Sensor development and test

Ester Ricci Ester.ricci@unitn.it

Università di Trento INFN – TIFPA

SPES Kickoff meeting,

The APP group @ UNITN

Constituted at the beginning of 2017 Group composition:

- 1 Full professor: R. Battiston
- 2 Associate professors: R. luppa, P. Zuccon
- 4 Fixted term researchers: F. Dimiccoli, F.M. Follega, A. Perinelli, E. Ricci
- Dottorandi: M. Babu, G. Brianti, L. Cavazzini, A. Dass, A. Lega, D. Mascione, R. Nicolaidis, F. Rossi INFN-TIFPA members connected to the group:
- 2 researchers: F. Nozzoli, W. Burger
- 1 technologist: C. Neubuser
- 1 junior researcher: V. Vilona

Two core activities:

- hardware development for space experiments
- machine learning techniques for data analysis in high energy physics

DEEPPP initiative

The **Deep Learning for Particle Physics** initiative is the software and analysis part of the APP group. They work on ATLAS on:

- Data quality monitoring (online and offline)
- **Taggers development**
- R&D for future online trigger implementation

And on Limadou data analysis

Roberto luppa ↑ in ¥

Marco Cristoforetti in ¥

Francesco Maria Follega in ¥

Andrea Di Luca ¥ in

> PhD studen ↑ in ¥

Daniela Mascione

Greta Brianti

The hardware development team

HEPD-02

Team: R. Iuppa, A. Lega, R. Nicolaidis, F. Nozzoli, E. Ricci, P. Zuccon

LYSO characterisation

ADHD

PRIN project taking off

LEM detector

- LEM: Compact particle spectrometer (10 x 10 x 10 cm³)
- Active collimation standard tracking spoils direction (multiple scattering)
- **ΔE E** technique: Energy PID
 - e- [0.1 7] MeV
 - proton [3 15] MeV
 - alpha [11 200] MeV
- Angle res:
 - ~12 degs e-
 - ~6 degs protons/alpha
- Geometric factor ~0.1 cm²sr
 - Two operation modes:
 - List mode (below 1 kHz)
 - Histo mode (trig rate > 1 kHz)

Labs and infrastructures @ Povo

Magnetic spectrometers

ΤΙΓΡΔ

- Measurements of antimatter fluxes and isotopic composition of cosmic rays
- Begin of operations: June 2006
- End of operations: February 2016
- Equipped with 6 planes of silicon microstrip detectors
- Double sided microstrip detector
- Silicon surface: 0.13 m²

https://doi.org/10.1051/epjconf/20147000026.

AMS-02

- Search of dark matter and study of antimatter fluxes
- Begin of operations: May 2011
- Equipped with nine planes of silicon microstrip detector
- Double sided microstrip detector
- Silicon surface: 6.4 m²

Silicon microstrip detectors

- Developed for vertexing and momentum measurement
- Silicon microstrip detectors are the elective technology for tracking particles in space
- Charged particle crossing a silicon buffer produces electronhole pairs.
- Implanting segmented electrodes for the collection, it is possible to measure the position where the particle cross the detector.

Microstrip vs MAPS detectors

Microstrip advantages:

- Small number of channels
- Low power consumption

Microstrip limits:

- Detector procurement
- High costs (~100 \$/cm²)
- Custom readout (high costs of procurement and integration)
- Reduced noise control due to external amplification

https://doi.org/10.1088/1748-0221/7/01/C01102

MAPS detector advantages:

- Standard CMOS procedures used allow mass production
- Lower costs (~20 \$/cm²)
- Readout implanted on detector surface
- Small noise (amplification implanted on pixel)
- Good spatial resolution

MAPS detectors limits:

- High power consumption
- Large number of channels

Hybrid vs Monolithic pixels detectors

Hybrid pixel approach:

- A team realises the sensor structure
- A team realises the readout device

Advantages:

- It is possible to optimise the two parts independently
- The technology is well known and reliable

Disadvantages:

- Sensors are realised with custom technologies (high costs, lower expertise of foundries, only a few foundries accept the work)
- The assembly procedure is complex (high costs and low yield)
- Higher noise
- Technology is several decades years old, and already reached its maximum development

Solution:

To implement the readout on the same substrate of the detector (Monolithic approach)

Each readout channel requires a bond. If readout is integrated, it is possible to use wire bonding and the number of bonds is widely reduced

ALPIDE/ALTAI

ALPIDE is a MAPS detector designed for ALICE ITS Upgrade. The requirements for the upgrade are reported in the table.

Parameter	IB	OB	Final values
Detector size [mm ²]	15 x 30	15 x 30	15 x 30
Detector thickness [µm]	50	100	50 - 100
Spatial resolution [µm]	5	10	4
Detection efficiency	>99%	>99%	>99%
Fake hit rate [evt ⁻¹ pixel ⁻¹]	<10 ⁻⁵	<10 ⁻⁵	<10-7
Integration time [µs]	<30	<30	~2
Power density [mW/cm ²]	<300	<100	<50 *

* The power consumption depends on the detector configuration

https://doi.org/10.1088/0954-3899/41/8/087002.

- Sparsified readout
- Pixel pitch: 26.88 x 29.24 μm²
- Columns x rows: 1024 x 512
- Electrode diameter: 2 µm
- Back bias: 0 V to -6 V
- Producer: TowerJazz

ALPIDE power consumption in ALICE

https://indico.cern.ch/event/ 666016/contributions/2722251/attachments/1523408/2380925/ 20170914-ALPIDE-FoCal-Study-Aglieri.pdf

Fermi microstrip power density: 0.2 mW/cm² HEPD-01 microstrip power density: 10 mW/cm² Inner barrel stave power consumption:

• Nine IB mode detectors: 1.4 W

IB power density: 34 mW/cm²

OB stave power consumption:

- One Master chip mode: 157 mW
- Six Slave chip mode: 426 mW
- Full stave (two columns of seven detectors): 1.2 W

OB power density: 18.5 mW/cm²

Power consumption reduction strategies

Power consumption have to be reduced to fit requirements of the HEPD-02 payload.

From power consumption characterisation, the high speed line is the most consuming element of the detector.

The first solution is to **move the readout to the CTRL line**. It avoids to activate the PLL.

https://indico.cern.ch/event/ 666016/contributions/2722251/attachments/1523408/2380925/ 20170914-ALPIDE-FoCal-Study-Aglieri.pdf

HEPD-02 tracker design

Tracker construction and integration

A team effort:

- HIC assembly in **Torino** •
- Wire bonding in **Bari** •
- Stave assembly in **Torino** •
- Turret assembly in Trento •
- Turret characterisation in • Trento
- Tracker assembly in Roma ٠ **Tor Vergata**
- Integration on HEPD-02 in **Roma Tor Vergata**

Production summary:

- 84 HIC assembled
- 48 STAVE assembled
- 11 turrets assembled (1 EM level, 10 QM/FM level)
- 2 trackers

- Analog front-end is kept constantly powered on
- The digital part is needed only for the readout of the data
- The clock is distributed only after the trigger signal is produced
- The smart segmentation of trigger allows to distribute the clock only to the section of tracker involved on the event

Full tracker power consumption

- Power consumption is plot as a function of trigger rate
- To increase the probability to intercept the section of the tracker hit by the particle, three turrets are read out
- Power consumption of the full tracker in this configuration is well below the 10 W of HEPD-01 tracker
- The maximum trigger rate will be defined by the dead time required for the readout.

MAPS evolution: DMAPS

- One of the most impacting limits of MAPS is the low radiation hardness
- The design of detectors that can be operated in a fully depleted state
- The use of a detector in a full depleted state also increase the timing performance of the detector

R&D for ATLAS experiment

L-Foundry, 110 nm Multi-purpose INFN R&D

Towers Semiconductors, 180 nm Larger pixels for calorimetry applications

MLR1

16 mm

Towers Semiconductors, 65 nm R&D for ALICE experiment

Designed (also) for space: ARCADIA

- Developed on the framework of a INFN group V call as multi-purpose platform
- The production of the last version, MD3 was completed at the beginning of 2023
- Tests are ongoing
- The target of 10 mW/cm2 has been achieved in a dedicated Low Rate mode

Requirements		
Pixel pitch [µm]	20 - 25	
Thickness [µm]	50 - 500	
Scalability [cm]	Up to ~ 4x4	
Hit rate	10 - 100	
Timing resolution [ns]	10	
Power consumption [mW/cm ²]	<20	
Radiation hardness [Mrad]	1	

High Rate mode

Low Rate mode

ARCADIA ongoing activities @TN

- Noise and threshold characterisation
- Software development
 - External trigger
 - Characterisation tool developing

Space mode tests:

- Power consumption characterisation:
 - Static measurements
 - Dynamic measurement
- Response as a function og the temperature
- Test of data acquisition limits

Test at hig rate @Protontherapy centre:

- Procurement of fast scintillators and SiPMs
- Procurement of a fast electronic readout chain
- Test of the trigger chain
- Protontherapy test plan
- Beam test
- Data analysis

MAPS evolution: Stitching

- The small dimension of the currently available MAPS requires complex assembly procedures, power distribution and mechanical support
- The realisation of wafer-scale detector would widely increase the design possibilities
- The solution pursued by most R&D projects is stitching
- Stitching technique allows to connect single reticles to obtain a larger structures (usual reticles are limited to ~2x3cm²
- ALICE collaboration R&D team has recently got the first batch of stitched detctors and the first tests are ongoing

MAPS evolution: curvature

- Thinning procedures are well established in MAPS production
- With a further reduction from the 50 μ m of ALPIDE produced for ALICE Inner Barrel, it is possible to bend the detector
- ALICE ITS3 design will require a full cylindrical shape, with the innermost layer designed with a 18 mm curvature radius.
- Tests have been carried out with ALPIDE, with good results

Beam trough a bent ALPIDE

Development activities: lab characterisation

Power consumption charcaterisation

Setup design and realisation

Acquisitions with cosmic rays

Development activities: trigger systems

Fast scintillators Thin slabs Dense crystals for calorimetry

Development activities: beam tests

- Two beam lines
- Energies between 70 and 228 MeV (lower energies reachable with degrader
- Available on week days from 7pm to 10 or 10:30pm and on Saturday mornings
- 1 "preposto" is from the group, available for groups with similar beam requirements (physics line, low rates)

Conclusions

- The APP group in Trento was constituted in 2017
- In 6 years we were able to design, realise, qualify and characterise a tracker for space applications realised with an innovative technology
- MAPS technology was promoted from TRL 4 to TRL 8
- In the process, we gained experience in all the process, we equipped our labs and we built our network of facilities and labs that can supply us the infrastructures we lack
- Other new space-based initiatives (LEM and ADHD) are under development
- With the HEPD-02 ready for shipment to China, we are ready for a new adventure

