RIPTIDE: Recoil Proton Imaging Detector

Metodology: Recoil proton Tecnique

CCD image of a double scatter from a 65 MeV neutron incident from top

James M. Ryan, et al. «A Scintillating Plastic Fiber Tracking Detector for Neutron and Proton Imaging and Spectroscopy», the conference is available at University of new Empshire Scholar's Repository, https://scholars.unh.edu/ssc/208

The bases of our project

Neutron track Imaging with Single and Double scattering

Optic system to «photograph» particles (p, e, μ)

(a)

J. Hu et al, Sci. Rep. 8, 13363 (2018)
M. Filipenko et al. Eur. Phys. J. C (2014) 74:3131
S. Yamamoto, et al. NIMA 1015 (2021) 165768

Possible applications

Application	Configuration (n. scattering)	$\begin{aligned} & \text { Dimensions } \\ & (\mathrm{cm} \times \mathrm{cm} \times \mathrm{cm}) \end{aligned}$	Neutron energy (MeV)	Background	data taking (duration)	Experimental site
Solar neutrons	Double scattering	$\begin{gathered} 5 \times 5 \times 5 \\ \text { (SONTRAC) } \end{gathered}$	10-50	Cosmic rays	months	satellite
Space radioprotection	Single scatt. (up - down)	$\sim 10 \times 10 \times 10$	10-1000	Secondary particles $+\gamma$	weeks	Laboratory
Hadrontherapy radioprotection	Double scattering	$\begin{gathered} 10 \times 10 \times 20 \\ \text { (MONDO) } \end{gathered}$	10-200	Secondary particles $+\gamma$	weeks	Laboratory
Nucl. Phys.: N-N scatt. length	Single scattering	6x6x6	10-50	Secondary particles $+\gamma$	weeks	Laboratory
Soil moisture	Single scatt. (up - down)	$6 \times 6 \times 6$	10-50	Cosmic rays	months	On the ground
Nucl. Phys.: Rad. beams	Single scattering	$10 \times 10 \times 10$	< 100	Secondary particles $+\gamma$	weeks	Laboratory
...	\ldots	\ldots	...	\ldots

D

MC: $n \rightarrow$ scintillator

Simulation:

probability of Single-double interaction

- Background estimation

Fss:
a scatt on C (not seen) and then on p
Fds:
a scatt on C (not seen) and then on p and p

- Scatt on p, on C (not seen) and on p
n nteraction ~ 50\%
Low Bkg

not seen

Interaction and detection efficiency

Double scattering

Not considered Optic efficiency

Neutron kinetic energy (MeV)
$E_{n}=20 \mathrm{MeV}$
\square Single scattering efficiency ~10\%
\square Double scattering efficiency ~ $\mathbf{1 \%}$

Optic scheme

A lot of parameters to fix

Parameter	values
s: scintillator size	60 mm
s': $^{\text {side of the active cube }}$	40 mm
d: side of the CCD sensor	20 mm
f: focal length of the lens	$30 \mathrm{~mm} \quad f=\mathrm{D} / 2$
D: diameter of the lens	60 mm
a: position of the lens	$71 \mathrm{~mm} \mathrm{a}=\mathrm{p}^{\prime \prime}-\mathrm{p}^{\prime}$
b: position of the sensor	$45 \mathrm{~mm} \mathrm{~b}=\mathrm{fp} p^{\prime \prime} /\left(\mathrm{p}^{\prime \prime}-\mathrm{f}\right)$

Toy MC in order to have an idea of the optic dimension and performances

Photons simulation

Cube $53 \times 53 \times 53 \mathrm{~mm}^{3}$

- Pointlike sources in the cube
- Photons Isotropic direction
- \# of photons: 6.88×10^{4}

Equivalent to 6.88 MeV p

Cube $53 \times 53 \times 53 \mathrm{~mm}^{3}$

Residuals 0.96 mm

Cube $40 \times 40 \times 40 \mathrm{~mm}^{3}$

Residuals 0.68 mm
cube $30 \times 30 \times 30 \mathrm{~mm}^{3}$

Decreasing Cube dimension

- improve Position Precision
- decrease detector efficiency

- 340 photons/view
- Track visible

- ~ 80 photons/view
- Track clearly visible

Decreasing the radius of the lens

- decrease spherical aberration
- bkg decrease
- decrease light yield

Source: 30 MeV protons

 Generated in $(2 \times 2 \times 2) \mathrm{cm}^{3}$
Tracks reconstruction

Isotropic Direction

Summary
 Fast neutron tracking based on n-p elastic scattering

Our knowdlege

\square GEANT4 Simulation

- p+BC408
- n+BC408
- Optical photons transport
- Toy MC of a simple Optical System
- Systematics of optical parameters
- Pointlike source
- Proton source
- Track Reconstruction
- Point interpolation
- PCA

Challenge

- Final Optical system
- Small aberration
- High light collection
- System geometry
- Use of only 2 cameras
- compact detector
- Working Prototype
- scintillation light photograph
- Benchmarking of MC simulation
- Track reconstruction
- Double scattering
- New methods (AI)

M_{1} : Definition of all the geometry except the image intensifier
M2: Light yield and multianode PMT measurements
M_{3} : Firmware for image acquisition
M4: Image acquisition with external trigger
M_{5} : Reconstruction of the neutron kinematics in double scattering events
M6: Simultaneous acquisition from multiple cameras with external trigger
M7: First prototype realization (without the image intensifier)
M8: First laboratory tests with radioactive neutron source
Mg : Analysis of radioactive source data
M_{10} : Data taking with proton and neutron beams
M11: Track reconstruction from beam data

Requests \& GANT

CAPITOLO	DESCRIZIONE	2024	2025	2026
Apparati	2 $^{\text {ND }}$ CMOS high frame rate (\sim CYCLONE 2000)	$\mathbf{7 . 5}$	$3^{\text {RD }}$ CMOS: 7.5 (if required)	
Inventario	2 Canon RF 35mm F1.8 IS MACRO ST	$\mathbf{1 . 5}$	MCP (if necessary) [30]	
Consumo	cables, connectors, supports	$\mathbf{1 . 0}$	Lab metabolism: $\mathbf{2}$	Lab metab: $\mathbf{2}$
	black box to characterize light sensors	$\mathbf{1 . 0}$		
	lens and mirrors	$\mathbf{1 . 0}$		
Missioni	2 in-presence meetings in Bologna	$\mathbf{1 . 0}$	In presence meetings: $\mathbf{1}$	data takings: $\mathbf{5}$
Totale		13		[3-40]

Backup slides

Possible Sensor

Commercial CMOS

Pro:
On the shelf! And in our lab!
Direct connection with a PC
Cont:
Low fps
No empty pixel suppression
High dead time during reading

SiPM Characterization: light yield with cosmic rays

Peak amplitude of

	Risetime (ns)	Decay time (ns)	FWHM (ns)	FW10M (ns)
CNA	3 ± 1	39 ± 4	150 ± 40	490 ± 80
CA	3 ± 1	39 ± 4	160 ± 40	490 ± 60
TNA	6 ± 3	42 ± 6	230 ± 30	530 ± 90
TA	5 ± 3	60 ± 15	310 ± 70	700 ± 130

TEFLON:

- Direct and indirect light
- higher signal
- Worsen time resolution

Group Members

RIPTIDE: Recoll ProTon Imaging DEtector

Nome	Ruolo	FTE 2024
Console Camprini Patrizio	Ricercatore ENEA Bologna	0.5
Giacomini Francesco	Primo Tecnologo CNAF Bologna	0.1
Massimi Cristian	Professore associato UNIBO	0.5
Mengarelli Alberto	Tecnologo INFN Bologna	0.2
Ridolfi Riccardo	Assegnista di Ricerca Bologna	0.5
Spighi Roberto	Dirigente di Ricerca INFN Bologna	0.5
Terranova Nicholas	Ricercatore ENEA Frascati	0.5
Pisanti Claudia	Dottoranda	1.0
Musumarra Agatino	Professore Associato UNICT	0
Pellegriti Maria Grazia	Ricercatore INFN	0
Villa Mauro	Professore Ordinario	0
		$\mathbf{2 . 8}$
TOTALE FTE		

a p is only elastic (at this energy)

- $\sigma(\mathrm{nC})>\sigma(\mathrm{n} p) \rightarrow$ large bkg events?

Detection volume: $(6 \mathrm{~cm})^{3}$ neutron energies: 3-50 MeV proton ranges: 0.2 - $\mathbf{3 0} \mathbf{~ m m}$
$\mathrm{H}: \mathrm{C}=1.1$

Trigger logic and Data collecting electronics

PCA Analysis, 1

PCA (Principal Component Analysis) : machine learning tool supporting decisions and data analysis In general \rightarrow data sets are points ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$) in the n -D space to discriminate/cluster

- O(xyz) Raw Data frame
- $O^{\prime}\left(x^{\prime} y^{\prime} z '\right)$ Data referred to Average

PCA for Data Analysis	PCA for Particle Track Imaging
Clouds of data points (here 3D space)	
Covariance matrix of data	
Diagonalization	
Finding "Principal" Directions	
(distribution of data)	
3 eigenvectors and 3 eigenvalues	
(maximum eigenvalue \rightarrow prominent direction)	

First eigenvector: main tendency in data/variables/params

PCA Analysis, 2

3D Principal Component: projected on each face
Data compared with 2D projections

3D Principal Component
Data compared with Principal 3D

Metodology: Recoil proton Tecnique

Metodology: Recoil proton Tecnique

CCD image of a double scatter from a 65 MeV neutron incident from top

James M. Ryan, et al. «A Scintillating Plastic Fiber Tracking Detector for Neutron and Proton Imaging and Spectroscopy», the conference is available at University of new Empshire Scholar's Repository, https://scholars.unh.edu/ssc/208

$$
R=0.5 \mathrm{~cm}
$$

CMOS pixel: 100×100

Track length precision 5\%

Tracks from PCA analysis, 1

Source: 30 MeV protons

- Generated in ($2 \times 2 \times 2$) cm^{3} cube inside detector
- Isotropic Direction

Tracks from PCA analysis, 2

Source: 30 MeV protons

- Generated in ($2 \times 2 \times 2$) cm^{3} cube inside detector
- Isotropic Direction

Snell law

$$
\sin \theta_{r}=\frac{n_{1}}{n_{2}} \sin \theta_{i}
$$

$$
\theta_{\max }=39,3^{\circ}
$$

Photons \rightarrow random polarization Simulation: 50\% parallel and 50\% perpendicular

On average 95\% of photons arrive to sensor

