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Modeling & Optimizing

Plasma Accelerators

Modeling

e Analytical Models
e Particle-In-Cell Models

e Machine-learning Models

Optimization
e Objective functions

e Multi-objective optimization



The linear wakefield regime

Modeling laser-plasma interaction E

a0~ Eo[TV/m]/4
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Modeling laser-plasma interaction

The linear wakefield regime

Consider impulse response: Find the Green'’s function
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Modeling laser-plasma interaction
The non-linear wakefield regime

Laser potential |a




Modeling laser-plasma interaction

The non-linear wakefield regime

1+ a?
(1 + @)?

Approximation only valid if mainly longitudinal motion!
This is the case for large focus when the transverse
ponderomotive force is small.
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Plasma density n/n.
Laser potential |a




Modeling laser-plasma interaction

The highly non-linear “blow-out” regime




Modeling laser-plasma interaction

The Vlasov equation

e

* |n a collisionless system, where particles are neither created nor destroyed, the continuity equation is valid:

df o
dt ot

e We are interested in the evolution of a particle distribution in space, velocity and time p(X, v, )

. I Y
+ v, - (fo)+vp- ;fo = ()

How does distribution change to How does distribution change due to momentum
movement of particles? changes (forces)?
Electrons
of V
€

of, _



Modeling laser-plasma interaction

The Maxwell equations

e At the same time we need to fulfill the Maxwell equations

. 4z~ 10E . 10B
VXB=—j+—— VX E =———
C c Ot c Ot

V-B =0 V. E =4

e With the charge density p and current j defined as

p = e[(zifi ~fad’p  j= eJ'(Zi‘_}ifi — Vo J)dp



Modeling laser-plasma interaction
The Particle-In-Cell Method

e

Fixed spatial grid

l

1
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® Freely moving

macro-particles



Modeling laser-plasma interaction
The Particle-In-Cell Method

?

fix,v,1)

—» 1 macro-particle represents
1000’s of electrons / ions

The PIC assumption is basically that particles initially close to another stay close to another



Modeling laser-plasma interaction
The Particle-In-Cell Method

Deposition i
® I+ 1
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Modeling laser-plasma interaction
The Particle-In-Cell Method

Update fields
-

N Y



Modeling laser-plasma interaction
The Particle-In-Cell Method

Interpolation




Modeling laser-plasma interaction
The Particle-In-Cell Method

Lorentz solver




Modeling laser-plasma interaction
The Particle-In-Cell Method

Particle movement




Modeling laser-plasma interaction
The Particle-In-Cell Method | Geometries

N
L

Cartesian

Cylindrical

Figures from FBPIC documentation



Modeling laser-plasma interaction

The Particle-In-Cell Method | Reference frames

Laboratory frame (can be co-moving)

e

Boosted frame

Figures from FBPIC documentation



Modeling laser-plasma interaction
The Particle-In-Cell Method | The Output

 Field data: Meshes of all fields, as well as the deposited > 400+ e
density and currents / z;g \\ 050

- Particle data: List of macro particles with their : '“:‘: / ::W :
individual weights and the phase space values (position, 3 1’“ 255
momentum). i 0 ‘ :”

-10 -5 15 >()
Pusm(m ;ml]

« We are talking about GBs of data. But often we are
actually only interested in a single number that we = 400 - .
can optimize. iij:’ 050

» We do this via an objective function that reduces the - o /«\:m :
entire distribution function to a single scalar number = ‘f‘_’- | 0256
ool o

() T T ; 1 T
-D 0 D 10 15 20 25
Position [pm|



Modeling laser-plasma interaction

Towards optimization

e

PIC output
PIC Input
Quantity to improve
N PIC Simulation Calculate Objective
X -—— i
(minutes, hours, days) (Charge, bandwidth, energy, etc.)

Choose new input x



Modeling laser-plasma interaction

Towards optimization

e

Training data

Machine learning
PIC Input

Quantity to improve

N Surrogate Model
X . — — <
Direct Objective Prediction

Choose new input x



Modeling laser-plasma accelerators

Which neural network architecture to choose?

\Variational
Autoencoder

Autoencoder

Perceptron Multilayer Perceptron

— O
— D)
= Q
= e T S
_ O
Encoder T Decoder Probabillistic Probabillistic
Neuron activation: f < Z xX;w; + b) Hidden layers Sottlencck Encoder Decoder

layer

Recurrent cell

Convolutional Neural Network

2D Input layer

Pooling layer

Flattemng

O OO0

Recurrent Neural Network

Sk|p -connection (in ResNet)

« A. Dopp et al. Data-driven Science and Machine Learning Methods in Laser-Plasma
Physics, High Power Laser Science and Engineering 11 55 (2023) | arXiv:2212.00026 (2022)



Modeling laser-plasma accelerators

e

The multilayer perceptron ‘: 1st Hidden \; 2nd Hidden
% layer \, layer
@ (30 neurons) \@ (30 neurons)
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Modeling laser-plasma accelerators

The multilayer perceptron & 4st Hidden \” 2nd Hidden

‘: layer t:
@ (30 neurons) N
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Modeling laser-plasma accelerators

The multilayer perceptron 9 4st Hidden \” 2nd Hidden

‘: layer t:
:o (30 neurons) \@
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Neural nets need a lot of data and are hard to interpret (:

(explainable models are preferred in accelerator control) ;:
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Modeling laser-plasma accelerators

Gaussian Process Regression

Correlation matrix

"0 TWhite nose kemel (0 = 0.5) * Non-parametric method: Predicts function values

based on observed data without a predetermined model.
>< « Covariance function/Kernel: Defines the relationship

21 between points, capturing their correlations.

0 + | | |

* Probabilistic description: Provides a full description of

RBF kernel (7 = 1.0)

the function, including mean and uncertainty.

« A. Dopp et al. Data-driven Science and Machine Learning
Methods in Laser-Plasma Physics, High Power Laser Science
and Engineering 11 55 (2023) | arXiv:2212.00026 (2022)

0.0 2.5 5.0 7.5



Modeling laser-plasma accelerators

Gaussian Process Regression

10

Correlation matrix

White noise kernel (6 = 0.5)

RBF kernel (7 = 1.0)

Prior Distribution

White noise kernel (c = 0.5)

RBF kernel (Z = 1.0)

Variance\V
=y - /\

&

\/ Samples —
J(x) ~ GP(u(x), o(x, X))

Periodic kernel (£ = 1.0, A = 3.1)

NGNS AN AN

" / O\ o\
J \ / \ // \
{ { {

* A. Dopp et al. Data-driven Science and Machine Learning
Methods in Laser-Plasma Physics, High Power Laser Science
and Engineering 11 55 (2023) | arXiv:2212.00026 (2022)



Modeling laser-plasma accelerators

Gaussian Process Regression

Correlation matrix

10

White noise kernel (6 = 0.5)

RBF kernel (7 = 1.0)

Kernel value

0] |

Periodic kernel (£ = 1.0, A = 3.1)

x
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Prior Distribution

White noise kernel (6 = 0.5)

RBF kernel (7 = 1.0)

Variance \

“~____Samples 2

Periodic kernel (£ = 1.0, A = 3.1)
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Modeling laser-plasma accelerators

Gaussian Process Regression

> 400 __
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* Irshad, F., Karsch, S., & Dopp, A. Multi-objective and multi-fidelity Bayesian optimization of
laser-plasma acceleration. Phys. Rev. Research 5, 013063 (2023)



Modeling laser-plasma accelerators

Summarizing the different approaches

Linear Wakefield

Input Output Objective

X PIC

_—

Infer the macro model from training data
(assuming a some constraints, like local smoothness as in diffusion equation)




Optimizing laser-plasma accelerators
Choosing the right objective

5 - d
(x — u)? U
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o How to reduce this to a single number?!
O 14 a+u—-oc? 2a’+0.3156/(12 + 0.1u) ?
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Optimizing laser-plasma accelerators
Choosing the right objective

 Different metrics

« Say we want to optimize three electron beam > |
>
10 - O (a)
. — 2 .
parameters: E N Qin — ¢
° Charge Q (total charge, charge within FWHM, etc.) % \/é \’ i
. . : D 5 i |AE | 'EMAD _
e Bandwidth (standard deviation or, median absolute 50 E
— _&
o <
deviation £, p, etc.) = —
O 0 L | | — |

« Distance to a target ener E — E | wsi
J 9y | target | S . Different weights

mean energy, median energy, peak energy, etc.)

« Choosing different metrics or weights for each
objective changes the outcome in an a priori

unknown way!

0 +——

 How to solve this problem? 200 25() B(I)() 350 400
Energy [MeV]

* Irshad, F., Karsch, S., & Dopp, A. Multi-objective and multi-fidelity Bayesian optimization of
laser-plasma acceleration. Phys. Rev. Research 5, 013063 (2023)



Optimizing laser-plasma accelerators

Multi-objective optimization | The conference dinner problem

37.13 A

S/ el

1 Berlim
2 RESTAURANTE A MATILDE
3 Way Point Restaurante
4 Portofinos
5 Bahia Beach Bar
6 Tascado Kiko
7 Munich
8 Dom Vinho
9 Marisqueira "O Perceve"
10 Avenida Restaurante
11 Delhi Darbar Indian restaurant
12 Restaurante Italiano Tradicional
13 Restaurante Reis
14 Empanadas & Co
15 Pomo - la pasta bio italiana
16 Goji Lounge Café
17 Restaurante Chefe Artur
18 Don Sebastido
19 Império do Mar
20 O Brito
21 Casinha do Petisco
22 Restaurante Do Village
23 Restaurante Onda Norte
24 Repolho Gastrobar & Garrafeira
25 Gato Pardo
26 Alma Lusa
27 Ashoka Indian Tandoori cuisine
28 Palacio Da China
29

37.11 A

latitude [°]

v—i. \Q ‘_)\‘

:'\“‘
37.10 - T W
: “,Jl‘) N <

& 2 N

37.09 4

37.08 -

508
338
20
622
602
1105
258
66
531
238
1592

1095
813
546
770
200

1711
919

31
1494
30
445
478
760
710
396
582
984

:‘r ()

4 16
4,1 13
4,2 16
4,1 18
4,2 28
4,6 22
4,3 23
4,5 25
4,6 28
4,5 28
4,7 25

4 31
4,5 30
4,9 35
4,5 32
4,7 32
4,6 29
4,3 30
3,9 —~
4,6
4,7
3,9
4,5
4,6
4,4
4,6
4,6
4,5

N7

o
X hotel

1,3 37.11540996641253, -8.652415012219626
1 37.11130779737746, -8.66835771591389
1,2 37.11108481832249, -8.672930593184326
1,4 37.109607601219466, -8.673146823866775
2,3 37.10716980672824, -8.664919435513847
1,8 37.106624656646474, -8.669308679690374

1,9 37.1105486992403, -8.677055276454404

2 37.110124919949605, -8.678738568043244
2,2 37.1103292555888, -8.679428868607687
2,2 37.107751331422925, -8.675210473584627

2 37.11005631516564, -8.676511807921088
2,4 37.10238156732768, -8.674098597903255
2,4 37.102100118183195, -8.673296645313904
2,7 37.10118594915564, -8.676940858243556
2,5 37.10151921949556, -8.674465875996285
2,5 37.10112913445654, -8.673816704831587
2,3 37.10718924880119, -8.67721415085503
2,4 37.10191899220491, -8.671770260655029
2,6 37.10040313626079, -8.671166052702327
3,1 37.097610926295324, -8.676978329408325
2,5 37.10103289240326, -8.674086925149648
4,2 37.0893268911832, -8.672745936541522
3,8 37.092670065508315, -8.673187088926209
3,8 37.09245587585402, -8.673490131255601
3,8 37.092339508114776, -8.673569339208367
3,7 37.09341069036754, -8.673941120173023
3,7 37.093511400753044, -8.674017835514153
3,7 37.0940129786111, -8.674289896878971
3,5 37.094633182190066, -8.672281103446366

restaurants

—8.70 —38.66 —38.64

longitude [°]

—8.62

—8.60




Optimizing laser-plasma accelerators

Multi-objective optimization | The conference dinner problem

37.13 A

S/ el

37.11 A

W

latitude [°]

=7 =220\

/ -.s . | '-'-"':." “\- N
.‘490.(‘:\{“-' &5 .i"-‘;
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Optimizing laser-plasma accelerators

Multi-objective optimization | The conference dinner problem

4 ® restaurants
X hotel

37.13 A

S/ el

37.11 A

latitude [°]

W

o

(-

o
I

37.09 4

1000 2000
distance [m]

37.08 - 3000

-8.70 —8.68 —8.66 —8.64 —8.62 —8.60
longitude [°]



Optimizing laser-plasma accelerators

Multi-objective optimization | The conference dinner problem

Y S 4 "
37.13 - ‘ X 4 ® restaurants
Y L ‘ X hotel
- | v
»

37.12 - Restaurante Por do Sol Meia Praia

37.11 A

Ul (@)
] 1

n
........

latitude [°]

3710 =

w NN
1 1

1

ber of restaurants

37.09 4

1000 2000 3000
distance [m]

37.08 -

-8.70 —8.68 —8.66 —8.64 —8.62 —8.60
longitude [°]



Optimizing laser-plasma accelerators

Multi-objective optimization | The conference dinner problem

latitude [°]

> 'l
37.13 - Y4 X hotel
37.12 =
37.11 -
' O
@
O® 06 o
37.10 1 @
®0® @
O
an, O
O ©
37.09 A O ® O
@) O
@) O
@)
37 08 - 1000 2000 3000
distance [m]
—-8.70 —8.68 —8.66 —8.64 —8.62 —8.60

longitude [°]




Optimizing laser-plasma accelerators

Multi-objective optimization | The conference dinner problem

. = =
37.13 - a Y4 X hotel
=7 \ A‘- =Y ©
37.12 - g
37.11 -
9 i Q O
5 & ®
g 0,600.\0&6
..Eg 37.10 . ®
,Dominated”
37.09 - points
&
37.08 - 1000. 2000 3000
distance [m]

—-8.70 —8.68 —8.66 —8.64 —8.62 —8.60
longitude [°]



Optimizing laser-plasma accelerators

Multi-objective optimization | The conference dinner problem

4 X hotel

\

37.13 A

S/ el

37.11 A

3 e
v .
© e
= ,*
© 37.10 - y
'l
q
q
’
, ’
|
37.09 -+ i \
! Pareto front
. (trade-off curve)
3.8 1@
37.08 - 1000 | 2000 3000
distance [m]
—-8.70 —8.68 —8.66 —8.64 —8.62 —8.60

In multi-objective optimization we have multiple (competing) goals with different trade-offs.



Optimizing laser-plasma accelerators

Multi-objective optimization | The conference dinner problem

37.13 - , X hotel
37.12 B 2'e(i:u::ltran ocean ‘.\
37.11 -
9 50~ @-=-=-=-=-=-==z»-=
) ]
E 4.8 - :
T 37.10 - 4.6 - E
4
- 1 ’
= 4.4 s Hypervolume
4.7 3 \ Improvement
37.09 - | . Pareto front
4.0 ! (trade-off curve)
3.8 1@
37 08 - 1000 2000 3000
distance [m]
—-8.70 —8.68 —8.66 —8.64 —8.62 —8.60

In multi-objective optimization we have multiple (competing) goals with different trade-offs.



Optimizing laser-plasma accelerators

Multi-objective optimization | PIC simulations

Pareto surface

(a)

|E — Eo| [MeV]

OF [MGV]

1. Irshad, F., Karsch, S., & Dopp, A. Leveraging trust for joint multi-objective and multi-fidelity optimization. Machine Learning: Science and Technology 5 (1), 015056 (2024)

0

ek

-

-
|

(b)

Charge [pC]
500

(;ingle

objective
results

1000

~

Pareto front

150

I
100 0
|E — Eo| [MeV]

2. Irshad, F., Karsch, S., & Dopp, A. Multi-objective and multi-fidelity Bayesian optimization of laser-plasma acceleration. Phys. Rev. Research 5, 013063 (2023)

e



Optimizing laser-plasma accelerators

Multi-objective optimization | Experiments

ocusin

Output space (3D)

Input space (8D)
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Optimizing laser-plasma accelerators ﬁ

Multi-objective optimization | Experiments

Model
1000
B + Real training data
1l =3 e
200 2 3 | 7 Probabilistic
S ) [ \ Pareto front
80019 2 3
1 +
_ 700 A
O
=
v 600 -
= +
©
o o
O 500 -
400 - + r
300 A + Al
+ + A \_
200 - + /‘JK ( \
+
50 100 150 200 250 300 350 400 450
Input space (8D) Energy [MeV]
. 0(\
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Optimizing laser-plasma accelerators

Multi-objective optimization | Experiments

e

 Inverse Optimization: Given a target (e.q.

energy), we can search the model for most likely > 25
positions in input space. %)
* Tricky part: Inverse from 1D to 8D has no unique 8 20 - N
solution. Use Gaussian Mixture Network to OS>
o oo 15-
predict tuning curves. 5 S
« Tuning also works in experiments! L B 10 -
02
o
g A
2 o le=== /AN A
0 200 400

Electron Energy [MeV]



Further reading

Review paper

Data-driven Science and Machine Learning Methods in Laser-Plasma Physics

« What to do with my data?

Andreas Dépp,'» * Christoph Eberle,’ Sunny Howard,"? Faran Irshad,! Jinpu Lin,' and Matthew Streeter?

! Ludwig—Mazimilians—Unaversitat Minchen, Am Coulombwall 1, 85748 Garching, Germany
2 Department of Physics, Clarendon Laboratory, University of Ozford,
Parks Road, Ozford OX1 3PU, United Kingdom
3 Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, United Kingdom

« What are established machine learning

Laser-plasma physics has developed rapidly over the past few decades as lasers have become both
more powerful and more widely available. Early experimental and numerical research in this field
was dominated by single-shot experiments with limited parameter exploration. However, recent
technological improvements make it possible to gather data for hundreds or thousands of different
settings in both experiments and simulations. This has sparked interest in using advanced techniques
from mathematics, statistics and computer science to deal with, and benefit from, big data. At the
same time, sophisticated modeling techniques also provide new ways for researchers to deal effectively
with situation where still only sparse data are available. This paper aims to present an overview
of relevant machine learning methods with focus on applicability to laser-plasma physics and its
important sub-fields of laser-plasma acceleration and inertial confinement fusion.

techniques?

« Which method Is suitable for my

CONTENTS C. Downhill simplex method and gradient-based

° ° algorithms 22

a | I Ca tl O n 7 L Introduction 9 D. Genetic algorithms 23

p p ° A. Laser-Plasma Physics 2 E. Bayesian optimizatic?n 23

B. Why data-driven techniques? 3 F. Reinforcement learning 26

o ° ™ IT. Modeling & prediction 4 V. Unsupervis.ed Learning 27

A. Predictive models 4 A. Clustering 27

e £Xtensive review / tutoriail paper + ~ - L Centroid-based clustering 1
1. Spline Interpolation 5 . .

2. Regression 5 2. Distribution-based clustering 27

3' Probabilisti del 5 B. Correlation analysis 27

4' Gro abristic thodets . 6 C. Dimensionality reduction 27

° ° > + aussiall process regression 1. Principal component analysis 27

nages) on data-driven science and machine [ R o N P M x

6. Neural networks 9
7. Physics-informed machine learning VI. Image analysis 29

« A. Dopp et al. Data-driven Science and Machine Learning
Methods in Laser-Plasma Physics, High Power Laser Science
and Engineering 11 55 (2023) | arXiv:2212.00026 (2022)

submit/4626985 [physics.plasm-ph] 30 Nov 2022

*

a.doepp@lmu.de

models 11 A. Classification 29
o . o B. Time series forecasting 12 1. Support vector machines 29
_ 1. Classical models 12 2. Convolutional neural networks 29
earning methods in laser-plasma physics ¥ St Spa i ER e ;
3. Forecasting networks 13 C. Segmentation 31

C. Prediction and Feedback 14
VII. Conclusions 31

III. Inverse problems 15
A. Least squares solution 16 Acknowledgements 32

B. Statistical inference 16
C. Regularization 16 References 32

o D. Compressed sensing 17

. 2 E. End-to-end deep learning methods 18

>< F. Deep unrolling 19

—

< IV. Optimization 20

A. General concepts 20

1. Objective functions 20

2. Pareto optimization 21

B. Grid search and random search 22




Further reading

Review paper

« What to do with my data?

« What are established machine learning
techniques?

« Which method Is suitable for my
application?

« Extensive review / tutorial paper (30+

nages) on data-driven science and machine

earning methods in laser-plasma physics

« A. Dopp et al. Data-driven Science and Machine Learning
Methods in Laser-Plasma Physics, High Power Laser Science
and Engineering 11 55 (2023) | arXiv:2212.00026 (2022)

1 =—truth
prediction
¢ measurement

y(x)
2

a) Nearest (] b) Cubic spline

y(x)
o

c) Linear regression |
0 1 2 3 4 0 1 2 3 4
X X

FIG. 2. Illustration of standard approaches to making
predictive models in machine learning. The data was
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FIG. 5. Example of gradient boosting with decision
trees. First, a decision tree g; is fitted to the data. In the
next step, the residual difference between training data and
the prediction of this tree is calculated and used to fit a second
decision tree g». This process is repeated n times, with each
new tree g, learning to correct only the remaining difference
to the training data. Data in this example sampled from same
function as in Fig. 2 and each tree has a maximum depth of
two decision layers.

in regression settings or entropy and information gain in
a classification setting. At each decision point the data
set is split and subsequently the metric is re-evaluated
for the resulting groups, generating the next layer of de-
cision nodes. This process is repeated until the leaves are
reached. The more layers decision layers are used, called
the depth of the tree, the more complex relationships can
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model incorporating a trained neural network was

used to provide an additional computation pack-
age to the Geant4 particle physics platform. Neu-
ral networks are also trained to assist hohlraum
design for ICF experiments by predicting the time
evolution of the radiation temperature, in the re-
cent work by McClarren et al.''?2. In the work
by Simpson et al.''3, a fully-connected neural net-
work with three hidden layers is constructed to
assist the analysis of a x-ray spectrometer, which
measures the x-rays driven by MeV electrons pro-
duced from high-power laser-solid interaction.

7. Physics-informed machine learning models

The ultimate application of machine learning for mod-
eling physics systems would arguably be to create an
“artificial intelligence physicist”, as coined by Wu and
Tegmark!'*. One prominent idea at the backbone of how

Tramn a aeep neural NETWOrK. AN example Of us-
ing decision tree as an initializer are Deep Jointly-
Informed Neural Networks (DJINN) developed by
Humbird et al.?®, which have been widely ap-
plied in the high power laser community, especially
in analyzing inertial confinement fusion datasets.
The algorithm first constructs a tree or a random
forest with tree depth set as a tunable hyperpa-
rameter. It then maps the tree to a neural net-
work, or maps the forest to an ensemble of net-
works. The structure of the network (number of
neurons and hidden layer, initial weights, etc.) re-
flects the structure of the tree. The neural network
is then trained using back-propagation. The use
of decision trees for initialization largely reduces
the computational cost while maintaining compa-
rable performance to optimized neural network ar-
chitectures. The DJINN algorithm has been ap-
plied to several classification and regression tasks

deformable mir-
ror (37 actuator
voltages)

deformable  mirror
or acousto-optic
programmable

dispersive filter

Gas cell flow rate
& length, laser dis-
persion (92¢, 93¢,
92 ¢), focus position
Gas cell flow rates
(H2 front and back,
N,); focus position

and laser energy

Electron  angular  pro-
file, energy distribution
& transverse emittance,
optical pulse compression

Electron beam charge, total
charge within energy range,
electron beam divergence

Total electron beam energy,
Electron charge within ac-
ceptance angle, Betatron X-
ray counts

Spectral charge density

TABLE 1. Summary of a few representative papers on machine-learning-aided optimization in the context of laser-plasma

acceleration and high-power laser experiments.

distributions, in this case the electron energy distribu-
tion. While simple at the first glance, these objectives
need to be properly defined and there are often differ-
ent ways to do so?°!. In the example above, energy and
bandwidth are examples for the central tendency and the
statistical dispersion of the energy distribution, respec-
tively. These can be measured using different metrics
such as weighted arithmetic or truncated mean, the me-
dian, mode, percentiles and so forth for the former; and
full width at half maximum, median absolute deviation,
standard deviation, maximum deviation, etc. for the lat-
ter. Each of these seemingly similar measures emphasises
different features of the distribution they are calculated
from, which can affect the outcome of optimization tasks.
Sometimes one might also want to include higher order
momenta as objectives, such as the skewness, or use in-
tegrals, e.g. the total beam charge.

2. Pareto optimization

In practice, optimization problems often constitute
multiple sometimes competing objectives g;. As the ob-
jective function should only yield a single scalar value,
one has to condense these objectives in a process known
as scalarization. Scalarization can for instance take the
form of a weighted product g = [] g or sum g = ) a;g;
of the individual objectives g; with the hyperparameters
a; describing its weight. Another common scalarization
technique is e-constraint scalarization, where one seeks
to reformulate the problem of optimizing multiple ob-
jectives into a problem of single-objective optimization
conditioned on constraints. In this method the goal is to
optimize one of the g; given some bounds on the other ob-
jectives. All of these techniques introduce some explicit
bias in the optimization which may not necessarily repre-
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FIG. 12. Pareto front. Illustration how a multi-objective
function f(z) = y acts on a two-dimensional input space

= (z1,z2) and transforms it to the objective space y =
(y1,y2) on the right. The entirety of possible input positions
is uniquely color-coded on the left and the resulting position
in the objective space is shown in the same color on the right.
The Pareto-optimal solutions form the Pareto front, indicated
on the right, whereas the corresponding set of coordinates in
the input space is called the Pareto set. Note that both Pareto
front and Pareto set may be continuously defined locally, but
can also contain discontinuities when local maxima get in-
volved. Adapted from Irshad et al.?%%.

sent the desired outcome. Because of this, the hyperpa-
rameters of the scalarization may have to be optimized
themselves by running optimizations several times.

A more general approach is Pareto optimization, where
the entire vector of individual objectives g = (g1,...,9nN)
is optimized. To do so, instead of optimizing individual
objectives, it is based on the concept of dominance. A
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