RIPTIDE: Recoil Proton Imaging Detector

Bologna, luglio 2024, Roberto spighi on behalf of RIPTIDE Collaboration

Il gruppo si espande con l'ingresso di Triestino Minniti, UniRoma 2 (FTE da valutare)

Nonostante sia un progetto giovane abbiamo già 4 laureandi (2 si stanno laureando e 2 già laureati)

NEW: al prossimo concorso di dottorato a Bologna, una borsa riservata a studio di immagini (applicato anche a Riptide) → altri FTE

Lavoro svolto

MISURE EFFETTUATE IN LABORATORIO

Caratterizzazione del sensore e dell'ottica

- sensibilità
- rumore
- Linearità
- Segnali dalle sorgenti
- **Campo visivo e profondità di campo**

MC E ANALISI DEI DATI SIMULATI

Stato del codice di simulazione Studio di vari metodi di Ricostruzione

- Fit lineari
- Principal Component Analysis (PCA)
- Trasformata di Hough
- Metodo dei momenti

Misure effettuate in laboratorio

La camera oscura

Progettata e realizzata con il servizio di Officina dell'INFN di Bologna una camera buia per realizzare le misure

Presenti tutti i tipi di connessioni interne-esterne

L'interno equipaggiato con diverse strutture ottiche acquistate dalla ThorLabs

La camera presenta un buio completo

Ad es: $1/0.02 = 50 \rightarrow$ con u fotoelettrone salti di 50 livelli di grigio

Caratterizzazione del sensore: rumore

Acquisizione fatta completamente al buio

- Verificata la linearità
- Valutato il numero di fotoni emessi dal laser
 - Control Co

Il laser non scendeva a deboli intensità (risultava instabile) → necessario scendere in intensità per vedere la minima luce rivelata

Caratterizzazione del sensore: sensibilità

Scendere in intensità per verificare quanti fotoni servono per vedere un segnale: mettiamo una fenditura in modo da fare una figura di diffrazione e misurare il segnale nell'ennesimo picco.

Stesso SETUP, ma con il nostro sensore

SETUP

SETUP per la misura di diffrazione

Misura con le sorgenti

Americio → decadimento alfa (5.443 and 5.486 MeV)

Am(Z= 95, A = 241) → Np (Z=93, A= 237)

Attività della sorgente 370 KBq iniziali Angolo solido ~ 0.057% (non facile da valutare)

Vita media 432.2 anni

Produzione di alfa e gamma

13

Auto Reset

Considerazioni sul sensore

Sensore caratterizzato (Sony IMX533CMOS)

- □ basso livello di rumore (Rumore elettronico: 1.3 e- → +- 1.3)
- poca sensibilità (per accendere un pixel circa 30 fotoni)
- Massimo frame rate 20 f/s

Vogliamo un alto Frame Rate

CMOS high frame rate (~CYCLONE 2000): Frame rate di 1 KHz

alto livello di rumore (Rumore elettronico: ~ 30 e-)

Necessità di amplificare il segnale (ad es. MCP doppio strato con amplificazione 10⁶) Vede il singolo fotone

Rumore elettronico trascurabile

Prima possibilità

La ditta Photek ci presterà un MCP per 2 mesi

MCP225/Q/BI/P46/IFO SN: 83230725 Gain 10⁶ price (2023) 17 kE + iva

Hamamatzu ci presterà una camera

qCMOS Camera (low readout noise)

Frame rate 25/s

□ Noise 0.27 photoel → possibility to see single photoelectron

□ Price 35k€ + iva

Soluzione più compatta, ma basso frame rate

Contact Fiorini (FE) MCP connesso ad un TimePix

Altre possibilità

Al momento faremo richiesta per la prima possibilità

3 diversi setups

Sensore + Ottica (Obiettivo)

Sensor

PC

30 mm

Sensor Spacer Optics

Sensore + Spaziatore + Ottica (Obiettivo)

Sensore + lenti

CV 80 x 80 mm

Optics

PC 10 mm

PC

15-20 mm

CV

15 x 15 mm

Caratterizzazione dell'ottica: riassunto

Tipologia lente	CV (mm²)	PC (mm)	Distanza lente sorgente (mm)	Angolo solido (rad)
Obiettivo	80x80	~30	400	~0.004
Obiettivo + distanziatore (21 mm)	30x30	~10	180	~0.02
Due lenti: F75-F100	15x15	~17	~100	~0.19
Due lenti: F75-F125	20x20	~30	~125	~0.13
Due lenti: F75-F200	30x30	~40	~200	~0.05

Raggio lente: 25mm Raggio obiettivo: 15mm

Preferibile per maggiore angolo solido e profondità di campo

MC e Analisi dei dati simulati

Simulazione dell'apparato e generazione di eventi

Il codice di simulazione diviso in 2 parti

1) Utilizzo di Geant4

- Scintillatore simulato in tutti i dettagli
- Modelli di trasporto
 - p & n derivati dai risultati di n-TOF
 - Emissione isotropica di 10⁴ fotoni per MeV di protoni
 - Trasporto dei fotoni fino alla superficie dello scintillatore
- Generati milioni di gamma, protoni, neutroni in diverse con diverse cinematiche

2) Toys MC

- Fotoni presi da Geant4 e trasportati al sensore attraverso aria e lenti
- Simulati tutti i possibili effetti (rifrazione, polarizzazione, lenti spesse, ...)

Il codice è funzionante e nella sua fase finale di stesura

Affrontati diversi metodi di ricostruzione del protone

Metodi investigati

- **Git Lineare**
- Principal Component Analysis (PCA)
- Trasformata di Hough
- Metodo dei Momenti

PCA Principal Component Analysis

In general (not our case) \rightarrow n points (x, y, z) in the space

Protoni, 30 MeV Generati in (2x2x2)cm³ Direzione isotropica

PCA (Principal Component Analysis)

Metodo di riconoscimento di immagine (~ 1970)

Trasformata di Hough

27

Ogni punto dello SPAZIO IMMAGINE corrisponde ad un punto nello SPAZIO DEI PARAMETRI

N punti che appartengono alla stessa linea creano n superfici che si intersecano nello stesso punto

Il metodo è time consuming

Overlapped 1: R = 5 mm, $100 \times 100 \text{ pixels}$

Metodo dei Momenti,1

$$\overrightarrow{x_b} = \left(\frac{\sum_i Q_i x_i}{\sum_i Q_i}, \frac{\sum_i Q_i y_i}{\sum Q_i}\right)$$

x_b (y_b) centro di gravità (momento di primo ordine)

Deve essere valutato

Milestones

						2024 2025							2026																
TASK	TASK	START	END	DURATION		Q1			Q2			Q3		G	1		Q2		(23		Q1			Q2			Q3	
ID	TITLE	DATE	DATE	IN MONTHS	Jan F	eb M	ar Apr	May .	Jun Ju	l Aug S	ep O	ct Nov D	ec Jo	an Feb	Mar Apr	rMay Ju	n Jul /	Aug	Sep Oct	Nov Dec	: Jan	Feb M	ar Ap	or May	Jun Ju	ul Aug	Sep	Oct No	v Dec
1	Simulation & Analysis	01/01/2024	31/12/2025	24								N	41							M5									
2	Optics	01/01/2024	30/06/2025	18								٨	۸2																
3	Electronics & DAQ	01/07/2024	31/12/2025	18								٨	//3			M	4			Mé									
4	Demonstrator	01/01/2025	31/12/2025	12																M7									
5	Data Analysis	01/07/2025	31/12/2026	18																					M9				M11
6	Test	01/07/2025	30/06/2026	12																M8				1	л10				

M1: Definition of all the geometry except the image intensifier
M2: Light yield and multianode PMT measurements
M3: Firmware for image acquisition
M4: Image acquisition with external trigger
M5: Reconstruction of the neutron kinematics in double scattering events
M6: Simultaneous acquisition from multiple cameras with external trigger
M7: First prototype realization (without the image intensifier)
M8: First laboratory tests with radioactive neutron source
M9: Analysis of radioactive source data

M10: Data taking with proton and neutron beams M11: Track reconstruction from beam data

Le milestones del 2024 finiscono a dicembre

- Simulazioni & analisi (vedi M1)
- Ottica (alcuni punti fatti, altri definiti con l'arrivo del MCP)
- Nella seconda parte dell'anno: DAQ

Sia nel campo delle misure di laboratorio, che nell'analisi è stato svolto molto lavoro: siamo in linea coi tempi

Analisi: una borsa a Bologna per un PhD su ricostruzione di immagini

End time	milestone
31/12/2025	studi MC per la definizione della geometria finale dell'apparato (probabilmente eccetto i dettagli sull'intensificatore di immagine).
31/12/2025	ricostruzione della cinematica del neutrone in eventi simulati di doppio scattering
31/12/2025	completamento della scrittura del firmware per il programma di acquisizione
30/7/2025	misurazione dell'intensita' di luce proveniente da sorgenti e/o laser e/o cosmici con un PMT
30/7/2025	sviluppo di un sistema di trigger esterno

Richieste

CAPITOLO	DESCRIZIONE	2025	2500 SJ
Inventario	MCP Photek	20.5	
	MCP Photek		20.5
	Camera ad alto frame rate Cyclone-2-2000M	7.5	
Apparati			
Consumo	Scintillators of different characteristics and size	1.0	
	Lenses, mirrors and cables	2.0	
Missioni	In presence meetings	1.0	
Totale		32	20.5

Luglio 2024:restituiti 7.5 keuro acquisto cyclone spostatat al 2025)

Nessuna richiesta ai servizi di sezione

L'acquisto MCP della Photek è comprensivo di iva, ma avremo anche la possibilità di acquistarlo al CERN tramite n-TOF e non pagare l'iva.

La richiesta del secondo MCP SJ è, nel caso questo vada bene, per instrumentare la seconda faccia.

Anche la richiesta di una camera Cyclone-2-2000 ad alto frame rate è per instrumentare la seconda faccia.

Come materiale di consumo chiediamo l'acquisto di lenti, specchi e scintillatori per definire il miglor setup

Missioni: 1 keuro per riunioni in presenza.

Tutte le richieste sono corredate da preventivi delle ditte (inserite nel database

Anagrafica RIPTIDE 2025

Nome	Ruolo	FTE 2025
Console Camprini Patrizio	Ricercatore ENEA Bologna	0.2
Giacomini Francesco	Primo Tecnologo CNAF Bologna	0.1
Massimi Cristian	Professore associato UNIBO	0.3
Mengarelli Alberto	Tecnologo INFN Bologna	0.2
Minniti Triestino	Rtd-B Roma 2	Da definire
Ridolfi Riccardo	Assegnista di Ricerca Bologna	0.5
Spighi Roberto	Dirigente di Ricerca INFN Bologna	0.5
Terranova Nicholas	Ricercatore ENEA Frascati	0.5
Pisanti Claudia	Dottoranda	1.0
PhD su ricostruzione immagine	Dottorando	Da definire
Musumarra Agatino	Professore Associato UNICT	0
Pellegriti Maria Grazia	Ricercatore INFN	0
Villa Mauro	Professore Ordinario	0
TOTALE FTE		> 3.8

Conclusione

Lavoro svolto

- Misure in laboratorio
 - **Sensibilità del sensore (Sony IMX533CMOS)**
 - **Rumore del sensore**
 - Linearità del sensore
 - Acquisizione di segnali di γ e α da sorgenti
 - Misura della profondità di campo e del campo visivo con diversi setup

»

»

»

- **Gimulazione di dati (milioni di gamma, protoni, neutroni con diverse cinematiche**
- Analisi dei dati simulati
 - **Ricostruzione della traccia di protone con Fit lineare**
 - con Principal Component Analysis (PCA)

□ «

((

— «

- con la Trasformata di Hough T
- con il metodo dei Momenti

- Prossime misure
 - Misure in laboratorio con MCP Photek

Richieste

29 keuro + 25 keuro (SJ)

Anagrafica

In aumento

Gran lavoro fatto Siamo nei tempi