

TELESCOPE CONTROL & DAQ SYSTEM OVERVIEW

GIUSEPPE OSTERIA (INFN NAPOLI)

G. Osteria PBR Italia meeting - Rome - December 20, 2023

TELESCOPE MAIN INTERFACES

TELESCOPE MAIN SUB-SYSTEMS

Focal surface

- Fluorescence Camera
 - Optics
 - 4 x FC PDMs → 36 Elementary Cells (EC) with 4 MAPMTs each → 144 MAPMTs
 - Field Flatners and BG-3
 - Electronics
 - ASIC board (144 units), Cockcroft-Walton board (144 units)
 - Zynq boards (4 units)
 - Cross boards (12 units)
 - HV generator (4 units) + switches (4 units)
 - DC-DC converters (4 units)
 - Trigger
 - (Firmware on the Zynq board)
 - Mechanics
 - PDM mechanical structure, Cooling system, EMC shielding
- <u>Cherenkov Camera</u>
 - Optics
 - 4 x CC PDMs \rightarrow 32 Elementary Cell (EC) with 1 SiPM array each
 - Electronics
 - ASIC boards (4 units?)
 - FPGA boards (4 units)
 - Synchronization system (1 unit)
 - Bias voltages generators (? units)
 - DC-DC converters (? Units)
 - Trigger
 - (Firmware on the FPGA board)
 - Mechanics
 - CC mechanical structure, Cooling/heating system, EMC shielding

TELESCOPE MAIN SUB-SYSTEMS

Data Processor

Electronics

- CPU (2 units, Hot and Cold)
- Trg&Sync Boards (2 units)
- GPS receivers (2 units, four antennas)
- HK board
- Ethernet switches (4 units)
- Solid State Power Controller (2 units)
- Mechanics
 - DP box1 (Eurocard chassis)
 - DP box2 (Power & Ethernet box) (Eurocard chassis)
 - DP box3 (Power & Ethernet box) (Eurocard chassis)

Ancillary devices

- Health LED (2 units)
- EMON (2 units)
- LID Controller ?
- Tilt system?

External Detectors

- RADIO
- X-Gamma detectors

Harness (Cables, connectors, hatch panels) (a lot of...)

SYSTEM ARCHITECTURE

PBR Italia meeting - Rome - December 20, 2023

FC CAMERA

CC CAMERA

SYNCRHONIZATION SIGNALS: FC

SYNCRHONIZATION SIGNALS: CC

CC Trg&Sync	Trigger CLK (40 MHz?) 1 PPS GTU CLK	CC PDM
	Trigger_L1_IN Busy	

SYNCRHONIZATION SIGNALS: X-GAMMA

SYNCRHONIZATION SIGNALS: RADIO

TIMING & SYNC SIGNALS

CC and RADIO synchronized data acquisition

- Trigger signal maximum delay \approx 130 ns \rightarrow memory buffer to store data on RADIO Board
- Trigger counter on RADIO board (counter Input = CLK_Trigger, counter reset = CLK_Reset)
- Time counter on RADIO board (counter Input = CLK_Sync, counter reset = CLK_Reset)
 - Second time counter (counter Input = 100 MHz local clock, counter reset = CLK_Sync)
 - Event time stamp obtained by combining data from the two time counters
- Start acquisition: on command and on waiting for CLK_Start_ACQ
- Busy signal asserted by Radio board after receiving a CLK_Trigger signal and maintained until the end of event processing

Power ON :

- Internal integrity check
- Reset all the internal counters
- Busy signal is asserted
- Acquires and transmits on CAN BUS slow control parameters
- Wait for a Configure System commands sequence from CPU
 - Configure parameters
- Wait for a Start ACQ command from CPU

Start Acquisition:

- Busy signal is de-asserted
- Wait for a trigger

When a trigger occurs:

- Busy signal is asserted
- Scientific data are produced (ADC conversion, data transfer, etc)
- Scientific data are packed and stored in a FIFO memory
 - FIFO depth > n events
 - (FIFO control lines move the Busy status)
- As soon as the system is ready to receive a new trigger, Busy is de-asserted
- Wait for a new trigger
- A Finite State Machine starts to unpack and transfer data to the CPU
 - Data ready to be transferred to the CPU («push» logic?)

Stop Acquisition:

- Busy signal is asserted
- Complete the unpack and transfer data to the CPU procedure
- Wait for a new command from the CPU