CT trigger experience from TERZINA

Stefan Cristi Zugravel stefan.zugravel@to.infn.it 2023/12/20, Rome

DATA PATH

TERZINA trigger requirements

- Efficient rejection of background
- Minimal dead time
- High configurability
- Trigger coming from two adjacent ASICs

Lvl 0 trigger

threshold & position

Lvl 1 trigger pattern

Lvl 2 trigger software

SiPM

ASICs

FPGAs

DPCU

Transmission to earth (bottleneck)

DATA analysis

3 level trigger system

Level 0 trigger -> ASIC (threshold and hitmap)

- Each ASIC can readout a 64 pixel 8*8 matrix
- Each pixel has two configurable thresholds (namely high and low).
- Any pixel can be configured as EDGE pixel, in picture the TERZINA configuration.

Hitmap generation and timing

The ASIC has three possible operating modes:

- Programmable time window
- High threshold + coincidence + edge driven |
- FPGA request

1,25 ns/bit*9 words*14 bits/word

- Each hitmap remains stored in the ASIC for T + 60 ns with T programmable (~20 ns)
- The ASIC waits 80 ns for the FPGA response (in the 32 cells configuration)
- Hitmap dead time $^20+60+157,5+20$ ns -> 260 ns from the first pixel over threshold to the confirmation to take data $T+W \le (cells/2)*5$ ns

Level 0 scenarios

CASE 0:
HIGH threshold verified on a LOW thres pixel (EDGE OR CORE).
Hitmap generation.

CASE 2: LOW threshold verified on an EDGE pixel. Hitmap generation.

Programmable integration time T (~20 ns).

CASE 1: LOW threshold verified on two or more pixels. Hitmap generation. CASE 3: Light pollution. Hitmap generation. No data digitization.

Level 1 trigger -> FPGA

The hitmaps from 5 ASICs are collected by a redout FPGA which will identify the interesting patterns and will request the digitized data from the one or more ASICs (depending on the configuration).

FPGAB

Hitmap pre-defined patterns

Each case can be enabled or disabled via a configuration parameter. More patterns could be added.

Hitmap validator algorithm

After receiving the hitmap packet from each ASIC, the relevant 64 bit are extracted and combined into a single vector. We can visualize this as a map with the 5 chips placed as in the camera and with a 2-pixel wide padding around.

$$P = X + 44*Y$$

Pa = 2 + 44*2

Pb = 41 + 44*9

(527 downto 00) → 528 bit | 320 bit hitmap | 208 bit padding

(437 downto 90) → 348 bit Main

Hitmap validator algorithm output

The output from each pixel pattern module gets inserted into an output vector. If the output vector has a bit not zero then the trigger is fired.

3 clock cycles -> 3*5 ns (at 200 MHz) -> 15 ns dead time In the FPGA, much less than the transmission time of a hitmap packet

Level 3 trigger -> DPCU

The hitmaps and the data packets will be all sent to the DPCU where a software algorithm will re-check all the events before sending them to earth.

Solutions for SPB3

- The same trigger algorithm with the addition of a second patter seeking stage could be used for a bi-focal system.
- The second stage would be looking for a "pattern of patterns".

Modification required to account for the additional ASICs -> higher FPGA utilization

A two level hitmap

The output vector from the first stage could be considered as another hitmap where each bit at 1 corresponds to an interesting pattern.

