RIPTIDE: Recoil Proton Imaging Detector

Metodology: Recoil proton Tecnique

The bases of our project

Neutron track Imaging with Single and Double scattering

M. Marafini, *et al.*, Phys. Med. Biol. **62** (2017) 3299
G.A. de Nolfo, et al. NIMA 1054 (2023) 168352
E.V. Pagano, et al. Frontiers of physics, DOI 10.3389/fphy.2022.1051058

J. Hu et al, Sci. Rep. 8, 13363 (2018) M. Filipenko et al. Eur. Phys. J. C (2014) 74:3131 S. Yamamoto, et al. NIMA 1015 (2021) 165768

Possible applications

C.S.		
E	AT .	

-	
-	
Nor Mar	

Application	Configuration (n. scattering)	Dimensions (cm x cm x cm)	Neutron energy (MeV)	Background	data taking (duration)	Experimental site
Solar neutrons	Double scattering	5x5x5 (SONTRAC)	10 – 50	Cosmic rays	months	satellite
Space radioprotection	Single scatt. (up – down)	~ 10x10x10	10 - 1000	Secondary particles + γ	weeks	Laboratory
Hadrontherapy radioprotection	Double scattering	10x10x20 (MONDO)	10 - 200	Secondary particles + γ	weeks	Laboratory
Nucl. Phys.: N-N scatt. length	Single scattering	6x6x6	10 – 50	Secondary particles + γ	weeks	Laboratory
Soil moisture	Single scatt. (up – down)	6x6x6	10 - 50	Cosmic rays	months	On the ground
Nucl. Phys.: Rad. beams	Single scattering	10x10x10	< 100	Secondary particles + γ	weeks	Laboratory

itive

5

scatt on C (not seen) and then on p

Fds:

scatt on C (not seen) and then on p and p

Scatt on p, on C (not seen) and on p

n nteraction ~ 50% Low Bkg

Optic scheme

A lot of parameters to fix

Parameter	values
s: scintillator size	60 mm
s': side of the active cube	40 mm
d: side of the CCD sensor	20 mm
f: focal length of the lens	30 mm f = D/2
D: diameter of the lens	60 mm
a: position of the lens	71 mm a = p'' – p'
b: position of the sensor	45 mm b = fp"/(p"-f)

Toy MC in order to have an idea of the optic dimension and performances

Photons simulation

Cube 53x53x53 mm³

Pointlike sources in the cube
 Photons Isotropic direction
 # of photons: 6.88x10⁴

Equivalent to 6.88 MeV p

Cube 53x53x53 mm³

Cube 40x40x40 mm³

cube 30x30x30 mm³

Decreasing Cube dimension

- **improve Position Precision**
- decrease detector efficiency

Protons simulation

- **Cilindric source**
- Isotropic direction and position
- **Energy: 30 MeV**
- 10 k photons per MeV
- □ p/f=3, f = 30 mm

Decreasing the radius of the lens
decrease spherical aberration
bkg decrease
decrease light yield

Source: 30 MeV protons Generated in (2x2x2)cm³ Isotropic Direction

Tracks reconstruction

Summary

Fast neutron tracking based on n-p elastic scattering

Our knowdlege

GEANT4 Simulation

- **p+BC408**
- □ n+BC408
- Optical photons transport

Toy MC of a simple Optical System

- Systematics of optical parameters
- Pointlike source
- Proton source

Track Reconstruction

- Point interpolation
- PCA

Challenge

- Final Optical system
 - Small aberration
 - High light collection
- System geometry
 - Use of only 2 cameras
 - compact detector
- Working Prototype
 - scintillation light photograph
 - Benchmarking of MC simulation
- Track reconstruction
 - Double scattering
 - New methods (AI)

					2024 2025											20	26									
TASK	TASK	START	END	DURATION		ଦୀ		Q2		ୟଃ		G	21	G	2		Q3			Q1		G	2		Q3	
ID	TITLE	DATE	DATE	IN MONTHS	Jan Feb	Mar A	AprMay	Jun Jul	Aug Se	p Oct Nov	Dec J	an Feb	Mar Apr	May Jun	Jul Au	g Sep	Oct Nov	Dec .	an Fe	eb Ma	Apr/	∧ay Jun	Jul Aug	Sep	Oct No	v Dec
1	Simulation & Analysis	01/01/2024	31/12/2025	24							M1							M5								
2	Optics	01/01/2024	30/06/2025	18							M2															
3	Electronics & DAQ	01/07/2024	31/12/2025	18							МЗ			M4				M6								
4	Demonstrator	01/01/2025	31/12/2025	12														M7								
5	Data Analysis	01/07/2025	31/12/2026	18																		M9				M11
6	Test	01/07/2025	30/06/2026	12														M8				M10				

M1: Definition of all the geometry except the image intensifier M2: Light yield and multianode PMT measurements M3: Firmware for image acquisition

M4: Image acquisition with external trigger

M5: Reconstruction of the neutron kinematics in double scattering events

M6: Simultaneous acquisition from multiple cameras with external trigger

M7: First prototype realization (without the image intensifier)

M8: First laboratory tests with radioactive neutron source

Mg: Analysis of radioactive source data

M10: Data taking with proton and neutron beams

M11: Track reconstruction from beam data

CAPITOLO	DESCRIZIONE	2024	2025	2026
Apparati	2 ND CMOS high frame rate (~CYCLONE 2000)	7.5	3 RD CMOS: 7.5 (if required)	
Inventario	2 Canon RF 35mm F1.8 IS MACRO ST	1.5	MCP (if necessary) [30]	
Consumo	cables, connectors, supports	1.0	Lab metabolism: 2	Lab metab: 2
	black box to characterize light sensors	1.0		
	lens and mirrors	1.0		
Missioni	2 in-presence meetings in Bologna	1.0	In presence meetings: 1	data takings: 5
Totale		13	[3-40]	7

Conclusions

In our opinion the project is of extreme interest because:

- Useful in different physics fields (hadrontherapy, astrophysics, ...)
- new approach on neutron detection
- More applications can be identified
- Low cost of realization
- **Realistic duration time (3 years) and manpower (3.8 FTE)**

Backup slides

Possible Sensor

Pro:

On the shelf! And in our lab! Direct connection with a PC **Cont:** Low fps No empty pixel suppression High dead time during reading

SiPM Characterization: light yield with cosmic rays

	Risetime (ns)	Decay time (ns)	FWHM (ns)	FW10M (ns)
NA	3 ± 1	39 ± 4	150 ± 40	490 ± 80
:A	3 ± 1	39 ± 4	160 ± 40	490 ± 60
NA	6 ± 3	42 ± 6	230 ± 30	530 ± 90
'A	5±3	60 ± 15	310 ± 70	700 ± 130

amplifier?

TEFLON:

- **Direct and indirect light**
- higher signal
- Worsen time resolution

SiPM

locations

Group Members

RIPTIDE: Recoll ProTon Imaging DEtector

Nome	Ruolo	FTE 2024
Console Camprini Patrizio	Ricercatore ENEA Bologna	0.5
Giacomini Francesco	Primo Tecnologo CNAF Bologna	0.1
Massimi Cristian	Professore associato UNIBO	0.5
Mengarelli Alberto	Tecnologo INFN Bologna	0.2
Ridolfi Riccardo	Assegnista di Ricerca Bologna	0.5
Spighi Roberto	Dirigente di Ricerca INFN Bologna	0.5
Terranova Nicholas	Ricercatore ENEA Frascati	0.5
Pisanti Claudia	Dottoranda	1.0
Musumarra Agatino	Professore Associato UNICT	0
Pellegriti Maria Grazia	Ricercatore INFN	0
Villa Mauro	Professore Ordinario	0
TOTALE FTE		2.8 (<mark>3.8</mark>)

n p is only elastic (at this energy)
 σ(n C) > σ(n p) → large bkg events?

but ...

n in a plastic scintillator

Detection volume: (6 cm)³ neutron energies: 3-50 MeV proton ranges: 0.2 – 30 mm H:C = 1.1

Trigger logic and Data collecting electronics

Number of cameras to be decided PCA Analysis, 1

PCA (Principal Component Analysis) : machine learning tool supporting decisions and data analysis In general \rightarrow data sets are points (x₁, x₂, ..., x_n) in the n-D space to discriminate/cluster

PCA for Data Analysis – standard case

3D Principal Component: projected on each face

Data compared with 2D projections

3D Principal Component

Data compared with Principal 3D

Metodology: Recoil proton Tecnique

Metodology: Recoil proton Tecnique

Tracks reconstruction

R = 0.5 cm CMOS pixel: 100x100

Track length precision 5% Tracks from PCA analysis, 1

Tracks from PCA analysis, 2

