Lasers for Second and Third Generation GW Detectors

Jörg Neumann

Laser Zentrum Hannover, Germany 21.10.2011

LASERS FOR GRAVITATIONAL WAVE DETECTION

Laser Zentrum Hannover e.V. (LZH) is a non-profit research institute

Laser beam injected into Michelson interferometer for gravitational wave detection

- Linearly polarized, fundamental mode, single frequency, low noise
- Successful power scaling from 12 W to 35 W and 200 W to increase detector sensitivity
- > 24/7 reliable operation for many months

12W laser for GEO 600

35W amplifier for eLIGO/VIRGO

200W aLIGO high power oscillator

THE ENHANCED LIGO LASER SYSTEM

Used 2008 – 2010 in Enhanced LIGO

M. Frede et al., OE 15, 459-465 (2007)

Pump diode and electronics unit

Seed and amplifier

LASER FOR ADVANCED LIGO

- Injection locked high power Nd:YAG ring oscillator
- > 200 W of single-frequency kHz linewidth output at 1064 nm

L. Winkelmann et al., Appl. Phys. B 102(3), 529-553 (2011)

LASERS FOR ADVANCED LIGO

First laser installation successfully completed in Livingston (Louisiana)
Second laser system delivered to Hanford (Washington), being installed NOW
Third laser system in production

TWO LASERS FOR 3RD GENERATION GWD

Einstein Telescope (ET) Design Study Document (conceptual design):

Requirements might change with interferometer design:

- Potential problems with LG₃₃ in high finesse interferometer
- High power @ 1.5 µm might still be needed

BASIC COMPARISON OF 1 μm AND 1.5 μm WAVELENGTH

Design approach: Single-frequency master oscillator + fiber amplifier (MOFA)

Wavelength	1.0 µm	1.5 µm
Dopant	Yb	Er/Yb, Er
typ. Efficiency	up to 85%	up to 30%
Quantum defect	~10%	30-70%
rel. absorption cross section	~10	1
rel. dopant concentration	~10	1
Highest Output Power	~ 500 W (SBS limited)*	~ 150 W (high NA fiber, Yb- ASE limited)**

* Jeong et al., IEEE JSTQE 13, 546 (2007) ** Jeong et al., OL 30, 2997(2005) Beam quality!

Design consideration for active dopants: Erbium or Erbium/Ytterbium

- More pump light (976nm) needed/more heat generated for 1.5µm than for 1µm
- Er: high pump brightness due to smaller pump cladding for reasonable total absorption (low doping concentration/absorption cross section)
- Er:Yb: High absorption cross section for Yb (976 nm), energy transfer to Er, but only high fiber core NAs feasible (=small core diameter for TEM₀₀)
- Er:Yb: Large gain values at 1µm for Yb-pump rate exceeding Er-Yb-transfer rate

LASERS AT 1.5 µm WAVELENGTH

Long term design goal: >100 W @ 1.5 µm

Both Er as well as Er/Yb codoped fibers are being examined

Er/Yb codoping:

How to handle parasitic gain and emission at 1 μm?

Tested fiber designs:

- Standard" step-index large mode area (LMA) fibers*
- Novel multifilament-core (MFC) fibers**
- Specially designed photonic crystal fibers (PCF)

* V. Kuhn et al. IEEE PTL, 23(7), 432–434 (2011) **V. Kuhn et al. J. Lightwave Tech., 28(22), 3212-3219 (2010)

LASERS AT 1.5 µm WAVELENGTH

Long term design goal: >100 W @ 1.5 µm

Both Er as well as Er/Yb codoped fibers are being examined

Er/Yb codoping:

How to handle parasitic gain and emission at 1 μm?

Tested fiber designs:

- Standard" step-index large mode area (LMA) fibers*
- Novel multifilament-core (MFC) fibers**
- Specially designed photonic crystal fibers (PCF)

* V. Kuhn et al. IEEE PTL, 23(7), 432–434 (2011) **V. Kuhn et al. J. Lightwave Tech., 28(22), 3212-3219 (2010)

Er/Yb – MANAGE 1µm EMISSION – SETUP

Inject 2nd seed signal at 1064 nm simultaneously to 1.5 µm signal

Auxiliary seed signal extracts excess energy from the Yb-ions

- Gain at 1.0 µm is clamped to large signal value
- Reliable suppression of parasitic lasing and/or giant pulse formation at 1.0 μm
- Potential efficiency depletion at 1.5 µm by competing signal?

V. Kuhn et al., OE, 17(20), 18304 (2009) and OL, 35(24), 4105-4107 (2010)

Er/Yb – MANAGE 1µm EMISSION – RESULTS

- Er slope efficiency not degraded by co-seeding with 1µm
- Slight rollover at > 6 W power at 1556 nm
- 3 W of Yb output at 1 µm can be used as additional pump source (reabsorption) for 1.5 µm signal by further active fiber length optimization

V. Kuhn et al., OE, 17(20), 18304 (2009) and OL, 35(24), 4105-4107 (2010)

Er-DOPED PHOTONIC CRYSTAL FIBER AMPLIFIER

- Seed: 2 W single-frequency DFB fiber laser @ 1556 nm
- Counter-propagating pump
- Free space coupling for pump and seed light

- Active fiber: Custom made Er-doped PCF
 - Core size: 40 µm, NA: < 0.04</p>
 - Mode field diameter: 31 μm
 - Pump cladding: 170 μm, NA: > 0.55
 - Absorption @ 976 nm: 0.6 dB/m
 - Fiber length: 19 m

V. Kuhn et al., OL 36(16), 3030-3032 (2011)

Er-DOPED PCF AMPLIFIER RESULTS

- Maximum output power: 70.8 W
- ►>80% TEM₀₀ content
- Limited by available pump power / amplifier efficiency
- Amplified spontaneous emission (ASE) suppression: 44 dB

V. Kuhn et al., OL 36(16), 3030-3032 (2011)

LASERS AT 1 µm WAVELENGTH

Long term design goal: 1kW @ 1 µm, TEM₀₀ Design approach: Single-frequency master laser + fiber amplifier

Seed

500 mW NPRO With ~1 kHz linewidth

Pre-amplifier

Nufern PM-YDF-10/125 P = 10 W (seed for main amplifier)

Pump modules

Fiber coupled, Emitting at 976 nm

Working also on high power solid-state amplifier systems (not covered here)

MAIN AMPLIFIER WITH 6.8 m PCF (NKTP DC-400-40-PZ-YB)

- Maximum absorbed pump power: 363 W
- Maximum signal output power: 294 W
- Polarization extinction ratio: ~ 27 dB
- No evidence of stimulated Brillouin scattering (SBS)

amplifier output power BS)

Higher order mode content

increases slightly with

M. Karow et al., CLEO/Europe 2011, CJ7.4

Power scaling becomes increasingly difficult at high output power

- 500 W in LG₃₃-mode may require even higher power fundamental mode operation due limited efficiency of mode convertors
- Several groups have encountered problems with the power scaling of singlefrequency systems beyond 500 W at 1064 nm (*,**,***)
- kW-class systems may require combining techniques to reduce the thermal and optical loads of the individual amplifiers

Gray et al., OE **15**, 17044 (2007)

- ** Jeong et al., IEEE J. Sel. Top. Quant. Elec. 13, 546 (2007)
- *** Robin et al., Proc. SPIE **7580**, 758011 (2010)

Lasers for second and third generation GW detectors

COHERENT BEAM COMBINING SETUP

- > 2x 10 W single-mode Yb-doped PM amplifier @ 1064 nm
- Free space combining to avoid fiber coupler limitations
- Use proven actuators
 - Electro optic modulator (EOM)
 - Piezo mounted mirror

CBC RESULTS – POWER AND BEAM QUALITY

H. Tünnermann et al. OE, 19(20), 19600-19606 (2011)

CBC RESULTS – POWER AND FREQUENCY NOISE

Combined power and frequency noise dominated by single-amplifier → Promising approach for further power scaling

H. Tünnermann et al. OE, 19(20), 19600-19606 (2011)

SUMMARY

Fiber amplifier system @ 1.5 µm

Suppression/stabilization scheme for 1 µm parasitic emission demonstrated

- Maximum output power of PCF amplifier system > 70 W
- TEM₀₀ content ~ 80%

Fiber amplifier system @ 1064 nm

- Maximum output power: 294 W
- TEM₀₀ content > 90%

Coherent beam combining testbed

- Combining efficiency of 2x 10 W amplifier ~ 97 %
- ▶ TEM₀₀ content ~ 97%
- No degradation of power and frequency noise compared to single amplifier

FUTURE RESEARCH TOWARDS GWD LASER SOURCES

Fiber amplifier system @ 1064 nm

- Power scaling design goal: 1 kW
- All-fiber implementation
- Conversion to LG₃₃-mode

Coherent beam combining

- Low-noise all-fiber CBC
- Testing of novel actuators and couplers
- Power scaling

Fiber amplifier system @ 1.5 µm

- Power scaling design goal: 100 200 W
- All-fiber implementation
- ► TEM₀₀ content >90% @ high thermal loads

Major technology to be further developed

Advanced active fibers

- Fiber components for rugged all-fiber implementation
- Components for higher order mode generation

ADVANCED FIBER DESIGNS

Especially for Yb-doped fibers at 1 µm

SBS mitigation for power scaling

- Acoustic anti-guiding
- Filamented cores
- increased SBS thresholds for further power scaling

Higher order mode suppression

- Leakage channel designs
- Chirally-coupled core designs
- ... efficient HOM suppression to avoid beam quality degradation at high power levels

* L. Dong et al., OE, 17, 8962 (2009)

*

FIBER LONG TERM RELIABILITY

Fibers have to be long term tested with respect to GWD requirements:

- Photodarkening
- Coating degradation
- Effects of humidity
- ... all other kinds of fiber aging

*J. Koponen et al., Appl. Opt., 47, 1247 (2008)

FIBER COUPLERS / PCF COUPLERS

Further research is required for

- Long-term qualification of fiber components
- Very high power couplers for several 100 W of pump and signal power (400 W pump coupler for backward pumping recently demonstrated by LZH*)
- (High power) PCF couplers for monolithic photonic crystal fiber setups

* T. Theeg et al. LASE/Photonics West 2012, Paper 8237-55 (accepted)

COMPONENTS FOR ALL-FIBER CBC

- High power fiber tap couplers for all-fiber beam combination*
- Ideally high power polarization maintaining components for better long term stability through decreased drifting effects
- Identification of fiber-based actuators for stabilization**
- Low loss electro-optic modulators for fast signal modulation directly inside of the Mach-Zehnder-interferometer

HIGHER ORDER MODES

Direct generation of higher order modes in specialty fibers

- Can modes without center-lobe be (stably) generated?
- How robust is the generation against fiber strain and heating?
- Achievable power levels?

*Ramachandran et al., OL, **34**, 2525-2527 (2009)

Mode conversion

- Diffractive optical elements
- Fiber-based mode convertors (long period Bragg gratings)
- What power levels can be reached/tolerated?
- What are the maximum conversion efficiencies?
- Environmental and long-term stability?

ACKNOWLEDGEMENTS

2nd generation laser development team:

Peter Weßels Lutz Winkelmann Oliver Puncken Raphael Kluzik Marcin Damjanic Maik Frede 3rd generation laser development team: Fiber optics team:

Peter Weßels Henrik Tünnermann Chandrajit Basu Malte Karow Vincent Kuhn Hakan Sayinc Thomas Theeg Katharina Hausmann

DFG Deutsche Forschungsgemeinschaft Centre for Quantum Engineering and Space-Time Research

over School for Laser, Optics and Space-Time Research

 Albert-Einstein-Institut Hannover

Benno Willke, Jan Hendrik Poeld, Christina Bogan, Patrick Kwee Harald Lück

• • VolkswagenStiftung

THANK YOU FOR YOUR ATTENTION!

Laser Zentrum Hannover, Germany 21.10.2011

