IRIS detector studies in vacuum: status and plans

Giuseppe BRUNO, Pasquale CARIOLA, Domenico COLELLA, Cosimo PASTORE, <u>Triloki TRILOKI</u>, Antonio VALENTINI, and Vincenzo VALENTINO

INFN Bari, Bari-Italy

Contents

- Motivation
- Preliminary results
 - Present experimental setup
 - Outgassing study
 - Residual gas atmosphere study
 - Total mass loss (TML) study
 - Wire bonding strength study
- Available experimental facilities
- Future plans

IRIS detector @ ALICE3

There are three ways to perform outgassing measurement:

- Comparing the vacuum level with and without sample
- Comparing residual atmosphere of vacuum chamber with and without sample using RGA
- Comparing the mass of sample before and after pumping

There are three ways to perform outgassing measurement:

- <u>Comparing the vacuum level with and</u> <u>without sample</u>
- Comparing residual atmosphere of vacuum chamber with and without sample using RGA
- Comparing the mass of sample before and after pumping

Outgassing under vacuum

There are three ways to perform outgassing measurement:

- Comparing the vacuum level with and without sample
- <u>Comparing residual atmosphere of</u> <u>vacuum chamber with and without sample</u> <u>using RGA</u>
- Comparing the mass of sample before and after pumping

There are three ways to perform outgassing measurement:

- Comparing the vacuum level with and without sample
- Comparing residual atmosphere of vacuum chamber with and without sample using RGA

<u>Comparing the mass of sample before and</u> <u>after pumping</u>

Analytical balance (Radwag AS 110-R2): Res 0.1 mg

Available experimental facility and plans?

Currently running setup up to 10⁻⁶ mbar

Future setup up to 10⁻¹⁰ - 10⁻¹¹ mbar

Samples to test in vacuum environment

Samples:

- Carbon (LAYPUS) Substrate of the cold plate
- Carbon Fleece of the cold plate
- Carbon foam All comp high density
- Carbon foam All comp low density
- Carbon foam ERG duocel
- Optical Fiber with connector
- NASA Epoxy
- Si wafer
- Wire bonded Si wafer
- FPC
- 3D printed aluminium nitride (AIN) samples disks
- Al2O3 samples disk: 3D printed alumina (Al₂O₃) samples disks
- 3D printed AlSi samples disks 12/1/2023

Preliminary Experimental Results @10⁻⁶ mbar

List of components : preliminary studied

Samples:

- Carbon (LAYPUS) Substrate of the cold plate
- Carbon Fleece of the cold plate
- Carbon foam All comp high density
- Carbon foam All comp low density
- Carbon foam ERG duocel
- Optical Fiber with connector
- NASA Epoxy
- Si wafer
- Wire bonded Si wafer
- FPC
- 3D printed aluminium nitride (AIN) samples disks
- Al2O3 samples disk: 3D printed alumina (Al₂O₃) samples disks
- 3D printed AlSi samples disks

4th ALICE Upgrade Week

Outgassing under vacuum (1E-6 mbar)

Residual gas compassions: under vacuum (1E-6 mbar)

Residual gas compassions: under vacuum (1E-6 mbar)

Total mass loss [TML]: under vacuum (1E-6 mbar)

Samples	TML [%] (Just after vacuum treatment)	TML [%] (Regained after vacuum treatment)
NASA_Epoxy		0.65
FPC_AI		0.05
Si_Wafer_Al		0.050
3_Si_Wafer_Al	0.01	0.01
C_Fleese	1.82	0.46
C_HD	0.47	-0.01
C_LD	0.73	0.01
C_Substrate	0.20	0.14
Optical_Fiber	0.32	0.14
C_ERG	11.85	12.23

Total mass loss [TML]: under vacuum (1E-6 mbar)

Samples	TML [%] (Just after vacuum treatment)	TML [%] (Regained after vacuum treatment)
NASA_Epoxy		0.65
FPC_AI		0.05
Si_Wafer_Al		0.050
3_Si_Wafer_Al	0.01	0.01
C_Fleese	1.82	0.46
C_HD	0.47	-0.01
C_LD	0.73	0.01
C_Substrate	0.20	0.14
Optical_Fiber	0.32	0.14
C_ERG	11.85	12.23

Total mass loss [TML]: under vacuum (1E-6 mbar)

Samples	TML [%] (Just after vacuum treatment)	TML [%] (Regained after vacuum treatment)		
NASA_Epoxy		0.65		
FPC_AI		0.05		
Si_Wafer_Al		0.050		
3_Si_Wafer_Al	0.01	0.01		
C_Fleese	1.82	0.46	Carbon ERG fibers: after vacuum treatment	Broken filament : after Carbon ERG vacuum treatment
C_HD	0.47	-0.01		
C_LD	0.73	0.01		
C_Substrate	0.20	0.14		
Optical_Fiber	0.32	0.14		
C_ERG	11.85	12.23		

WIRE-BONDING STUDY UNDER VACUUM

wire bonded Si wafers and required setups: Pulling force test

Setup description:

- **G** 6 ALPIDE chips glued on metallic support and wire bonded
- **Each chip having 14/15 wires bonded**
- **D** To disentangle eventual chip-to-chip variation
 - **44 pull test without vacuum treatment**
 - □ 44 pull test after vacuum treatment

		wires distribution between the ALPIDE's pads"
Experiment	execution dates:	F00 F01 F01 F03 F04 F04 F05 F05 F05 F05 F06 F06 F06 F06 F06
 Chips mot Samples k 	unted and pull-force tested on 6/20/2023 Rept under vacuum (10 ⁻⁶ bar) for ~10 days	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Pull-force	measurement after vacuum treatement on 19/20	D/2023
СНІР	Without VACUUM Pull-force average ±sigma (min - max) g [# of wires]	Aafter VACUUM Pull-force average ±sigma (min - max) g [# of wires]
#1	8.37 ±1,50 (6,5 - 11.1) [8]	8.23 ±0.95 (6.80 – 9.45) [6]
#2	8.00 ±1.90 (7.08 - 10.67) [6]	7.28 ±2.62 (4.58 - 12.54) [8]
#3	8.92 ±2.11 (6,04 – 12.30) [8]	8.90 ±1.68 (7.14 – 11.39) [7]
#4	8.56 ±2,42 (4.50 - 12,.9) [7]	9,04 ±1.53 (7.02 - 11.06) [8]
#5	9.72 ±0.66 (8.88-10.57) [8]	9.20 ±0.83 (8.12 – 10.88) [7]
#6	7.09 ±1.73 (4,42 – 9.55) [7]	8.32 ±1.12 (6.35 - 9.57) [8]
тот	8.49 ±1.87 (4.42 - 12.59) [44]	8.50 ±1.66 (4,59 - 12,54) [44]

CHIP	Without VACUUM (44 wires)			After VACUUM (44 wires)						
	1	2	3	4	5	1	2	3	4	5
#1	6	1	0	0	1	2	2	0	1	1
#2	2	1	0	0	3	0	1	0	5	2
#3	4	2	0	0	2	1	2	0	4	0
#4	4	0	0	1	2	0	5	0	2	1
#5	7	0	0	0	1	1	3	0	2	1
#6	3	3	0	0	1	0	5	0	2	1
тот	26	7	0	1	10	4	18	0	16	6

- Strong reduction of breakage at the 1st foot
- Clear increase of lift-off at the 1st foot
- Strong increase of breakage at the 2nd foot
- Moderate reduction of lift-off at the 2nd foot

Breakage/Lift-off BEFORE vacuum: 27/17 AFTER vacuum: 20/24

Experimental Facilities @ INFN Bari

- Two SS 4-way cross spherical vacuum chambers
- All kind vacuum pumps (Primary + TMP +ION)
- Gate valves (Cf-150, cf-100, kf-40)
- Display and control units for all types of pumps
- All types of vacuum gauges and display unit

Future experimental facilities to be assembled @ INFN Bari

Experimental setup: vacuum SS chambers with associated equipment to reach 10⁻¹⁰ mbar pressure

Fig: Schematic diagram of a four-way cross ~20 cm diameter SS spherical chamber are available with all type of pump and RGA

4th ALICE Upgrade Week

Experimental setup: vacuum SS chambers with associated equipment to reach 10⁻¹⁰ Torr pressure

Fig: Schematic diagram of a future SS cylindrical chamber need to build a/c to detector dimension together with required vacuum pumps and RGA

Future plans

- Need to build a vacuum chamber with a vacuum of the order of ~10⁻¹⁰ Torr
 - All gaskets and gate valve must be metallic
 - Heating tape and heating lamp are essential
 - Proper cleaning with ultrasonic bath in distilled water followed by alcohol
 - All types of vacuum pumps (primary, TMP & ION) are available
- Measurements to perform
 - Outgassing study
 - Residual gas atmosphere study
 - Total mass loss (TML) study
 - Wire bonding strength study
 - Gluing strength
- Samples to be test
 - All IRIS detector components
 - Glue for IRIS detector
 - Wire bonded Si chips
 - FPC
 - Optical fiber cable

4th ALICE Upgrade Week

Thank you

Si_FPC_AI: immediately after pumping started

Instruments @INFN Bari – Italy:

Available vacuum pumps

Fig: Turbo molecular pump

Fig: ION pumps

12/1/2023

Fig: Primary vacuum pumps

Display and control units

BA 24.3 BI			•	
 ✓ ✓			VARIAN 35	
ISTILUTO NAZIONALE DI FISICA NUCLEARE BA 22 20	3Kv ©	5Kv	7Kv	
Midivac	PROTECT	RV OFI		
		19.91	1	7 1

Available vacuum gauges and display unit

Fig: Vacuum gauges and display unit

12/1/2023

Available vacuum chambers

Available gate valves

	1° bond	2° bond	apice loop	
Х	21140	21126	21140	
Y	85014	82988	84001	
bond height				
e/o focus	11795	11795	11225	
Length	2026		forza	9.46
height				
difference	0			
h	570		Fa	9.8
а	1013		Fb	9.8
b	1013			
angolo alfa	29		F1	4.8
angolo beta	29		F2	4.8
angolo strappo dinamometro	0			

Si wafer and FPC: Residual gas atmosphere study

Si wafer and FPC: Residual gas atmosphere study

Pulling force test: preliminary results

-- Open air: Chip-1 -- Under Vacuum: Chip-2 -- Under Vacuum: Chip-3

Pulling force	chip 1: As received	chip 2: 11 days in vacuum @ E-6	chip 3: 11 days in vacuum @ E-6
Minimum	8.27	6.32	7.36
Maximum	10.78	11.28	10.49
Medium	9.46	8.90	8.98
Sigma	0.59	1.50	0.97

Failure modes	Chip 1	Chip 2	Chip 3
Breakage at the first foot	12	7	9
Lift off at the first foot	0	5	5
Breakage at the apex of the loop	0	0	0
Breakage at the second foot	0	1	0
Lift off at the second foot	3	2	1
Ddouble loop hooked	0	0	0

- Pull force before and after vacuum treatment: compatible within statistical error
- □ Lift off failure increased after vacuum treatment
- □ More statistics will be added for clear understanding

Samples to test in vacuum environment

- Sample received from Corrado Gargiulo
 - 3D printed aluminium nitride (AIN) samples disks
 - Al2O3 samples disk: 3D printed alumina (Al₂O₃) samples disks
 - 3D printed AlSi samples disks
 - Carbon (LAYPUS) Substrate of the cold plate
 - Carbon Fleece of the cold plate
 - Carbon foam All comp high density
 - Carbon foam All comp low density
 - Carbon foam ERG duocel
- Sample received from Felix Reidt
 - Optical Fiber with connector
- Samples tested in Bari
 - NASA Epoxy
 - Si wafer
 - Wire bonded Si wafer
 - FPC

