High-reflectance, High-durability Coatings for IACT mirrors

Andreas Förster (Max-Planck-Institut für Kernphysik, Heidelberg) for the CTA Consortium

- x10 in sensitivity in the core energy range (about 100 GeV to 10 TeV
- Effective area
- Gamma-hadron discrimination
- Angular resolution
- Energy resolution
- Field of view for gamma-rays
- Full sky coverage, through sites on both hemispheres

Low-energy section

a few 23 m telescopes ~ 4-5 deg FoV, ~ 400 m² mirror area

Core array

Many ~12 m telescopes medium FoV (6-8 deg) ~ 100m² mirror area

 $A_{eff} \sim 1 \text{ km}^2$

The CTA concept: A possible implementation

High-energy section ~ 3.5 -7 m diameter large FoV (8-10 deg) 10 - 40 m² mirror area A_{eff} ~ 5-10 km²

The Different Telescopes

LST: ~400 m² area hexagonal facets 1.5 m flat-to-flat

MST: ~100 m² area hexagonal facets 1.2 m flat-to-flat

SST DC: 20-40 m² area hexagonal facets 0.8-1.2 m flat-to-flat

SST SC: 10-20 m² area primary: facets? secondary: sectors? monolythic?

Requirements for the Coatimg

good reflectance (90% or more) between 300 and 600 nm
 → usually Al for metallic reflective coatings
 → usually front side coated mirrors

- rather low cost (10000 m² mirror area in total)
- low substrate temperatures (< 80°) during coating process, since most substrate technologies are glued sandwich structures
- resistance to environmental impact (mirrors outside)
 → protective coating on top of metallic layers

In Principle this is Easy ...

- currently used as protective coatings:
 - SiO₂ (HEGRA,H.E.S.S.)
 - Al₂O₃ (Veritas) [Anodization]
 - SiO₂ with carbon admixtures (MAGIC Al-Mirrors)

... but the Mirrors are Outside!

Veritas

Magic

H.E.S.S.

Outdoor Reflectance Loss

- H.E.S.S. mirrors (Al+SiO₂)

CT4

muon efficiency

0.6

0.4 0.2

020000

25000

30000

35000

40000

run

- loss of directed reflectance into the spot after 4 years

- loss of the optical efficiency of a telescope after 4 years

What was / is being investigated for CTA?

- backside coating:
- standard coatings:
- multilayer prot. coatings:

- purely dielectric coating:

Application of Al coating on backside of thin glass sheets

Al+SiO₂, Al+Al₂O₃

several alternating layers of low and high index on top of Al might not only enhance lifetime but in addition the reflectance

no Al, but many layers of different refractive index

Backside Coating

- idea: Al protected by glass, might be interesting for sandwich mirrors
- but: bad transmission at short wavelengths
 - \rightarrow either quartz glass needed (expensive, can not be floated)
 - \rightarrow or very thin sheets

- 0.7 mm to thin, would mean additional layer is needed
- for thicker sheets transmission is worse
- tests show faster ice formation on front surface

Approach not followed any longer!

Standard Coatings (Al+SiO₂)

- Al usually between 80 nm (full reflectance) and 200 nm (roughness)
- SiO_2 between 70 nm and 100 nm
- rather easy to apply
- many companies with suitable equipment available
- longterm outdoor experience in H.E.S.S.:

3-4% loss of reflectance per year

BUT: The durability can be very different from producer to producer.

Comparison of Al+SiO2 coatings from three producers reveiled significant differences (see next slides). More systematic studies needed!

Climate Chamber Test

- temperature and humidity cycling of samples going on at the moment
- $-10^{\circ} < T < 60^{\circ}$
- (cycle length: 5 h)
- -5% < humidity < 95%
 - (cycle length: 8 h)
- 8710 h in total
- 1742 cycles in temperature
- 1088 cycles in humidity

Comparison of SiO₂ Coatings

Small In-House Coating Chamber

Goals:

- get experience on influence of cleaning procedures
- experimental testbed for new coating ideas to be followed up together with industry later

- old coating chamber re-activated
- fitted with e-beam evaporator
- first samples coated
- in addition: modeling of coating using commercial film design software

Industrial 3-Layer Protective Coating

 stacks of alternating layers with different refractive indices can enhance the reflectance in a certain wavelength band (e.g. SiO₂ + HfO₂)

- already 3 layers (SiO₂/HfO₂/SiO₂) increase reflectance by \sim 5%

Industrial Dielectric Coating

- no metallic (Al) layer
- maybe possibility to avoid the rather bad adhesion of Al and the fast degradation of the Al?
- only alternating layers of materials with different refractive indices
- left figure: different samples with original process (T=300°C)
- right figure: process at T=150°C

Comparative Testing

Durability tests of $Al+SiO_2+HfO_2+SiO_2$ and the dielectric coating in comparison to $Al+SiO_2$:

- temperature/humidity cycling
- salt-fog atmosphere
- coating adhesion
- abrasion resistance
- sand blasting
- artificial bird faeces

Temperature and Humidity Cycling

- $-10^{\circ} < T < 60^{\circ}$ (cycle length: 5 h)
- 5% < humidity < 95% (cycle length: 8 h)
- 8710 h in total
- 1742 cycles in temperature, 1088 cycles in humidity

Salt Fog Test

- 5% salt concentration
- T $\sim 20^{\circ}C$
- 72h (24h + 48h)
- samples: Al+SiO₂
 - Al+SiO₂+HfO₂+SiO₂
 - dielectric

- both samples with SiO_2 show visible damage, the others not

Salt Fog Test

- 5% salt concentration, T \sim 20°C, 72h
- samples with Al+SiO₂ show visible damage at edges

Coating Adhesion

- based on: ISO 9211-4:2006 ; MIL-C-675C; MIL-C-48497A
- tape with peel adhesion 6.3 N/cm
- tape removal under 180° angle with 25 mm/s

Таре	Theoretical Peel Adhesion (N/cm)	Measured Peel Adhesion (N/cm)
Unibond – power duct tape	22	23.2 ± 0.2
Duck – All purpose duct tape	10	10.3 ± 0.2
Sellotape – original (doubled)	6.4	6.3 ± 0.1
Nice day – original parcel	5.2	5.1 ± 0.1

 \rightarrow all 3 coatings passed

Artificial Bird Faeces

- inspired by BS EN ISO 2812 -4/5:2007
- pancreatin + water 2:1
- 4 weeks at 40°C

 \rightarrow no damage for all 3 coatings

Abrasion Tests

- according to BS ISO 9211- 4:2006
- 1) Cheese cloth, Force 5N, 50 strokes: \rightarrow no damage to all three coatings
- 2) Cheesecloth, Force 10N, 50 strokes: \rightarrow scratches in Al + SiO₂, no scratches in others
- 3) Eraser, Force 10N, 20 strokes:
 - → scratches in all coatings SiO₂ more than 3-layer more than dielectric

Sand-Blasting

- inspired by BS 12373-10:1999
- SiC (220 μm), flow rate ~20 g/min, 5 min., 45 angle
- area of fully abraded ellipse: measure for resistance

SiO₂: 150mm²; 3-layer: 85mm²; dielectric: 35mm²

In-situ Testing

- Laboratory tests give a qualitative hint on the durability, but to quantitatively determine the lifetime real exposure is needed
- H.E.S.S. exchanges and re-coats its mirrors at the moment
- spring 2010 380 mirror with Al + SiO₂ on first telescope
- in autumn 2010 mirror with new coating on second telescope
 - 99 mirrors with dielectric coating
 - 278 mirrors with Al + SiO_2 + HfO_2 + SiO_2
- telescopes 3 and 4 with Al + SiO_2 + HfO_2 + SiO_2 in 2011

Summary

What do we need?

- reflectance at least 90% between 300 and 600 nm (more is better!)
- applicable on large surfaces (up to 2 m²)
- applicable at low substrate temperatures T
- low cost

Where are we currently?

- Al+SiO₂ : available, low T, reasonable cost, but limited lifetime
- Al+SiO₂+HfO₂+SiO₂: available, slightly increased reflectance, low T, reasonable cost, lifetime? (lab tests slightly better)
 dielectric: sign. better reflectance, T still too high, large surfaces? lifetime? (lab tests sign. better), costs?

Good suggestions are of course welcome!