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waves with artificial
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* Gravitational-wave detectors and data,
* "Traditional” data analysis techniques,
* New approaches: neural networks,

* Results and outlook.
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LIGO-Virgo global detector network

Very precise rulers: measuring
distances between free-falling bodies
with laser light.
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Sensitivity: amplitude spectral density of the noise

Advanced LIGO strain data near GW150914

— H1 strain
— L1 strain

Freq (Hz)

* Plot dominated by instrumental noise, lines: mirror suspension
resonances at 500 Hz and harmonics, calibration lines and power lines
(60 Hz and harmonics) etc.,

* ASD = X(f) = # fOT x(t) exp(—2inft)dt (units: [1/VHz])
* One detector produces a stream of data ("main” and auxiliary channels)
with 50 MB/s



How the data looks like

1e—18 Advanced LIGO strain data near GW150914

time (s) since 1126259462.422

The data are dominated by the low
frequency noise (L1 offsetby —2 x 1078
due to very low frequency oscillations).
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Some usual data treatment:

* Whitening (dividing the data by the
noise ASD in the Fourier domain),

* filtering the frequencies outside the
desired band with bandpass filter,

* suppressing the instrumental lines.
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"Glitches zo0”: transient instrumental noise

Excess power (glitches) represented as spectrograms -
time-frequency maps - suitable for human-eye inspection:
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Extremely loud
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* Main problem for the sensitivity of transient searches,

* Citizen science: Gravity Spy, Reinforce (preparation of training data
for machine learning).



Taxonomy of signal and search types

Short duration Long duration
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courtesy of Peter Shawhan




Taxonomy of signal and search types

Short duration Long duration
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Waveform
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Time-freq track demodulation

Waveform

unknown Cross-correlation

courtesy of Peter Shawhan




Matched filter in pictures

Sensitivity

;§f)e2”’ffdf, with S,(f) (noise PSD).

Matched filter SNR: p = (x|h)/~/(h|h), Optimal SNR: popt = /(h]h)




LIGO-Virgo O1 3 events
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(GW150914: p ~ 24, GW151226: p ~ 13, GW151012: p ~ 10)



Binary system waveform: 15+ parameters

» Intrinsic: i
» masses 6?1 \
» spins
» tidal deformability R
N Sy
N L4

» Extrinsic:

» Inclination, distance, polarisation

» Sky location

Gredit: LIGONIrgo » Time, reference phase
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h(r) oc ML/
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Astrophysically-interesting parameters

Intrinsic:
* Chirp mass M = (u®M?)"® = (mymp)®/ /(my + my)"/5,

* Mass ratio g = mo/m; (at 1PN), alternatively v = mymy/(my + mz)?,
* Spin-orbit and spin-spin coupling (at 2PN and 3PN, resp.) —

Xert = (Mix1z + Max2z)/ (M1 + mz)

where xj; are spin components along system’s total angular
momentum,

* Tidal deformability A (at 5PN) —

4
A= %%+(1 52, R=2MA

Extrinsic:

* Direct "luminosity” ("loudness”) distance: binary systems are "standard
sirens”.
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Compact objects population in GWTC-3 (O1, 02, O3)

°
*ve
ALY
...........
.........
.............

O4 predictions: ~ 1.5% more events (~ 300, one per a few
days?)
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Einstein Telescope, Cosmic Explorer (2030+)

100
Redshift

— Hundreds events/day, overlapping signals, new signal types.
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Areas for automation and machine learning
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Signal detection and classification x Parameter estimation = Data
cleaning (e.g., denoising) ~ Uncovering relations and patterns in data
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Convolutional Neural network for classification

Next layer neuron y; is a function
of previous layer output x;, with
weights and biases (adjusted
during training):

Yi=_ X wi+b
i

neuron activates after crossing
threshold (— activation function).

* Effectively kernel(s)
convolution(s) with data on
various scales,

* Classification of 2D
representation (images) or
1D (time series,
distributions),

* CNN used in many variants:
not a complicated
architecture, easy to train.
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"Deep Filtering”: NN detector/classifier

® CNN
ched filtering
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* CNN on time series to classify

Typical BBH signal (whitened data, k : X
data with and without signal

my = 12.06 My, ms = 7.54 Mo,

optimal SNR pot — 8. * Comparison with matched

template method (template
banks of ~1000 templates).

Several implementations: George & Huerta, arXiv:1701.00008,
Gabbard et al., arXiv:1712.06041
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AutoEncoder architecture

Output=
reconstructed
input

Bottlenec

Encoder Decoder
L @ —
Js [:]

* Identity function: compresses the representation of input, to later
decompress it, in an unsupervised way (i.e., representation learning),

* AEs are composed of two networks: an encoder g5, and a decoder fy,
* Latent space representation z (the ’bottleneck’),

* Training by minimizing a loss function, e.g.
N
Lag(6,9) = > (i — fa(95(x)))?
=
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(Conditional) Variational AutoEncoder

; } neural network

V=[2005,.., 12 -04] } latent representation of
the input

Iatent space

* VAE produces a probability distribution
in the latent variables space (for e.g.
error in parameter estimation).

Decoder } neural network

* Latent space: convenient way of waveform)
data reduction.

* Conditional training: data + parameters
(e.g. physical values generating the GW
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Conditional VAE (CVAE) for GW parameter estimation

Simulates the Bayesian
approach to inference
(usually done with Markov
Chain Monte Carlo
parameter search) — very
efficient in obtaining the
posterior distributions of
parameters

+ comparison of the
trained CVAE with one of
the MCMC samplers
(Bilby) used by the
LIGO-Virgo Collaboration.

H. Gabbard et al., arXiv:1909.06296
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Detecting GWs as data anomalies

AE for noise reconstruction; anomaly = reconstructed output - input
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Anomaly localisation in time
based on the difference in
peak positions between the
reconstructed and injected
signals. F. Morawski, MB, E.
Couco, L. Petre (Mach. Learn.:
Sci. Technol. 2 2021 045014)
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Time [s]

Real data: GW150914



Denoising gravitational waveforms
Denosing Convolutional AutoEncoder: noisy time series at the input,
requesting clean time series at the output.

Corrupted
Original ple
v

. structed
input

input input

Decoder

fo

DAE loss function - the mean square error between the corrupted version of
the ground truth X and the reconstructed output X" = f5(g,(X)):

N

Loag(0,6) = Y (Xi — fa(gs(x)))?

i=1

P. Bacon, A. Trovato, MB, Mach. Learn.: Sci. Technol. 4 035024 (2023)
arXiv:2205.13513
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Training DAE on 1 month of O1 Livingston data

Noisy
Template

PR TR R RN Y FTRTIN

Denoised

Aleatoric uncert.

e W—

Pure noise
Denoised from pure noise

03 0.4 05 06
Time (s)
My =22.74 Mg, M, = 17.34 distance r = 479.27 Mpc, corresponding to the optimal matched filter
signal-to-noise ratio popt = 9.3 The denoised popt,a is 10.3.

(1 s segments, 2048 Hz sampling rate, M; € (10,30) Mg, zero spins)




Properties of the DAE output
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Figure 4. Denoised SNR (calculated from the DAE output analogously to equation (7), but with denoised output waveform h?
instead of the originally-injected signal h, vertical axis) as a function of the injected SNR (horizontal axis) for a testing dataset of
1000 data instances with added astrophysical GW waveforms. Points are colored by their corresponding overlap values. Orange
dashed line denotes the denoised SNR equal to the injected SNR. Example waveform presented in figure 2 is denoted by a red
circle. Side histograms (in logarithmic scale) show the distribution of the injected SNR (upper plot), and SNRs denoised from
samples containing added GW waveforms (blue histogram), and—for comparison—not containing GW signals (i.e. pure noise,
red histogram), respectively.




DAE output on glitches
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Figure 5. Evaluation of the DAE on instrumental glitches. The logarithmic vertical scale plot shows histograms of denoised output
SNR for a selection of 38 Low Frequency Burst glitches, 5 Koi Fish type glitches, 80 Blips and 7 Whistle glitches. The blue line
marks the evaluation of 792 assorted various types of glitches. All the glitches data are obtained from the Gravity Spy database
[55]. The glitches have their estimated intrinsic SNR > 10.




DAE output on real data from O2: GW170104@H1

Noisy = Template = Denoised Aleatoric uncert.
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Figure B1. Denoising applied to the O2 data GW170104 event for the L1 detector (3 top panels) and the H1 detector (3 bottom
panels). The component masses are 30.8+72 M, and 20.07}-? M), and the single-detector optimal SNRs are 9.9} for L1 and
9.5712 for HI.




DAE output on real data from O2: GW170608@H1,
fiow = 50 Hz

Noisy =  Template = Denoised Aleatoric uncert.
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Figure B4. Denoising applied to the O2 data GW170608 event for the L1 detector (3 top panels) and the H1 detector (3 bottom

panels). While for the other plots the high-pass filter was set to 30 Hz (as in the training set), in this case we apply a high pass at
50 Hz to the original data before the denoising.




O4a (May 24, 2023 - January 16, 2024)
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Single detector GW signal classifier: data

Data: 1 month of L1 data without know GW detections (between Nov
25, 2015 and Dec 25, 2015) + known glitches from the Gravity Spy
database; 1s duration time-domain input, 2048 Hz sampling date

Noise fro

Real detector noise from real data w”w m N W
when nor glitches nor signals nor * WWWW”NWW WM W “"
injections are present

Real detector noise (selected as
noise class) + BBH injections

Data containing glitches
(glitches inferred from 2+ detector [ o s W
periods with gravity spy and cWB) [ il ataas B i * 4 A

A. Trovato, E. Chassande-Mottin, MB, R. Flamary, N. Courty, CQG in review,
arXiv:2307.09268
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GW classifier: ML architectures

Standard scheme: input data — NN — classification probability Ps
In addition to "vanilla” 1D CNN:
Temporal CNN (TCN) Inception Time (IT)

InceptionTime

— glitch

f I~
Ff el

0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00
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(effectively, 2-class problem: signal vs glitch+noise)
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Classification efficiency vs SNR for fixed False Alarm
Rate

Threshold FAR=107° 51
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¢ TCN and IT perform similarly and outperform CNN
« Efficiency better than 0.5 for SNR>9 at this level of FAR
* (1 alarm per 105 s = 0.864 alarms per day)



Application to remaining 3 months of O1

* Analysis of remaining 3 months of O1 L1 data, excluding
the 1 month period already used for training and testing,

* known GW detections (3 in O1) have been examined
separately.

Classifier IT

GW151226 has masses not in the
GW150914 range used in our training set

GW151012
GW151226

Selected triggers

3 4 5
A= —logio(1 - Ps)

(in pink: blip glitches classified by Gravity Spy)



Ps = 1 glitch at GPS=1135945474.373 (Jan 04, 2016)

In general the population of O1 blips
compatible with background;

Jan 4, 2016 outlier from this
population

1000

44 0352 036 038 0376 0384 039
Time [seconds] from 2016-01-04 12:24:17 UTC (1135845474.0)



Previous single-detector O1 analyses

Turns out, this O1 outlier was analyzed before:

THE ASTROPHYSICAL JOURNAL, 897:169 (9pp), 2020 July 10 https://doi.org/10.3847/15

© 2020. The Amer
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*Instituto Galego de Fisica de Altas Enerxias, Uni ade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
University of Portsmouth, Portsmouth, PO1 3]
avli ln tute of Theoreti . US/
Received 2020 April 22; revised 2020 May 20; accepted 2020 May 25; published 2020 July 15

LIGO-Livingston
GPS Time 3 Known

0.90

For the top candidates, we perform an additional di
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Astrophysical origin of GPS=1135945474.373 (Jan 04,
2016) event?

We have checked, if it's compatible with GW waveform ("chirp”),
using:
« standard-choice parameter estimation & MCMC sampler library
bilby,
* 1D CNN DAE (Bacon et al., 2023).
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GPS=1135945474.373 (Jan 04, 2016) astrophysical

origin? bilby parameter estimation

Residuals:

GPS = 1135945474.373+0.070
SNR = 11.34%18

M = 30.18+1%M,,

my = 507504 M

my = 2447202 M

Xeft = 0064_(81?

d, = 5641812 Mpc

Consistent with BBH population

observed so far y m



Physically Inspired Neural Networks (PINNs)

Model discovery with PINNs: incorporating "
physical principles into ML (solution to obey 1&
certain equations) to infer physical parameters

from signal events discovered in unmodeled GW

searches, i.e. (collaboration with Matteo Scialpi)

5/3
df _ 96 g5 (GM) P s

dt 5 c3

Physics-uninformed part — NN (z, t,w, b) Physics-informed part — PDE(v)

Finished
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PINNs for waveform parameter estimation: Newtonian
case

Master thesis version:

® PData: a clean waveform,
made by {(tx, h)}V_; data
points. 5 o 03
ime to c

et
We can impose (1), where F
is a known functional and 6
are the parameters to be

inferred.

We solve (1) thanks to a
Recurrent Neural Network
(RNN) with a Runge-Kutta
integrator at 4" order
implemented inside.

... BungeKuttacell




PINNs: 1.5 post-Newtonian case

mymy

2
Mtot

GMg, (Mm)
£ = wf,

= Mg
df 96 GMy \5/3 1 M, 5/3
7:7793/3( u) (tot) af1/3
dt 5 c3
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PINNs: 1.5 post-Newtonian case

* "Ground truth” values my = my, = 30 M
(‘I] = Im mg/Mt%t = 025),
* initial values My = 80 M, n = 0.1.




Summary & outlook

* There are ML implementations that may even be useful
practically,

* Now working on bringing physics laws into the game
— need to introduce complications: non-stationary noise etc.,
* Other interesting areas of GW-related astrophysics: NS
interiors, equation of state, ...
Gﬁ, You

Write a limerick explaining how difficult it is to give a seminar on current results related to
searching for gravitational waves with artificial intelligence

ChatGPT

In the seminar hall, | would try,

To explain waves that ripple the sky.
But with Al in the mix,

And concepts complex to fix,

It's a challenge that makes me sigh.
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