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? Gravitational-wave detectors and data,
? ”Traditional” data analysis techniques,
? New approaches: neural networks,
? Results and outlook.
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LIGO-Virgo global detector network
Very precise rulers: measuring
distances between free-falling bodies
with laser light.
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Interferometer = GW antenna
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Sensitivity: amplitude spectral density of the noise

? Plot dominated by instrumental noise, lines: mirror suspension
resonances at 500 Hz and harmonics, calibration lines and power lines
(60 Hz and harmonics) etc.,

? ASD = x̃(f ) = 1√
T

∫ T
0 x(t) exp(−2iπft)dt (units: [1/

√
Hz])

? One detector produces a stream of data (”main” and auxiliary channels)
with 50 MB/s
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How the data looks like

The data are dominated by the low
frequency noise (L1 offset by −2× 10−18

due to very low frequency oscillations).

Some usual data treatment:

? Whitening (dividing the data by the
noise ASD in the Fourier domain),

? filtering the frequencies outside the
desired band with bandpass filter,

? suppressing the instrumental lines.
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”Glitches zoo”: transient instrumental noise
Excess power (glitches) represented as spectrograms -
time-frequency maps - suitable for human-eye inspection:

? Main problem for the sensitivity of transient searches,

? Citizen science: Gravity Spy, Reinforce (preparation of training data
for machine learning).



8/40

Taxonomy of signal and search typesThe Gravitational Wave  
Signal Tableau#

Waveform 
known 

Waveform 
unknown 

Short duration Long duration 

Low-mass 
inspiral 

Asymmetric 
spinning NS 

High-mass 
inspiral 

Binary merger 

NS / BH 
ringdown  

Cosmic string 
cusp / kink 

Stellar core collapse 

Cosmological 
stochastic 

background 

Astrophysical 
stochastic 

background 

Newborn NS 
Rotation-driven 

instability 

??? ??? ??? 

LISA binary 

courtesy of Peter Shawhan#
26#
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Taxonomy of signal and search typesSummary of Data Analysis 
Methods#

Waveform 
known 

Waveform 
unknown 

Short duration Long duration 

Low-mass 
inspiral 

Asymmetric 
spinning NS 

High-mass 
inspiral 

Binary merger 

NS / BH 
ringdown  

Cosmic string 
cusp / kink 

Stellar collapse 

Cosmological 
stochastic 

background 

Astrophysical 
stochastic 

background 

Rotation-driven 
instability 

??? ??? ??? 

Matched filtering 

Excess 
power 

Time-freq track 

Semi-coherent 
demodulation 

Cross-correlation 

Demodulation 

Approx. 
filtering 

LISA binary 

courtesy of Peter Shawhan#
27#
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Matched filter in pictures

C(t) = (x |h) = 4
∫ ∞

0

x̃(f )h̃∗(f )
Sn(f )

e2πiftdf , with Sn(f ) (noise PSD).

Matched filter SNR: ρ = (x |h)/
√
(h|h), Optimal SNR: ρopt =

√
(h|h)
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LIGO-Virgo O1 3 events

Signal-to-noise : ρ2
opt =

∫ ∞
0

(
2|h̃(f )|

√
f√

Sn(f )

)2

d ln(f )

(GW150914: ρ ' 24, GW151226: ρ ' 13, GW151012: ρ ' 10)
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Binary system waveform: 15+ parameters
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Astrophysically-interesting parameters
Intrinsic:

? Chirp massM =
(
µ3M2)1/5

= (m1m2)3/5/(m1 + m2)1/5,

? Mass ratio q = m2/m1 (at 1PN), alternatively ν = m1m2/(m1 + m2)2,

? Spin-orbit and spin-spin coupling (at 2PN and 3PN, resp.) →

χeff = (m1χ1z + m2χ2z)/(m1 + m2)

where χiz are spin components along system’s total angular
momentum,

? Tidal deformability Λ (at 5PN)→

Λ̃ =
16
13

(m1 + 12m2)m4
1Λ1

(m1 + m2)5 + (1↔ 2), R = 2MΛ̃1/5

Extrinsic:

? Direct ”luminosity” (”loudness”) distance: binary systems are ”standard
sirens”.
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Compact objects population in GWTC-3 (O1, O2, O3)

O4 predictions: ' 1.53 more events (' 300, one per a few
days?)
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Einstein Telescope, Cosmic Explorer (2030+)

→ Hundreds events/day, overlapping signals, new signal types.
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Areas for automation and machine learning

Signal detection and classification ? Parameter estimation ? Data
cleaning (e.g., denoising) ? Uncovering relations and patterns in data



16/40

Convolutional Neural network for classification

Convolutional Neural Network (CNN)

Next layer neuron yj is a function
of previous layer output xi , with
weights and biases (adjusted
during training):

yj =
∑

i

xi · wij + bj ,

neuron activates after crossing
threshold (→ activation function).

? Effectively kernel(s)
convolution(s) with data on
various scales,

? Classification of 2D
representation (images) or
1D (time series,
distributions),

? CNN used in many variants:
not a complicated
architecture, easy to train.
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”Deep Filtering”: NN detector/classifier

Typical BBH signal (whitened data,
m1 = 12.06 M�, m3 = 7.54 M�,
optimal SNR ρopt = 8.

? CNN on time series to classify
data with and without signal

? Comparison with matched
template method (template
banks of ∼1000 templates).

Several implementations: George & Huerta, arXiv:1701.00008,
Gabbard et al., arXiv:1712.06041



18/40

AutoEncoder architecture

? Identity function: compresses the representation of input, to later
decompress it, in an unsupervised way (i.e., representation learning),

? AEs are composed of two networks: an encoder gφ, and a decoder fθ,

? Latent space representation z (the ’bottleneck’),

? Training by minimizing a loss function, e.g.

LAE (θ, φ) =
N∑

i=1

(xi − fθ(gφ(xi )))2



19/40

(Conditional) Variational AutoEncoder

? Latent space: convenient way of
data reduction.

? VAE produces a probability distribution
in the latent variables space (for e.g.
error in parameter estimation).

? Conditional training: data + parameters
(e.g. physical values generating the GW
waveform)



20/40

Conditional VAE (CVAE) for GW parameter estimation

H. Gabbard et al., arXiv:1909.06296

Simulates the Bayesian
approach to inference
(usually done with Markov
Chain Monte Carlo
parameter search)→ very
efficient in obtaining the
posterior distributions of
parameters

← comparison of the
trained CVAE with one of
the MCMC samplers
(Bilby) used by the
LIGO-Virgo Collaboration.
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Detecting GWs as data anomalies
AE for noise reconstruction; anomaly = reconstructed output - input

Real data: GW170814

Real data: GW150914

Anomaly localisation in time
based on the difference in
peak positions between the
reconstructed and injected
signals. F. Morawski, MB, E.
Couco, L. Petre (Mach. Learn.:
Sci. Technol. 2 2021 045014)
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Denoising gravitational waveforms
Denosing Convolutional AutoEncoder: noisy time series at the input,
requesting clean time series at the output.

DAE loss function - the mean square error between the corrupted version of
the ground truth X and the reconstructed output x′ = fθ(gφ(x)):

LDAE (θ, φ) =
N∑

i=1

(Xi − fθ(gφ(xi )))2

P. Bacon, A. Trovato, MB, Mach. Learn.: Sci. Technol. 4 035024 (2023)
arXiv:2205.13513
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Training DAE on 1 month of O1 Livingston data

(1 s segments, 2048 Hz sampling rate, Mi ∈ (10, 30)M�, zero spins)
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Properties of the DAE output
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DAE output on glitches
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DAE output on real data from O2: GW170104@H1
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DAE output on real data from O2: GW170608@H1,
flow = 50 Hz
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O4a (May 24, 2023 - January 16, 2024)
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Single detector GW signal classifier: data

Data: 1 month of L1 data without know GW detections (between Nov
25, 2015 and Dec 25, 2015) + known glitches from the Gravity Spy
database; 1s duration time-domain input, 2048 Hz sampling date

A. Trovato, É. Chassande-Mottin, MB, R. Flamary, N. Courty, CQG in review,
arXiv:2307.09268
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GW classifier: ML architectures
Standard scheme: input data→ NN→ classification probability Ps
In addition to ”vanilla” 1D CNN:

Temporal CNN (TCN) Inception Time (IT)

(effectively, 2-class problem: signal vs glitch+noise)
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Classification efficiency vs SNR for fixed False Alarm
Rate
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Application to remaining 3 months of O1

? Analysis of remaining 3 months of O1 L1 data, excluding
the 1 month period already used for training and testing,

? known GW detections (3 in O1) have been examined
separately.

(in pink: blip glitches classified by Gravity Spy)
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Ps = 1 glitch at GPS=1135945474.373 (Jan 04, 2016)
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Previous single-detector O1 analyses

Turns out, this O1 outlier was analyzed before:

event spectrogram residual
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Astrophysical origin of GPS=1135945474.373 (Jan 04,
2016) event?

We have checked, if it’s compatible with GW waveform (”chirp”),
using:

? standard-choice parameter estimation & MCMC sampler library
bilby,

? 1D CNN DAE (Bacon et al., 2023).
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GPS=1135945474.373 (Jan 04, 2016) astrophysical
origin? bilby parameter estimation
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Physically Inspired Neural Networks (PINNs)
Model discovery with PINNs: incorporating
physical principles into ML (solution to obey
certain equations) to infer physical parameters
from signal events discovered in unmodeled GW
searches, i.e. (collaboration with Matteo Scialpi)

df
dt

=
96
5
π8/3

(
GM
c3

)5/3

f 11/3
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PINNs for waveform parameter estimation: Newtonian
case



38/40

PINNs: 1.5 post-Newtonian case
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PINNs: 1.5 post-Newtonian case

? ”Ground truth” values m1 = m2 = 30 M�
(η = m1m2/M2

tot = 0.25),
? initial values Mtot = 80 M�, η = 0.1.
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Summary & outlook

? There are ML implementations that may even be useful
practically,

? Now working on bringing physics laws into the game
→ need to introduce complications: non-stationary noise etc.,
? Other interesting areas of GW-related astrophysics: NS

interiors, equation of state, . . .


