

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

Benchmark interactive analyses ongoing at INFN Napoli Adelina D'Onofrio, Elvira Rossi, Francesco Cirotto, Francesco Conventi, Orso Iorio, Antimo Cagnotta, Antonio D'Avanzo, Gianluca Sabella, Bernardino Spisso, Francesco Gravili

ICSC Italian Research Center on High-Performance Computing. Big Data and Quantum Computing

Outline

- Brief introduction to the infrastructure used
 Use cases tested:
 - FCCee: simple test on Zee samples
 - CMS: top quark+MET analysis
 - Collaboration with INFN Perugia
 - ATLAS: stop to 4-body SUSY analysis
 - Collaboration with INFN Lecce

INFN Napoli infrastructure

- The local deployment is based on the *Open-Stack laaS* paradigm
- Starting from the already existing *I.Bi.S.CO* installation, several updates were performed
- The cluster is made up of 2 identical virtual machines, each equipped with 1CPU quadCore and 8GB RAM, currently expanded up to 12 cores and 64GB
- Rocky Linux 8.6 is the operating system
- 2 nodes are equipped with **Docker** (20.10) for containerisation and **Kubernetes** (1.26.3) for the orchestration
 - One node plays as controlplane, etcf & worker; the other node acts as a plain worker The cluster is equipped with JupyterHub & JupyterLAB where the user can play with Python,
- **ROOT & Dask** libraries

13/10 WP2.5 presentation *link*

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Ministero dell'Università e della Ricerca

FCCee use-case

Workflow

EDM4hep input data format

flat input ntuples

13/10 WP2.5 presentation *link*

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

New approach to data analysis

Jupyter Connectional
 Donnection
 0 "Usging": " "Usginge": " "hanginge": " "hand": "pyth × 0 0 × × 1 Julia tec-automatering* tec-shoulder's tru Sepailarge SepailWide Petailarge 6.1 8.3 0. 4.8 3.0 1. interactivelch/idrew/FloatSlider(walu e-18.0, description="signs", was-50.01, stiller(schert), descriptions.

Feasibility study & Preliminary performance evaluation

Simple test

- FCCee simulation: /eos/experiment/fcc/ee/tmp/ee_Z_ee_EDM4Hep.root
 - 5k events, scaled to 1M events replicating the available dataset
 - Mimic systematic variations, gaussian smearing the electrons energy to compute Mee resolution Ş

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Preliminary results

- Moving to a Dask+HTCondor model, we gain up to another factor 2 Increasing the number of workers, the execution time further improves

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Exploiting the distributed approach, the execution time halves wrt the local approach Advantage: use this use case as simple test for who wants to benefit from the WP5 infrastructure

CMS use-case

- Early Run 3 analysis (2022-2023 data taking)
- Beyond Standard Model searches
- Vector-Like Quark T in $T \rightarrow tZ$ channel
- Final state: hadronic Top quark and Z (vv)
- Oevelopment of the already published full Run 2 analysis
 - JHEP05(2022)093, with the idea to extend the results interpretation
 - to more models predicting the same final state
 - Dark Matter production in association with a Top quark
 - Fechnicolor models <u>The Radiative Flavor Template at the LHC</u>

24/05 WP2.5 presentation *link*

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

dell'Università

State of the art Workflow in 2 steps:

- Obtained by Data preprocessing, evaluation through ML model. Using CMS NanoAOD tools (pyROOT-based) and CRAB.
- Skimming and selection using Interactive Analysis
 - Input: ntuple from the 1st step
 - Selection + variables calculation through RDataFrame
 - Distribution of the process using Dask
 - Output: TH1D easy to manage, also possible to store snapshot
 - using remote storages Working on Perugia's analysis facility
- Analysis still far from the end, more processes will have to be added that will slow it down Currently the results are very promising Time reduced from ~1d to ~3h and there is still room for development

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

ATLAS use-case

- Three different analysis in the Run 2 paper, already published, p according to mass splitting between stop (\tilde{t}_1) and neutralino $(\tilde{\chi}^{0_1})$, allowing different decay modes:
 - \neq 2 body $\rightarrow \Delta m > m_t$
 - \neq 3 body \rightarrow m_W + m_b < Δ m < m_t
 - \neq 4 body, the one picked up $\rightarrow \Delta m < m_W + m_b$
- Common final state signature: 2 OS leptons (electrons/muons), jets and missing transverse energy
- Out & Count based approach
- Final, i.e. starting from flat ntuples, event selection done with ROOT RDataFrame and 3 helper classes, 100% python based List of cuts, in dictionaries
 - I/O, mainly to define and store output structures/yields
- Main workflow, to extract nominal yields and systematic variations, starting from single *TTree(s)* and/or *TChain(s)*

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

SUperSYmmetry: Beyond Standard Model theory

Compressed mass spectra: $\Delta m < m_W + m_b$

Preliminary results: execution time halved

Conclusions & Next Steps

- Three use cases tested, in different scenarios: different experiments and analyses
- Interactive analyses feasibility studies on the INFN Naples infrastructure succeeded
- Towards an INFN national cloud infrastructure with a datalake model to facilitate future analyses (hopefully starting from LHC Run 3)
- Very productive collaboration with other INFN divisions
- Short term goals:
- Deploy of the code & relative instructions to allow other users to test it when the AF will be released Benchmark studies with local performance evaluation
- Porting finalisation of all the previously mentioned analysis and evaluate the performance obtained using dask on the local cluster, dask on kubernetes or distributed, wrt the original implementation
- Medium-long term goals:
- Move the analyses to the national AF, using ICSC resources
- Evaluate scalability and simultaneous performance with increasing number of workers

Missione 4 • Istruzione e Ricerca

Thank you!

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

Back-up

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Motivations

- Most of the LHC searches/measurements rely on locally developed scripts that process the datasets, with parallel tasks and on an asynchronous batch system
- Challenges of the future e+e- colliders are pushing to re-think the HEP computing models
 - Impact on several aspects, from software to the computing infrastructure Ş
- From the software perspective, interactive/quasi interactive analysis is a promising paradigm
 - User-friendly environment
 - The implementation is simplified by adopting open-source industry standards: Dask, Jupyter ĕ Notebooks and HTCondor
 - Validating new frameworks (e.g. ROOT RDataFrame with multi-threading) Preliminary feasibility studies have been pursued on FCCee pseudo-data, exploiting INFN
- **Napoli** analysis Facilities (**AFs**)
 - Distributed infrastructure which leverages *Dask*

Efficient & user friendly infrastructure

- Python & ROOT (v 6.28) kernels available
- Terminal
- Notebook implementation
 - Completely exportable and replicable

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

\mathbf{C}	File Edit View F	Run Kernel	Tabs Settings	Help						
	test_Zee3.ipynb	×	🛛 Launcher	×	🍫 sf_97.pd	f	×	E functions.h	×	+
0	RDataFrame_test									
IP	Notebook									
≣		ę	2							
*		Python 3 (ipykernel)	root							
		>_ Conse	ole							
		Python 3 (ipykernel)	root							
		\$_ Other								
		\$_ Terminal	Text File	e Markd	own File	Python File	Conte	Show extual Help		

Missione 4 • Istruzione e Ricerca

Local vs distributed approach

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

How to compare the performance?

Missione 4 • Istruzione e Ricerca

Local vs distributed approach

- we iterate over a significative number of energy variations (> 10)
- Changing the number of workers from 2 to 4, the execution time is stable

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

FCCee use-case

cluster = LocalCluster(n_workers=2, threads_per_worker=1, processes=True)

Exploiting the distributed approach, the execution time halves wrt the local approach if

Towards a Dask + HTCondor model

- Based on INFN Perugia *analysis facility*
- Introducing HTCondor queues, the performance improves by a factor 2
- Increasing the number of workers is beneficial when running on many iterations

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

FCCee use-case

n_workers = 2

# iterations	Dask+HTCondor	Dask
1	22.96 s	42.02 s
50	258.35 s	320 s
100	497.71 s	618 s

Dask + HTCondor

# iterations	n_workers = 2	n_workers = 10
1	22.96 s	20.36 s
50	258.35 s	90.89 s
100	497.71 s	159.26 s

