Finding Fixed Points in the
Epsilon expansion

Revisiting old results

Hugh Osborn based on work with Andy Stergiou Tom Steudtner lan Jack



What is the space of CFTs in 3 and 4 and perhaps other dimensions?
Very non trivial problem perhaps tractable with supersymmetry.

In general for any CFT with a relevant operator then perturbation in this
operator lead to RG equations whose solutions may flow in the IR to

new fixed points.
The flow may lead to decoupled theories, free theories or there may be

Nno non trivial limit.

The epsilon expansion is a historically important progeedure for finding
fixed points.
Start from a free theoryin 4 — ¢ dimensions. ¢4, Wy ¢ are relevant.

Since the starting theory is free the expansion in € can be carried out
to pretty high order and sophisticated resummation techniques used,

Can use epsilon expansion to calculate critical exponents in specific theories.
Historically to 2,3 loops, nowadays to 6,7 loops in scalar theories.
Can also search for critical points more generally. Mostly need only lowest order

contributions in the epsilon expansion.
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Table XI. Estimates for critical exponents in D = 3 dimensions of the O(n) vector model. Results from
the conformal bootstrap and Monte Carlo techniques are listed first (we tried to collect the most accurate
predictions in each case). Our estimates from the 5- and 6-loop e-expansions are shown next. For comparison
of the resummation methods, we display the 5-loop results (from e-expansion without D = 2 boundary

conditions) according to [76].

n=~0 n=1 n =2 n=3 n=4
0.031043(3)*  0.036298(2)!'°11 0.0381(2)1**! 0.0378(3)!"°! 0.0360(3)"
g% 0.0310(7) 0.0362(6) 0.0380(6)  0.0378(5)  0.0366(4)
T &5 0.0314(11) 0.0366(11) 0.0384(10) 0.0382(10) 0.0370(9)
[76] 0.0300(50) 0.0360(50) 0.0380(50) 0.0375(45) 0.036(4)
0.5875970(4)°*! 0.629971(4)!1°11 0.6717(1)1381 0.7112(5)13 0.7477(8)°
) eb  0.5874(3) 0.6292(5) 0.6690(10) 0.7059(20) 0.7397(35)
g5 0.5873(13) 0.6290(20) 0.6687(13) 0.7056(16) 0.7389(24)
[76] 0.5875(25) 0.6290(25) 0.6680(35) 0.7045(55) 0.737(8)
0.904(5) 0.830(2)1°°] 0.811(10)¢ 0.791(22)¢ 0.817(30)°
y eb  0.841(13) 0.820(7) 0.804(3)  0.795(7)  0.794(9)
g5 0.835(11) 0.818(8) 0.803(6)  0.797(7)  0.795(6)
[76] 0.828(23) 0.814(18) 0.802(18)  0.794(18)  0.795(30)

* From « = 1.156953(1) [53| and v = 0.5875970(4) [54] via v = v(2 —n) in (10).

b Given in [79] and compatible with 0.0365(10) [77] and y, = (5 — n)/2 = 2.4820(2) in [60].
“ From y: = 1/v = 1.3375(15) in [60], compatible with v = 0.749(2) [77] and 0.750(2) [79].
4 Computed from wr = A = 0.531(3) according to [13] and v = 0.5875970(4) in [54].

® These are the results given as Agr = 3 + w in [40, Table 2].

0 (self-avoiding walks): polymers [58],

(
1 (Ising universality class): liquid-vapour transitions, uniaxial magnets,
2 (XY universality class): superfluid A-transition of helium [107],

(

3 (Heisenberg universality class): isotropic ferromagnets,

n = 4: finite temperature QCD with two light flavours [133].
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General scalar theories n, component real scalars ¢,
1
V(@) = 55 \ijkl 99 Pkt

A\ijkr Symmetric tensor N = ing(ns + 1)(ns +2)(ns +3) components

Lowest order RG equations for a fixed point
€ — >O< -+ -
€ >\7ijl — Az’jmn}\klmn =+ AikmnAjlmn =+ )\ilmn)\jkmn >< I M

/¥ coupled quadratic equations, up to 2V solutions, want real solutions. Many solutions involve

decoupled theories
Solutions covariant under O(ns) strongest case O(ns) symmetric theory

N_ %ns(ns — 1) — 17 47 127 297 Ng = 17 27 3’ 4

At a non trivial fixed point eV(p) = %Zij ()\ijk;l¢k;¢l)2 > 0 f ¢>0

€

V(p) = %A(@%)Q Ak = R Heisenberg fixed point, n, = 1 Ising, n, =2 XY model




Many solutions for fixed points with different symmetry groups H C O(n,) are known

In applications H is chosen depending on the particular problem, then V(¢) is a sum of
of quartic monomials in ¢ invariant under H. Generally the condition that there is a single

quadratic invariant ¢,¢, isimposed and ¢, forms an irreducible representation of H .
Potentially there can be many couplings.

All possible subgroups with a single quadratic invariant were an analysed for n, = 4 by
Brezin et al (1985) and for n, = 6 by Hatch et al (1986), pretty non trivial.

Landau criterion, only first order transitions if there is a cubic invariant?

General analysis, decompose 4, intospin 0, spin2 d,;; and spin 4 tensors dy ;;

ap = Aiijj as = ||da]|?, as = ||d4]|?, Sn. = |7

d4,ljkl defines a relevant operator for n, > 4.



At any fixed points there are various bounds

ns(ns + 2)
apgp > €,
ne + 8
2 Ns 9 1 1 2 Ng o .
a >0 = S, = H)\H < 2 ¢ (CLO — 5Ms 6) < 2 ¢ Rychkov & Stergiou, Hogervorst & Toldo
- ° -8 2N -

a, > 0 implies > 1 quadratic invariants, Sns bound restricts numbers of possible
solutions.

Different fixed points are characterised by stability matrix eigenvalues ke, — 1 <k <1.

For non trivial fixed points there is always one x = 1, if more than one there are decoupled
theories, Ay i Ao s 41 - 42 =0, if Kk =—1 there is a decoupled free field. Generically
for H a continuous Lie group of dimension d; there will be dO(n) — dy Zero K.

There may be k which area only zero at lowest order in €.

At a bifurcation where new fixed points emerge or annihilate there are additional zero «.
Of course degeneracies of eigenvalues k correspond to representations of H .

f a,=0,8, =<n(l —x?), ay=>n(l +«) forsome .

\)

When the Sns bound is attained there is a bifurcation.



Known fixed points

as = 0
1 O(ny)

2 Cubic symmetry Cn. Vo, (¢) = tX(6idi)” + 559 > ;b0

OOI»—\

3 Tetrahedral symmetry T, + a=1,....,ns+1 ¢a, > pa =0 arethevertices of a n, dimensional

hypertetrahedron. This theory has cubic invariants.

s A(B2)H57 90, (Ba)?

4 MN, s ng=rs, Pq,r s dimensional vectors Vyn(p) =

5 Bifundamental ns =7rs, O(r) X O(s) symmetry R,s = 1%+ s> — 10rs — 4(r+s)+52>0

6 Bifundamental complex U(r) x U(s) symmetry S,; =7+ s* —10rs+24 >0

New CFT fixed points with a, = 0 can be obtained by taking p copies of the same CFT
with fields ®a» @ =1,...,P  imposing &', symmetry and perturbing with D azb Pa Pb°
The symmetry group is the wreath product H:S§, = H? x S,

Conjecture: for n, primeand a, =0 there are only O(n,), cubic and tetrahedral fixed points.

These include all fixed points found by looking for subgroups of ~ O(4), O(6)



For a, > 0 theories can be constructed in terms of perturbations of combinations

of theories with a, = 0.

The simplest examples are biconical theories with CF1'| + CFT, perturbed by gblngzz

This example gives two quadratic forms, but there may be many

Open problem.* Construct a fully interacting N > 2 scalar one-loop fixed point in 4 — ¢

dimensions with real couplings and just Zo symmetry, or prove that all such fixed points have

strictly larger symmetry.

“A bottle of Dom Pérignon champagne will be awarded for a solution of this problem.

for collecting the prize.

Rychkov and Stergiou



When can the Rychkov Stergiou bound be saturated ?

1 s(ng —4
I = 2o, a0 = I\ = drees @ =0, o =[jdif = B

This might be a solvable problem

Known examples
ns =4 0(4)
Ng = 3 86 X ZQ

Bifundamental theories, solve a diophantine equation

ns=mn O(m)xO0(n)/Zs, (m,n)=(73,7),...
ng=2mn U(m)xUmn)/U(1), (m,n)=(49,5),...
ns =4mn Sp(m) x Sp(n)/Zs, (m,n)=(37,4),...

There are an infinite sequence of
solutions in each case

The fields are real, complex, quaternionic



Another example was found by Christian Jepsen by looking at triftundamental
theories with O(n1) x O(ng) x O(n3) symmetry.

The bound is saturated for 11 = ne =2, ng = 34

This appears to be an isolated case and can be obtained from a bifundamental
theory with  [J (2) x O(34) symmetry

In the spirit of Rychkov Stergiou
| will off a bottle of Trinity College vintage port to anyone finding another
Infinite sequence saturating the bound.
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There is related problem for three index traceless tensor d;

O — v —— = 3 )\ Relevant for A = 1supersymmetric
d ’ d 9 . . . .
theories In three dimensions

In general there are bounds

Ng — 2
< Ba/ag <

Ng — 2
2(ng + 2)

The upper bound requires

>—<+I+>/\K(:+\\+X)

There are four solutions ns =3 x (1,2,4,8) 4 2

ne — 1

3 X 3 Hermitian traceless matrices e; satisfying %(6,,;63- + eje,,;) = %5@7 I3 + d;jk ek
Thenif x = x;e; the Cayley Hamilton theorem 23— Ltr(a?) oz — %tr(mS) 1s =0

Is equivalent to the above with = — %

This theorem holds for real, complex, quaternionic and octonionic matrices



Some comments on the A theorem and the epsilon expansion
In four dimensions one can demonstrate perturbatively

I nJ
dA(g) =T1s(9)dg" 87(g), Ty =0W;—0;Wr.
These equations are invariant under
SA=ygrs BB, 6Try=Lsgrs+0r(gsB") —0s(9rxB”), Wy =gsxB",
for any symmetric 91J

In some cases this can be use to set the antisymmetric part of 175 to zero
In 4—-¢ dimensions, with minimal subtraction,

51(9) — BI(Q) — —¢& gI + 51(9) This fixes the scheme

Suppose the A equation is valid with g7 — 37, A — A, T1; — Ty,
then one can use  3° variations tomake A linearin g
and 7T7; Independent

For the theorem to be valid away from four dimensions it is necessary that
TIJgJ — 8IA’ This is not automatic as it requires an integrability condition



In §b4 theory at [, loops there are N5, vacuum graphs, [Vy/ inequivalent
vertices, Ng graphs with one inequivalent vertex, N contributionsto 17
and N contributions to symmetric G

L N(L) Nvy(L) Ng(L) Nr(L) Ng(L)

3 1 1 1 1 1

A 1 1 | | | Ny, Is the number of terms
you get on amputating one

) 3 3 0 ! / vertex from a vacuum graph

0 D 10 2 20 13

[ 17 30 D 142 97

3 42 164 2 153

9 177 819 9

L loop A is relevant for I — 3 loop beta’s and you need I, — 1 loop I’
the number of antisymmetric contributionsto T is Ny — N
the B° freedomfor L loop A involves L — 1 loop G



Maybe there are deeper principles at work. It is a surprise to me that
there is a consistent framework for the six loop beta functions
with additional consistency conditions

It hasn’t fallen yet!




Thank you for your attention

And to the organisers for a great meeting and
the Invitation to come



