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Description of Characteristic EMVA 1288 Values
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° Absolute Sensitivity Threshold: The smallest detectable amount of light. Expressed in number of electrons. The point where signal
equals temporal dark noise. This is important to understanding low light performance!

° Photon Shot Noise: Signal noise equal to the square root of the incoming photons. Due to the randomly distributed particle nature of light.
Temporal Dark Noise: Noise when no light is hitting the sensor, also known as read noise. Due to electric dark current, quantization noise,
and other noise sources depending on the specific construction of the sensor and the camera electronics.

Saturation Capacity: The maximum number of electrons each pixel can hold before reaching non-linear response.

Dynamic Range: Ratio of maximum signal (saturation capacity) to the minimum signal (temporal dark noise)

Signal to Noise at Saturation: Ratio of the maximum signal (saturation capacity) to noise (photon shot noise). At saturation, temporal dark
noise is insignificant compared to photon shot noise and can be ignored.
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IMX533 Sony Sensor
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IMX249 will reach absolute sensitivity threshold at a lower light density
and thus will perform better in lower light applications.

https://www.baslerweb.com/en/learning/cmos-se
nsor-selection/

Sensitivity threshold

The effects of this can be seen by comparing the absolute sensitivity threshold, which is defined in the
EMVA1288 standard. This indicates how much light, i.e. photons, the sensors need on average to generate a
signal that stands out sufficiently from the noise. This value is 10 for first-generation Pregius sensors, while
second-generation Pregius models achieve a value of 3 and STARVIS sensors achieve a value of 4.

STARVIS Pregius 1st gen Pregius 2nd gen
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Impossible to see muons...

Sensor at +Y, axes XZ

mu+

source position: [0,0,30] cm
particle direction: [0,0,-1]
energy: 4 GeV

CCDSensor_00001+XZ
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mu+
source position: [0,0,30] cm

Impossible to see muons... e

Sensor at +Y, axes XZ
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proton
source position: [0,0,0] cm

...and Protons ? T v

Sensor at +Z, axes XY
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proton
source position: [0,0,0] cm

... and Protons ? Cre e

Sensor at +Z, axes XY
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Possible Solutions

72N

Image Intensifier (1074-10/6 gain) Better performing sensors...
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Specifying machine vision terminology

EXpOSU re time: the time span for which a sensor is exposed to the light so as to record a picture.
Quantu m efficiency: how many photons are traducted into electrons
System Gain: represent the number of gray levels that each photoelectron is converted to. [e-/GL]

EM-Gain: an additional mechanism to multiply the number of photoelectrons generated from incident photons.
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Figure 1: Diagrammatic representation of how photons

are converted to gray levels on a scientific camera.

https://www.photometrics.com/learn/white-papers/photons-electron-and-gray-levels

photons.




Specifying machine vision terminology

Exposure time: the time span for which a sensor is exposed to the light so as to record a picture.
Quantum efﬂciency: how many photons are traducted into electrons

System GaiN: represent the number of gray levels that each photoelectron is converted to. [e-/GL]
EM-Gain: an additional mechanism to multiply the number of photoelectrons generated from incident photons.
Readout Noise: includes pixel noise, circuit noise, and ADC quantization noise.

Dark current: noise caused by thermally generated electrons

Bias: offset

Signal in grey level: output of the camera pixel per pixel (due to AD conversion)

Signal in electrons: signal should be quantified in photoelectrons as these are real world values for intensity measurement that allow for consistent signal
representation across all cameras.



Specifying machine vision terminology

EXpOSUFG time: the time span for which a sensor is exposed to the light so as to record a picture.
Quantum efficiency: how many photons are traducted into electrons
System Gain: represent the number of gray levels that each photoelectron is converted to. [e-/GL]

EM-Gain: an additional mechanism to multiply the number of photoelectrons generated from incident photons.

Readout Noise: includes pixel noise, circy - ;
P . Standard deviation, ., * Gain at exposure
Read Noise + Dark current = time £ 0
Dark current: noise caused by thermally g V2
Bias: offset

Signalin grey level: ouputoftn Signal in Electrons= (Signal in Grey Levels - Bias)*Gain

Signal in electrons: signal shouldbee - " -
representation across all cameras.

https://www.photometrics.com/learn/camera-test-protocol



step by step processes to
evaluate the camera

performances.

Camera Test Protocol
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Camera Test Protocol

Introduction

The detector is one of the most important
components of any microscope system. Accurate
detector readings are vital for collecting reliable
biological data to process for publication

To ensure your camera is performing as well as

it should be, Photometrics designed a range of
tests that can be performed on any microscope.
The results of these tests will give you quantifiable
information about the state of your current

camera as well as providing a method to compare
cameras, which may be valuable if you're in the
process of making a decision for a new purchase

This document will first take you through how to
convert measured signal into the actual number

of detected electrons and then use these electron
numbers to perform the tests. The tests in this
document make use of ImageJ and Micro-Manager
software as both are powerful and available free of
charge

Technical Note: Camera Test Protocol

Scientific CMOS, EMCCD and CCD Cameras
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