Like Scheme

Requirements on emittance are moderate for fixed target experiments and e/p collider experiments, so first experiments in not-too far future!

First Application: Fixed target test facility

Deep inelastic scattering, non-linear QED, search for dark photons \rightarrow

10¹⁶ electrons on target with AWAKE-like beam (Factor 1000 more than NA64)

- **50 GeV e-beam**: Extend sensitivity further to $\varepsilon \sim 10^{-3} 10^{-5}$ and to high masses $\sim 0.1 \text{ GeV}$. •
- 1 TeV e-beam: : Similar ε values, approaching 1 GeV, beyond any other planned experiments. ٠

AWAKE

Applications with AWAKE-Like Scheme

- → Investigate non-linear QED in electron- photon collisions.
- ➔ Produce TeV-range electrons with an LHC p+ bunch: use for lower luminosity measurements in electron-proton or electron-ion collisions.
 - *L* Limited by proton accelerator repetition rate look for high-cross-section processes to compensate.
 - **PEPIC:** Low-luminosity version of LHeC (50 GeV electrons)
 - Use the SPS to drive electron bunches to 50 GeV and collide with protons from the LHC
 - Modest luminosity \rightarrow only interesting should the LHeC not go ahead
 - EIC:
 - use the RHIC-EIC proton beam to accelerate electron

• 3 TeV VHEeP

- use the LHC protons to accelerate electrons to 3 TeV and collide with protons from LHC with 7 TeV
- Yields centre-of-mass energy of 9 TeV, Luminosity is relatively modest ~1028 10²⁹ cm⁻² s⁻¹, i.e. 1bp⁻¹/yr.
- New energy regime means new physics sensitivity even at low luminosities.
- Fixed target variants with these electron beams

Summary

- AWAKE is a unique proton-driven plasma wakefield acceleration experiment at CERN
 - Proton-driven plasma wakefield acceleration interesting because of large energy content of driver.
 - Modulation process means existing proton machines can be used.
 - AWAKE uses protons from CERN's SPS.
 - Complex experiment, which capitalizes on CERN's accelerator technology expertise.
 - AWAKE is an international collaboration with strong contributions from collaborating institutes.
- AWAKE developed a well-defined plan towards first applications of particle physics experiments
 - AWAKE Run 2 is ongoing.
 - AWAKE met all milestones to date.
 - AWAKE is an integral part of the European Strategy Plasma Roadmap.
 - Once Run 2 is demonstrated, first particle physics application could be proposed.