Introduction to Plasma Physics

P. San Miguel Claveria¹

GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon, Portugal

epp.tecnico.ulisboa.pt || **golp**.tecnico.ulisboa.pt

European Research Council EIC Pathfinder Open under grant agreement No 101047223.

P. San Miguel Claveria | EuPRAXIA-DN School on Plasma Accelerators | April 16, 2024

Lecture based on:

- Cham, DOI 10.1007/978-3-319-22309-4, third edition, 2016
- Sesimbra, Portugal

• Francis F. Chen, Introduction to Plasma Physics and Controlled Fusion, Springer

• Paul Gibbon, Introduction to Plasma Physics, arXiv:2007.04783v1, CAS - CERN Accelerator School: High Gradient Wakefield Accelerators, 11-22 March 2019,

• Laurent Gremillet, Introduction à l'interaction laser-plasma relativiste, 2012

How to create a plasma?

Waves and plasmas

Beam-plasma instabilities

For general public:

- = nucleus
- = electron

Quasi-neutral gas of charged particles showing collective behaviour

Quasi-neutrality: particle density of electrons n_{ρ} , and ions, n_i with charge state Z are locally balanced

Collective behaviour: local disturbances from equilibrium can have strong influence on remote regions

Simple definition of plasma

 $n_{e} \simeq Z n_{i}$

$$\overrightarrow{\nabla} \cdot \overrightarrow{E} = \frac{Zn_i - n_e}{\epsilon_0}$$

Debye shielding

Debye length

Thermal equilibrium $(T_e = T_i)$ $\frac{1}{2}m_e \langle v_e^2 \rangle = \frac{1}{2}m_i \langle v_i^2 \rangle = \frac{3}{2}k_B T_e$

For H_2 plasma $\frac{\langle v_i \rangle}{\langle v_e \rangle} = \left(\frac{m_e}{m_i}\right)^{\frac{1}{2}} \simeq \frac{1}{43}$, ions are stationary compared to e^-

 $\Rightarrow n_i \simeq n_0$, and thus $n_e = n_0 \exp(e\phi/k_B T_e)$ (Boltzmann distribution)

Recall Gauss law (ID) $\nabla^2 \phi = \partial_x^2 \phi = -\frac{\rho}{\epsilon_0} = -\frac{e}{\epsilon_0}(n_i - n_e)$ After some maths, we can solve $\phi(r) = \frac{1}{4\pi\epsilon_0} \frac{e^{-r/\lambda_D}}{r}$, $\lambda_D = \left(\frac{\epsilon_0 k_B T_e}{e^2 n_e}\right)^{1/2}$

Particles per Debye sphere $N_D = n_e \frac{4\pi}{3} \lambda_D^3$, plasma parameter $g = \frac{1}{n_e} \lambda_D^3$

Where are plasmas?

I. Cosmos (99% of visible universe):

- Interstellar medium
- Stars
- Jets

2. lonosphere:

- ≤ 50 km = 10 Earth-radii
- Long-wave radio

3. Earth:

- Fusion devices
- Street Lighting
- Plasma torches
- Discharges lightning
- Plasma accelerators and radiation sources

Plasma classification

How to create a plasma?

Waves and plasmas

Beam-plasma instabilities

How to create a plasma

*C. Zhang et al., Review of Modern Plasma Physics, Volume 7, article number 34, (2023)

Plasmas for particle accelerators

High-power laser

Neutral gas

P. San Miguel Claveria | EuPRAXIA-DN School on Plasma Accelerators | April 22, 2024

Plasmas for particle accelerators

High-power laser

Plasmas for particle accelerators

Impact ionisation is going to play an important role in the long timescale evolution of the plasma: cooling down and recovery

How to create a plasma?

Waves and plasmas

Beam-plasma instabilities

Plasma waves

Plasma waves: plasma frequency

Plasma waves: wave breaking field

$$\omega_p = \sqrt{\frac{e^2 n_0}{m_e \epsilon_0}} \rightarrow k_p = \frac{\omega_p}{c}$$
$$E(\xi_0 + k_p^{-1}) = \frac{n_0 e}{\epsilon_0} k_p^{-1} = \frac{m_e e}{\epsilon_0}$$
$$E(\xi_0 - k_p^{-1}) = \frac{n_0 e}{\epsilon_0} k_p^{-1} = \frac{m_e e}{\epsilon_0}$$

Waves and plasmas

Theoretical approaches

- First principles N-body dynamics
- Phase-space method Vlasov-Boltzman equation
- Two fluid equations
- Magnetohydrodynamics

Two fluid (ions and e^-) equations

System variables: (s specie, e for e^- , i for ions)

- Density $n_s(\vec{r}, t)$
- Velocity $\vec{v}_s(\vec{r}, t)$

Fluid equations:

- Continuity: $\partial_t n_s + \overrightarrow{\nabla}(n_s \overrightarrow{v_s}) = 0$
- Eq. of motion: $m_s d_t \vec{v}_s = q_s (\vec{E} + \vec{v}_s \times \vec{B})$

Maxwell's equations

St Co No Line

Assumptions

cationary ions:
$$\langle v_i \rangle / \langle v_e \rangle = (m_e/m_i)^{\frac{1}{2}} \simeq 1/43$$

Collision-less plasma

- Cold plasma: $P_e = n_0 k_B T_e \simeq 0$
- Non-relativistic electrons: $\gamma_e = 1$

Linearisation of equations

In order to simplify the model, we can assume an initially equilibrium plasma of density n_0 and velocity $v_0 = 0$, to which we add a **small** perturbation $n_1(\vec{r}, t)$, $\vec{v_1}(\vec{r}, t)$, $\vec{E_1}(\vec{r}, t)$, ...

Continuity eq.: $\partial_t n_1 + n_0 \overrightarrow{\nabla} \overrightarrow{v_1} = 0$

Eq. of motion: $m_e \partial_t \overrightarrow{v_1} = q_e \overrightarrow{E_1}$

Plasma oscillations

Plasma oscillations

Continuity eq.:
$$\partial_t n_1 + n_0 \overrightarrow{\nabla} \overrightarrow{v_1} = 0$$
Eq. of motion: $m_e \partial_t \overrightarrow{v_1} = q_e \overrightarrow{E_1}$ Poisson eq.: $\epsilon_0 \overrightarrow{\nabla} \overrightarrow{E_1} = q_e n_1$

Oscillatory solutions: $X_1(\vec{r}, t) \propto e^{i(kx - \omega t)}$ Formal substitutions $\partial_t \rightarrow -i\omega, \ \vec{\nabla} \rightarrow ik$

$$-i\omega n_1 = -n_0 i k v_1$$
$$-i\omega m_e v_1 = -eE_1$$
$$ik\epsilon_0 E_1 = -en_1$$

Plasma frequency

Individual harmonics oscillators

$$-i\omega m_e v_1 = -i\frac{n_0 e^2}{\epsilon_0 \omega} v_1 \Rightarrow \omega_p^2 = \omega^2 = \frac{n_0 e^2}{m_e \epsilon_0} \quad \forall k$$

Group velocity $\partial \omega / \partial k = 0$, no propagation

Plasma oscillations with temperature

Plasma oscillations

Continuity eq.: $\partial_t n_1 + n_0 \overrightarrow{\nabla} \overrightarrow{v_1} = 0$ Eq. of m.: $m_e n_0 \partial_t \overrightarrow{v_1} = n_0 q_e \overrightarrow{E_1} - 3k_R T_e \overrightarrow{\nabla n_1}$ $\epsilon_0 \overrightarrow{\nabla} \overrightarrow{E_1} = q_e n_1$ Poisson eq.:

Oscillatory solutions: $X_1(\vec{r}, t) \propto e^{i(kx - \omega t)}$

Formal substitutions $\partial_t \to -i\omega, \ \overrightarrow{\nabla} \to ik$

$$-i\omega n_1 = -n_0 ikv_1$$
$$-i\omega m_e n_0 v_1 = -en_0 E_1 - 3KT_e ikn_1$$
$$ik\epsilon_0 E_1 = -en_1$$

Dispersion relation

$$i\omega m_e n_0 v_1 = \left[\frac{-n_0 e^2}{ik\epsilon_0} + 3KT_e ik\right] \frac{n_0 ik}{i\omega} v_1 \Rightarrow \omega^2 = \omega_p^2 + \frac{3}{2}k^2 v_1$$

Group velocity $\partial \omega / \partial k = \frac{3}{2} \frac{v_{th}^2}{v_{\phi}}$, $v_{\phi} = \omega / k = \text{ phase velocity}$

ID Langmuir waves

$$v_{th}^2 = 2k_B T_e/m_e$$

Cold plasma approximation

$$v_{th} \ll v_g, v_\phi$$

Electromagnetic waves in plasmas

In vacuum

From Maxwell equations

$$\overrightarrow{\nabla} \times \overrightarrow{E_1} = -\partial_t \overrightarrow{B_1} \qquad c^2 \overrightarrow{\nabla} \times \overrightarrow{B_1} = \partial_t \overrightarrow{E_1}$$

Solving for plane waves, $k \cdot E_1 = k \cdot B_1 = 0$

$$\omega^2 = k^2 c^2$$

In plasma

$$\overrightarrow{\nabla} \times \overrightarrow{E_1} = -\partial_t \overrightarrow{B_1}$$
$$c^2 \overrightarrow{\nabla} \times \overrightarrow{B_1} = \frac{\overrightarrow{j_1}}{\epsilon_0} + \partial_t \overrightarrow{E_1}$$

 $\vec{j_1}$ = electronic plasma current

Dispersion relation of EM waves in plasmas

$$c^{2}\overrightarrow{\nabla} \times \partial_{t}\overrightarrow{B_{1}} = \frac{\partial_{t}\overrightarrow{j_{1}}}{\epsilon_{0}} + \partial_{t}^{2}\overrightarrow{E_{1}}$$
$$\overrightarrow{\nabla} \times \overrightarrow{\nabla} \times \overrightarrow{E_{1}} = \overrightarrow{\nabla}(\overrightarrow{\nabla} \cdot \overrightarrow{E_{1}}) - \overrightarrow{\nabla}^{2}\overrightarrow{E_{1}} = \overrightarrow{\nabla} \times (-\partial_{t}\overrightarrow{B_{1}})$$
$$\downarrow$$
$$-c^{2}k^{2}\overrightarrow{E_{1}} = -i\omega\overrightarrow{j_{1}}/\epsilon_{0} - \omega^{2}\overrightarrow{E_{1}}$$

Linearised equation of motion:

$$m_e \partial_t \overrightarrow{v_1} = q_e \overrightarrow{E_1} \to -i\omega m_e \overrightarrow{j_1} = n_0 e \overrightarrow{E_1}$$

Dispersion relation

$$\omega^2 = \omega_p^2 + c^2 k^2$$

202/

Electromagnetic waves in plasmas

Velocities

$$v_{\phi}^{2} = \frac{\omega^{2}}{k^{2}} = c^{2} + \frac{\omega_{p}^{2}}{k^{2}} > c^{2}$$
$$v_{g} = \frac{\partial \omega}{\partial k} \approx c \left(1 - \frac{\omega_{p}^{2}}{2\omega^{2}}\right) < c$$

Critical density

Take EM wave of frequency $\omega_0 \gg \omega_p \Rightarrow k_{\text{plasma}} < k_{\text{vacuum}}$

If we increase n_0 , as $\omega_p \to \omega$, $\Re(k) \to 0$: no propagation

Define critical density for which EM waves are dumped in plasma

$$n_c = m\epsilon_0 \omega^2 / e^2$$

Plasma waves

So far we have introduced two plasma wavelike mechanics:

- Langmuir (electrostatic) waves
 - Too slow to accelerate relativistic particles
- Electromagnetic waves
 - No accelerating field

Plasma wakefield accelerator?

Plasma waves

Beam-driven plasma wakefield - PWFA

Same equations (fluid-linear)

Treat beam as perturbative fluid specie

$$\partial_t^2 n_1(\vec{r},t) = -\frac{n_0 e^2}{m_e \epsilon_0} (n_1(\vec{r},t) + n_b(\vec{r},t))$$

+ quasi-static approximation...

Laser-driven plasma wakefield - LWFA

We have all elements (EM fields + plasma) Linear wave- e^- interaction: no net energy exchange We need second order (non-linear) interactions Ponderomotive force $f_p = -\frac{e^2}{4m_e\omega^2}\partial_{\perp}E_y^2$ l(r) laser ∨E_y(r) х

24

02

How to create a plasma?

Waves and plasmas

Beam-plasma instabilities

Beam-plasma instabilities

Exponential growth

Initial conditions

- Plasma of density n_{p0}
- Plasma at rest $v_{p0} = 0$
- Beam of density $n_{b0} \ll n_{p0}$
 - Initial beam velocity v_{0b}
 - Initial fields $E_0, B_0 = 0$

Note: $B_0 = 0$ means current neutralisation, $j_0 = j_{0b} + j_{0p} = 0$

$$(\vec{r}, t), \overrightarrow{v_1}(\vec{r}, t), \overrightarrow{E_1}(\vec{r}, t), \dots?$$

 n_1

Beam-plasma instabilities

Main equations for plasma and beam electrons

I - Momentum equation for **relativistic** beam electrons:

$$\left(\partial_t + v_{0b}\partial_x\right) \begin{bmatrix} \gamma_{b0}^3 v_{bx}^{(1)} \\ \gamma_{b0} v_{by}^{(1)} \end{bmatrix} = \begin{bmatrix} \partial_x \phi^{(1)} \\ \partial_y \phi^{(1)} \end{bmatrix}$$

2- Continuity equation for **relativistic** beam electrons:

$$\left(\partial_t + v_{b0}\partial_x\right)n_b^{(1)} + n_b^{(0)}\left(\partial_x v_{bx}^{(1)} + \partial_y v_{by}^{(1)}\right) = 0\,.$$

3- Momentum eq. + continuity eq. for **rel.** beam electrons:

$$\left(\partial_t + v_{b0}\partial_x\right)^2 n_b^{(1)} = -n_b^{(0)} \left[\gamma_{0b}^{-3}\partial_x^2 + \gamma_{0b}^{-1}\partial_y^2\right] \phi^{(1)}$$

$(\partial_t + \mathbf{v_i} \cdot \nabla) \mathbf{p_i} = \nabla \phi$ $\partial_t n_i + \nabla \cdot (n_i \mathbf{v_i}) = 0$

2D electrostatic, cold fluid model

4- Momentum eq. + Continuity eq. for plasma electrons:

$$\partial_t^2 n_p^{(1)} = -n_p^{(0)} \left[\partial_x^2 + \partial_y^2 \right] \phi^{(1)}$$

5- Poisson equation

$$\left(\partial_x^2 + \partial_y^2\right)\phi^{(1)} = n_b^{(1)} + n_p^{(1)}$$

6- Put together 3, 4 and 5, oscillatory solutions on k_{x}

Two stream instability

Spatially dumped solution: $X_1(\vec{r},t) \propto e^{i(kx-\omega t)}$ with $\omega \in \Re, k \in \Im$ with $\mathrm{Im}(k) < 0$

Dispersion relation

$$\frac{1}{b^{0}} \frac{1}{(\omega - kv_{0b})^{2}} = 0$$

Dispersion relation

- Temporally growing solutions: $X_1(\vec{r},t) \propto e^{i(kx-\omega t)}$ with $k \in \Re, \omega \in \Im$ with growth rate $\Gamma = \text{Im}(\omega) > 0$

$$\frac{\sqrt{3}}{2^{4/3}} \frac{(n_b/n_p)^{1/3}}{\gamma_b} \omega_p$$

Two stream instability

Simulation movie (PIC)

Beam-plasma instabilities

- Exemplary process of a plasma collective response
- Mechanisms to transform particles' kinetic energy into EM fields
 Interest for astrophysics, but also for applications such as PWFA
 Working principle of AWAKE

Conclusions & Future Work

What is a plasma?

Quasi-neutral gas of charged particles showing collective behaviour 99% of visible matter: interest for astrophysics and applications

How to create plasmas?

High Power Lasers

Discharges, X-Rays, particle beams...

Waves and plasmas

The plasma electronic density sets the oscillatory behaviour of a plasma EM waves of high amplitude can propagate close to the speed of light: **plasma accelerators!**

Two stream instabilities

Example of plasma collective response to EM fields Transformation of particle kinetic energy to EM field energy (radiation)

30

<u>pablo.san.miguel.claveria@tecnico.ulisboa.pt</u>

Thank you

Slow and fast oscillating e^- trajectories

 $E_{v}(y,t)$ Taylor expansion around slow y_0

$$\partial_t^2 y_0 + \partial_t^2 y_1 = \frac{e}{m} \left[E_0(y_0) + y_1(t) \frac{\partial E_0(y_0)}{\partial y} \right] \cos \phi \quad \partial_t v_{y1} = -\frac{eE_0}{m} \cos \phi \Rightarrow y_1 = -\frac{eE_0}{m\omega^2} \cos \phi$$

Take time averages $\langle \partial_t^2 y_0 \rangle + \langle \partial_t^2 y_1 \rangle = \frac{e}{m} \langle E_0(y_0) \cos \psi \rangle$ Cancel out $-\frac{e^2}{m\omega^2}E_0\frac{\partial E_0(y)}{\partial v}\cos^2\phi.$

$$\begin{aligned} \frac{\partial v_y}{\partial t} &= -\frac{e}{m} E_y(r) \,. \\ y(t) &= y_0(t) + y_1(t) \\ &\approx E_0(y_0) \cos \phi + y_1(t) \frac{\partial E_0(y_0)}{\partial y} \cos \phi + \dots, \end{aligned}$$

$$|| s \phi \rangle + \frac{e}{m} \langle y_1(t) \frac{\partial E_0(y_0)}{\partial y} \cos \phi \rangle \qquad \langle \partial_t v_{y1} \rangle = -\frac{eE_0}{m} \langle c \rangle$$

$$f_{py} = m\partial_t v_{y0} = -\frac{e^2}{4m\omega^2}\frac{\partial E_0^2}{\partial y}.$$

P. San Miguel Claveria | EuPRAXIA-DN School on Plasma Accelerators | April 22, 2024

32

