Positivity Bounds on Massive Vectors

Francesco Bertucci

w/ J. Henriksson, B. McPeak, S. Ricossa, F. Riva, A. Vichi

$50 + \varepsilon$ Years of Conformal Bootstrap

February 21, 2024

Università di Pisa

- 1 Introduction and motivations
- 2 Setup
- 8 Results
- **4** Discussion and future directions

When is an effective field theory (EFT) UV completable?

Impose basic assumptions to derive dispersion relations on EFT coefficients:

$$g_n\sim\int_{M^2}^\infty ds\, rac{{
m Im}\, A(s,t)}{s^{1+n}}.$$

 $\# < \frac{g_n}{g_m} < \#.$

Impose positivity in the UV to get bound [Caron-Huot,Van Duong 2020]

Our work:

• spinning massive particles (spin-1) $\mathcal{L} = -\frac{1}{4}F^2 - \frac{1}{2}m^2A^2 + \dots$

Assumptions/properties:

- unitarity
- causality (analyticity)
- crossing symmetry, partial wave expansion
- asymptotic behavior at $|s|
 ightarrow \infty$
- weak coupling in the low-energy (loop suppression)

How can we use this?

- photons [Vichi et al. 2021], gravitons [DSD et al. 2022]
- large N QCD (mesons, glueballs?) [Albert,Rastelli 2021]
- massive gravity [Cheung,Remmen 2016,Riva et. al 2023]
- etc.

Setup

- 17 amplitudes $A^{I}(s, t)$, $I = \{++++\}, \{+0-0\}, \dots$
- They can be written as "structure imes function"

$$A'(s,t) = \sum_J E'_J(s,t)F_J(s,t).$$

- $E'_1 = (\epsilon_1 \cdot \epsilon_2)(\epsilon_3 \cdot \epsilon_4), \ldots, E'_{17} = (\epsilon_1 \cdot p_4)(\epsilon_2 \cdot p_3)(\epsilon_3 \cdot p_2)(\epsilon_4 \cdot p_1).$
- *F_J* have crossing properties:

$$F_J(u,t) = C_{JK}^{su}F_K(s,t), \quad F_J(t,s) = C_{JK}^{st}F_K(s,t).$$

Regge boundedness:

$$\lim_{|s|\to\infty}\frac{A^{l}(s,t)}{s^{2}}=0.$$

• Partial wave decomposition:

$$\operatorname{Im} A'(s,t) = \sum_{\ell} 16\pi (2\ell+1) \sqrt{\frac{s}{s-4m^2}} d_l^{(\ell)}(\theta) \rho_{\ell}'(s)$$

Setup

- 17 amplitudes $A^{I}(s, t)$, $I = \{++++\}, \{+0-0\}, \dots$
- They can be written as "structure imes function"

$$A'(s,t) = \sum_{J} E'_{J}(s,t)F_{J}(s,t).$$

- $E'_1 = (\epsilon_1 \cdot \epsilon_2)(\epsilon_3 \cdot \epsilon_4), \ldots, E'_{17} = (\epsilon_1 \cdot p_4)(\epsilon_2 \cdot p_3)(\epsilon_3 \cdot p_2)(\epsilon_4 \cdot p_1).$
- *F_J* have crossing properties:

$$F_J(u,t) = C_{JK}^{su}F_K(s,t), \quad F_J(t,s) = C_{JK}^{st}F_K(s,t).$$

• Regge boundedness:

$$\lim_{|s|\to\infty}\frac{A'(s,t)}{s^2}=0.$$

• Partial wave decomposition:

$$\operatorname{Im} A'(s,t) = \sum_{\ell} 16\pi (2\ell+1) \sqrt{\frac{s}{s-4m^2}} d_{l}^{(\ell)}(\theta) \rho_{\ell}'(s).$$

After manipulations and $(\partial_t)^m|_{t=0}$... Dispersion relation:

$$g_n = \sum_\ell \int_{M^2}^\infty ds \, \mathbf{K}^J(s)
ho_\ell^J(s).$$

 $\rho_{\ell}^{J}(s)$ positive definite \implies optimization problem.

Spin and mass are complicated. Recall that $A' = E'_{I}F_{I} < s^{2}$.

- **Positivity** is easily achieved with A', but **crossing** is simpler with F_{I} .
- A¹ mixes the low-energy: observables are **combinations** of EFT coefficients.
- F_I have better Regge behavior than A^I : important for **null constraints**.
- There are **four** positive guantities to use as denominators.

Conclusion

To compute dispersion relations: A'. To generate null constraints: F_{I} .

Francesco Bertucci

"Scalar" plots

$$A_{k,\ell}^{\lambda_i} \sim \sum_{\ell} \int_{M^2}^{\infty} ds \, \frac{(\partial_t)^{\ell} \operatorname{Im} A(s,t)}{s^{1+k}}$$

<ロト < 回ト < 回ト < 回ト < 回ト</p>

"Photon" plots

February 21, 2024

<ロト < 回ト < 回ト < 回ト < 回ト</p>

"Photon" plots

- ∢ ⊒ →

• • • • • • • •

"Mixed" plots

<ロト < 回ト < 回ト < 回ト < 回ト</p>

"Mixed" plots

Positivity Bounds on Massive Vectors

We can populate the plots with simple UV completions. These arise from integrating out scalars and vectors of mass M at tree-level.

For example:

• real massive scalar ϕ

$$\mathcal{L} \supset \lambda_{\phi}^{(1)} F^{\mu\nu} F_{\mu\nu} \phi + \lambda_{\phi}^{(2)} A^{\mu} A_{\mu} \phi.$$

• massive vector
$$V_{\mu}$$

 $\mathcal{L} \supset \lambda_V V_{\mu} A_{\nu} F^{\mu\nu}.$

Some of them lie at special points!

"Scalar" plots: UV completions

Francesco Bertucci

Positivity Bounds on Massive Vectors

February 21, 2024

"Scalar" plots: zooming in

< □ > < □ > < □ > < □ > < □ >

"Photon" plots: UV completions

m=0.1

Francesco Bertucci

Positivity Bounds on Massive Vectors

February 21, 2024

<ロト < 回ト < 回ト < 回ト < 回ト</p>

"Photon" plots: UV completions

Francesco Bertucci

Positivity Bounds on Massive Vectors

February 21, 2024

포 문 문

(日)、

"Photon" plots: zooming in

"Mixed" plots: UV completions

Francesco Bertucci

Positivity Bounds on Massive Vectors

February 21, 2024

"Mixed" plots: UV completions

Francesco Bertucci

Positivity Bounds on Massive Vectors

February 21, 2024

Summary

We can put bounds on EFT coefficients for spinning massive particle scattering. We obtain regions that are consistent with simple UV completions.

Future directions:

- Non-abelian case
- Massive spin-2
- Glueballs
- ...hopefully many more!

21 / 22

Thanks fo listening!