

Multi-trace operators in CFTs

Agnese Bissi (ICTP \& Uppsala University)
$50+\varepsilon$ years of conformal bootstrap, Pisa

Motivations

- Main aim: understand CFT data, using conformal symmetry and consistency conditions of CFTs.

Motivations

- Main aim: understand CFT data, using conformal symmetry and consistency conditions of CFTs.
- One way to make progress analytically is to consider situation in which it makes sense to chose a perturbative parameter, and study the structure of such expansion.

Motivations

- Main aim: understand CFT data, using conformal symmetry and consistency conditions of CFTs.
- One way to make progress analytically is to consider situation in which it makes sense to chose a perturbative parameter, and study the structure of such expansion.
- In this talk I will focus on large \mathbf{N} perturbation theory .

Motivations

- Main aim: understand CFT data, using conformal symmetry and consistency conditions of CFTs.
- One way to make progress analytically is to consider situation in which it makes sense to chose a perturbative parameter, and study the structure of such expansion.
- In this talk I will focus on large \mathbf{N} perturbation theory .
- This particular example is mostly interesting due to the connection with theories of gravity in curved space-time.

Large N

Large \mathbf{N}

- In the OPE decomposition of generalised free field theories, it is apparent the presence of double trace operators.

Large \mathbf{N}

- In the OPE decomposition of generalised free field theories, it is apparent the presence of double trace operators.

- Generically multi-trace operators correspond to multi-particle states in AdS.

Approach I

Study four point functions of single trace operators \mathcal{O} at large N (simplest possible example of \mathcal{O}^{4})

$$
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right\rangle
$$

Approach I

Study four point functions of single trace operators \mathcal{O} at large N (simplest possible example of \mathcal{O}^{4})

$\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right\rangle$

disconnected $\sim N^{0}$

$$
\langle\mathscr{O} O[\mathcal{O} O]\rangle \sim 1
$$

Approach I

Study four point functions of single trace operators \mathcal{O} at large N (simplest possible example of \mathcal{O}^{4})

$$
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right\rangle
$$

disconnected $\sim N^{0}$
$\langle\mathcal{O O}[\mathcal{O}]\rangle \sim 1$

Approach I

Study four point functions of single trace operators \mathcal{O} at large N (simplest possible example of \mathcal{O}^{4})

$$
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right\rangle
$$

$$
\begin{aligned}
\text { disconnected } & \sim N^{0} & \text { connected } \sim N^{-2} \\
\langle\mathcal{O O}[\mathcal{O O}]\rangle & \sim 1 & \left\langle\mathcal{O O}\left[\mathcal{O}_{1} \mathcal{O}_{2} \ldots \mathcal{O}_{m}\right]\right\rangle \sim N^{-m}
\end{aligned}
$$

$\left[\mathcal{O}_{1} \mathcal{O}_{2} \ldots \mathcal{O}_{m}\right]$ are m-trace operators, with $\left\langle\left[\mathcal{O}_{1} \mathcal{O}_{2} \ldots \mathcal{O}_{m}\right]\left[\mathcal{O}_{1} \mathcal{O}_{2} \ldots \mathcal{O}_{m}\right]\right\rangle=1$

Approach I

Study four point functions of single trace operators \mathcal{O} at large N (simplest possible example of \mathcal{O}^{4})

$$
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right\rangle
$$

$$
\begin{aligned}
\text { disconnected } & \sim N^{0} \\
\langle\mathcal{O} \mathscr{O}[\mathcal{O}]\rangle & \sim 1
\end{aligned}
$$

$$
\begin{array}{|l|}
\text { connected } \sim N^{-2} \\
\left\langle\mathcal{O}\left[\mathcal{O}_{1} \mathcal{O}_{2} \ldots \mathcal{O}_{m}\right]\right\rangle \sim N^{-m}
\end{array}
$$

$\left[\mathcal{O}_{1} \mathcal{O}_{2} \ldots \mathcal{O}_{m}\right]$ are m -trace operators, with $\left\langle\left[\mathcal{O}_{1} \mathscr{O}_{2} \ldots \mathcal{O}_{m}\right]\left[\mathcal{O}_{1} \mathscr{O}_{2} \ldots \mathscr{O}_{m}\right]\right\rangle=1$

Approach I

$$
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right\rangle
$$

Double trace operators appear already at leading order.

Approach I

$$
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right\rangle
$$

Double trace operators appear already at leading order.

From N^{-6} there are triple trace contributing to the OPE.

Approach I

$\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right\rangle$

Double trace operators appear already at leading order.

From N^{-6} there are triple trace contributing to the OPE.

Warning: degeneracy among states having the same Δ and ℓ.

Approach II

Study four point functions of higher trace operators

$$
\mathcal{O}_{D T} \sim[\mathcal{O} \mathbb{O}] .
$$

One example is

$$
\left\langle\mathcal{O}_{D T}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathscr{O}\left(x_{4}\right)\right\rangle
$$

In this case, triple-trace operators appear already at leading order.

Approach III

Study higher point functions of single traces at large N

$$
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right) \mathcal{O}\left(x_{5}\right)\right\rangle
$$

This situation is much richer but also harder.

This talk

In this talk I will mostly focus on approach I and approach II.

This talk

In this talk I will mostly focus on approach I and approach II.

While the reasoning is equivalent in spirit, most of the results presented are for supersymmetric theories.

This talk

In this talk I will mostly focus on approach I and approach II.

While the reasoning is equivalent in spirit, most of the results presented are for supersymmetric theories.

Supersymmetry helps in constraining the structure of the correlators (protected quantities).

This talk

In this talk I will mostly focus on approach I and approach II.

While the reasoning is equivalent in spirit, most of the results presented are for supersymmetric theories.

Supersymmetry helps in constraining the structure of the correlators (protected quantities).

It is also very interesting due to the connection with supergravity amplitudes.

AdS/CFT correspondence

CFT

AdS

AdS/CFT correspondence

CFT

AdS
4 dimensional $\mathcal{N}=4$
Super Yang Mills with $\mathrm{SU}(\mathrm{N})$ gauge group
and SU(4) R-symmetry

AdS/CFT correspondence

CFT

4 dimensional $\mathcal{N}=4$ Super Yang Mills with $\mathrm{SU}(\mathrm{N})$ gauge group and SU(4) R-symmetry
type IIB superstring theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

AdS/CFT correspondence

CFT

4 dimensional $\mathcal{N}=4$
Super Yang Mills with SU(N) gauge group and SU(4) R-symmetry
type IIB superstring theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

- rank of the gauge group N
- coupling constant $g_{Y M}$

AdS/CFT correspondence

CFT

4 dimensional $\mathcal{N}=4$
Super Yang Mills with SU(N) gauge group and SU(4) R-symmetry

- rank of the gauge group N
- coupling constant $g_{Y M}$

AdS

type IIB superstring theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

- string length $\sqrt{\alpha^{\prime}}$
- string coupling g_{s}

AdS/CFT correspondence

CFT

4 dimensional $\mathcal{N}=4$
Super Yang Mills with
SU(N) gauge group and SU(4) R-symmetry

- rank of the gauge group N
- coupling constant $g_{Y M}$
type IIB superstring theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$

AdS

- string length $\sqrt{\alpha^{\prime}}$
- string coupling g_{s}

$$
\begin{gathered}
N \sim g_{s}^{-1} \\
\lambda=g_{Y M}^{2} N=\left(\alpha^{\prime}\right)^{-2}
\end{gathered}
$$

Setup

Weakly coupled regime in the bulk is supergravity and corresponds to large central charge and string length to zero.

Setup

$$
\mathbb{R}^{d-1,1}=\partial \mathrm{AdS}_{d+1}
$$

Weakly coupled regime in the bulk is supergravity and corresponds to large central charge and string length to zero.

Setup

$$
\mathbb{R}^{d-1,1}=\partial \mathrm{AdS}_{d+1}
$$

Weakly coupled regime in the bulk is supergravity and corresponds to large central charge and string length to zero.

Parameters

Parameters

Parameters

$$
N \sim g_{s}^{-1}
$$

Genus expansion

Parameters

$$
N \sim g_{s}^{-1}
$$

Genus expansion

$$
\lambda=g_{Y M}^{2} N=\left(\alpha^{\prime}\right)^{-2}
$$

Higher derivative expansion

Parameters

$$
\text { (N) } \sim g_{s}^{-1}
$$

Genus expansion
(2) $=g_{Y M}^{2} N=\left(\alpha^{\prime}\right)^{-2}$
Higher derivative expansion

Operators in $\mathcal{N}=4$ SYM

Single trace half-BPS operators \mathcal{O}_{p}

Operators in $\mathcal{N}=4$ SYM

Single trace half-BPS operators \mathcal{O}_{p}

$$
\begin{gathered}
\Delta_{\mathcal{O}_{p}}=p \\
\left\langle\mathcal{O}_{p} \mathcal{O}_{p} \mathscr{O}_{q}\right\rangle=f(N) \\
{[0, p, 0] \text { of } S U(4)_{R}}
\end{gathered}
$$

Operators in $\mathcal{N}=4$ SYM

Single trace half-BPS operators \mathcal{O}_{p}

> Scalar operators s_{p} with mass $m^{2}=\Delta_{p}\left(\Delta_{p}-4\right)$
the S^{5} angular momentum is p

$$
\begin{gathered}
\left\langle\mathcal{O}_{p} \mathcal{O}_{p} \mathcal{O}_{q}\right\rangle=f(N) \\
{[0, p, 0] \text { of } S U(4)_{R}}
\end{gathered}
$$

$$
p=2
$$

$p \geq 3$
Kaluza Klein modes

Operators in $\mathcal{N}=4$ SYM

Single trace half-BPS operators \mathcal{O}_{p}

> Scalar operators s_{p} with mass $m^{2}=\Delta_{p}\left(\Delta_{p}-4\right)$

$$
\Delta_{\mathscr{O}_{p}}=p
$$

the S^{5} angular momentum is p

$$
\left\langle\mathcal{O}_{p} \mathcal{O}_{p} \mathscr{O}_{q}\right\rangle=f(N)
$$

$$
p=2 \quad \text { Graviton }
$$

$$
[0, p, 0] \text { of } S U(4)_{R}
$$

Kaluza Klein modes

Quarter-BPS multi trace operators

$$
\begin{gathered}
{[p, q, p] \text { of } S U(4)_{R}} \\
\Delta=2 q+p
\end{gathered}
$$

Operators in $\mathcal{N}=4$ SYM

Single trace half-BPS operators \mathcal{O}_{p}

> Scalar operators s_{p} with mass $m^{2}=\Delta_{p}\left(\Delta_{p}-4\right)$

$$
\Delta_{\mathscr{O}_{p}}=p
$$

$$
\left\langle\mathcal{O}_{p} \mathcal{O}_{p} \mathcal{O}_{q}\right\rangle=f(N)
$$

$$
[0, p, 0] \text { of } S U(4)_{R}
$$

$p \geq 3$
Kaluza Klein modes

Quarter-BPS multi trace operators

$$
[p, q, p] \text { of } S U(4)_{R}
$$

$$
\Delta=2 q+p
$$

Bound states of single particle states

Expansion

$$
\left\langle\mathcal{O}_{2}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{2}\left(x_{3}\right) \mathcal{O}_{2}\left(x_{4}\right)\right\rangle=\frac{\mathscr{G}(u, v)}{x_{12}^{4} x_{34}^{4}}
$$

We work at leading order in the large λ expansion, corresponding to the supergravity regime.

Expansion

$$
\left\langle\mathcal{O}_{2}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{2}\left(x_{3}\right) \mathcal{O}_{2}\left(x_{4}\right)\right\rangle=\frac{\mathscr{G}(u, v)}{x_{12}^{4} x_{34}^{4}}
$$

$$
\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots
$$

We work at leading order in the large λ expansion, corresponding to the supergravity regime.

Expansion

$$
\left\langle\mathcal{O}_{2}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{2}\left(x_{3}\right) \mathcal{O}_{2}\left(x_{4}\right)\right\rangle=\frac{\mathscr{G}(u, v)}{x_{12}^{4} x_{34}^{4}}
$$

Large N expansion:

$$
\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots
$$

We work at leading order in the large λ expansion, corresponding to the supergravity regime.

Idea

Understand how to use the symmetries of the CFT (conformal symmetry, super symmetry, integrability....) to construct higher order correlators.

$$
\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots
$$

Idea

Understand how to use the symmetries of the CFT (conformal symmetry, super symmetry, integrability....) to construct higher order correlators.

$$
\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots
$$

Idea

Understand how to use the symmetries of the CFT (conformal symmetry, super symmetry, integrability....) to construct higher order correlators.

$$
\mathscr{G}(u, v)=\mathscr{G}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{G}^{(2)}(u, v)+\ldots
$$

Aharony, Alday, AB, Perlmutter 2016

Method

Let us go back to the correlator, conformal symmetry fixes the four point function as

$$
\left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=\frac{\left(y_{1} \cdot y_{2}\right)^{2}\left(y_{3} \cdot y_{4}\right)^{2}}{x_{12}^{4} x_{34}^{4}} \mathscr{G}(u, v, \sigma, \tau)
$$

Method

Let us go back to the correlator, conformal symmetry fixes the four point function as

$$
\begin{aligned}
& \left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=\frac{\left(y_{1} \cdot y_{2}\right)^{2}\left(y_{3} \cdot y_{4}\right)^{2}}{x_{12}^{4} x_{34}^{4}} \mathscr{G}(u, v, \sigma, \tau) \\
& u=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}} v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}} \\
& \text { cross-ratios }
\end{aligned}
$$

Method

Let us go back to the correlator, conformal symmetry fixes the four point function as

$$
\begin{aligned}
& \left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=\frac{\left(y_{1} \cdot y_{2}\right)^{2}\left(y_{3} \cdot y_{4}\right)^{2}}{x_{12}^{4} x_{34}^{4}} \mathscr{G}(u, v, \sigma, \tau) \\
& u=\frac{x_{11}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}} \quad v=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}} \\
& \text { cross-ratios } \\
& \sigma=\frac{y_{1} \cdot y_{3} y_{2} \cdot y_{4}}{y_{1} \cdot y_{2} y_{3} \cdot y_{4}} \quad \tau=\frac{y_{1} \cdot y_{4} y_{2} \cdot y_{3}}{y_{1} \cdot y_{2} y_{3} \cdot y_{4}} \\
& \text { harmonic cross-ratios }
\end{aligned}
$$

Method

Let us go back to the correlator, conformal symmetry fixes the four point function as

$$
\left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=\frac{\left(y_{1} \cdot y_{2}\right)^{2}\left(y_{3} \cdot y_{4}\right)^{2}}{x_{12}^{4} x_{34}^{4}} \mathscr{G}(u, v, \sigma, \tau)
$$

Method

Let us go back to the correlator, conformal symmetry fixes the four point function as

$$
\left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=\frac{\left(y_{1} \cdot y_{2}\right)^{2}\left(y_{3} \cdot y_{4}\right)^{2}}{x_{12}^{4} x_{34}^{4}} \mathscr{G}(u, v, \sigma, \tau)
$$

In the OPE of $\mathcal{O}_{2} \times \mathcal{O}_{2}$ there are six possible symmetric traceless of the Rsymmetry $[0,2,0] \times[0,2,0]$ and this is manifest in the OPE decomposition

Method

Let us go back to the correlator, conformal symmetry fixes the four point function as

$$
\left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=\frac{\left(y_{1} \cdot y_{2}\right)^{2}\left(y_{3} \cdot y_{4}\right)^{2}}{x_{12}^{4} x_{34}^{4}} \mathscr{G}(u, v, \sigma, \tau)
$$

In the OPE of $\mathcal{O}_{2} \times \mathcal{O}_{2}$ there are six possible symmetric traceless of the Rsymmetry $[0,2,0] \times[0,2,0]$ and this is manifest in the OPE decomposition

$$
\mathscr{G}(u, v, \sigma, \tau)=\sum_{\Delta, \ell, r} c_{\Delta, \ell}^{2(r)} g_{\Delta, \ell}^{(r)}(u, v) Y^{(r)}(\sigma, \tau)
$$

Method

Let us go back to the correlator, conformal symmetry fixes the four point function as

$$
\left\langle\mathcal{O}_{2}\left(x_{1}, y_{1}\right) \mathcal{O}_{2}\left(x_{2}, y_{2}\right) \mathcal{O}_{2}\left(x_{3}, y_{3}\right) \mathcal{O}_{2}\left(x_{4}, y_{4}\right)\right\rangle=\frac{\left(y_{1} \cdot y_{2}\right)^{2}\left(y_{3} \cdot y_{4}\right)^{2}}{x_{12}^{4} x_{34}^{4}} \mathscr{G}(u, v, \sigma, \tau)
$$

In the OPE of $\mathcal{O}_{2} \times \mathcal{O}_{2}$ there are six possible symmetric traceless of the Rsymmetry $[0,2,0] \times[0,2,0]$ and this is manifest in the OPE decomposition

$$
\begin{aligned}
& \mathscr{G}(u, v, \sigma, \tau)=\sum_{\Delta, \ell, r} c_{\Delta, \ell}^{2(r)} g_{\Delta, \ell}^{(r)}(u, v) Y^{(r)}(\sigma, \tau) \\
& \mathscr{G}(u, v, \sigma, \tau)=\sum_{\Delta, \ell, r}^{\sigma_{\substack{2}}^{\sigma_{2}}}<_{\mathcal{O}_{2}}^{\sigma_{\Delta, \ell}^{(r)}}
\end{aligned}
$$

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

1) single out the contribution of protected operators

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

1) single out the contribution of protected operators
2) provide relations among the six different R-symmetry representations

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

1) single out the contribution of protected operators
$c_{\Delta, \ell}^{(r)}$ and $\Delta^{(r)}$ for r short, are protected
2) provide relations among the six different R-symmetry representations

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

1) single out the contribution of protected operators
$c_{\Delta, \ell}^{(r)}$ and $\Delta^{(r)}$ for r short, are protected \longrightarrow perform the sum
2) provide relations among the six different R-symmetry representations

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

1) single out the contribution of protected operators
$c_{\Delta, \ell}^{(r)}$ and $\Delta^{(r)}$ for r short, are protected \longrightarrow perform the sum
2) provide relations among the six different R-symmetry representations

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

1) single out the contribution of protected operators
$c_{\Delta, \ell}^{(r)}$ and $\Delta^{(r)}$ for r short, are protected \longrightarrow perform the sum
2) provide relations among the six different R-symmetry representations

Supersymmetry

Superconformal Ward Identities let us achieve two goals:

1) single out the contribution of protected operators
$c_{\Delta, \ell}^{(r)}$ and $\Delta^{(r)}$ for r short, are protected \longrightarrow perform the sum
2) provide relations among the six different R-symmetry representations

$$
\mathscr{G}(u, v, \sigma, \tau) \longrightarrow \mathscr{G}^{\text {short }}(u, v) \quad \text { depend on } N
$$

Nirschl, Osborn 2004
Dolan, Osborn 2004

Comments

Comments

1) we are interested in the dynamical part of the correlator $\mathscr{H}(u, v)$

Comments

1) we are interested in the dynamical part of the correlator $\mathscr{H}(u, v)$
2) when imposing crossing symmetry on the correlator, the two contributions $\mathscr{G}^{\text {short }}(u, v)$ and $\mathscr{H}(u, v)$ mix

$$
v^{2} \mathscr{G}^{\text {short }}(u, v)-u^{2} \mathscr{G}^{\text {short }}(v, u)+u^{2}-v^{2}=-\frac{u-v}{c}+v^{2} \mathscr{H}(u, v)+u^{2} \mathscr{H}(v, u)
$$

Comments

1) we are interested in the dynamical part of the correlator $\mathscr{H}(u, v)$
2) when imposing crossing symmetry on the correlator, the two contributions $\mathscr{G}^{\text {short }}(u, v)$ and $\mathscr{H}(u, v)$ mix

$$
v^{2} \mathscr{G}^{\text {short }}(u, v)-u^{2} \mathscr{G}^{\text {short }}(v, u)+u^{2}-v^{2}=-\frac{u-v}{c}+v^{2} \mathscr{H}(u, v)+u^{2} \mathscr{H}(v, u)
$$

3) the function $\mathscr{H}(u, v)$ is decomposable in terms of superconformal blocks

Comments

1) we are interested in the dynamical part of the correlator $\mathscr{H}(u, v)$
2) when imposing crossing symmetry on the correlator, the two contributions $\mathscr{G}^{\text {short }}(u, v)$ and $\mathscr{H}(u, v)$ mix

$$
v^{2} \mathscr{G}^{\text {short }}(u, v)-u^{2} \mathscr{G}^{\text {short }}(v, u)+u^{2}-v^{2}=-\frac{u-v}{c}+v^{2} \mathscr{H}(u, v)+u^{2} \mathscr{H}(v, u)
$$

3) the function $\mathscr{H}(u, v)$ is decomposable in terms of superconformal blocks

$$
\mathscr{H}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} g_{\Delta, \ell}^{s}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell-4}{2}} g_{\Delta+4, \ell}(u, v)
$$

Correlators

$$
\mathscr{H}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell-4}{2}} g_{\Delta+4, \ell}(u, v)
$$

Correlators

$$
\mathscr{H}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell-4}{2}} g_{\Delta+4, \ell}(u, v)
$$

We would like to focus on the supergravity regime, which means that we need to expand all the ingredients in large N and λ

Correlators

$$
\mathscr{H}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell-4}{2}} g_{\Delta+4, \ell}(u, v)
$$

We would like to focus on the supergravity regime, which means that we need to expand all the ingredients in large N and λ

$$
\begin{gathered}
\mathscr{H}(u, v)=\mathscr{H}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{H}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{H}^{(2)}(u, v)+\cdots \\
\Delta=\Delta^{(0)}+\frac{1}{N^{2}} \gamma^{(1)}+\frac{1}{N^{4}} \gamma^{(2)}+\cdots \\
\mathscr{G}^{\text {short }}(u, v)=\mathscr{G}^{s h, 0}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{s h, 1}(u, v)
\end{gathered}
$$

Correlators

$$
\mathscr{H}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell-4}{2}} g_{\Delta+4, \ell}(u, v)
$$

We would like to focus on the supergravity regime, which means that we need to expand all the ingredients in large N and λ

$$
\begin{gathered}
\mathscr{H}(u, v)=\mathscr{H}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{H}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{H}^{(2)}(u, v)+\cdots \\
\Delta=\Delta^{(0)}+\frac{1}{N^{2}} \gamma^{(1)}+\frac{1}{N^{4}} \gamma^{(2)}+\cdots \\
\mathscr{G}^{\text {short }}(u, v)=\mathscr{G}^{s h, 0}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{s h, 1}(u, v) \\
c \sim N^{2}
\end{gathered}
$$

Correlators

$$
\mathscr{H}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell-4}{2}} g_{\Delta+4, \ell}(u, v)
$$

We would like to focus on the supergravity regime, which means that we need to expand all the ingredients in large N and λ

$$
\begin{gathered}
\mathscr{H}(u, v)=\mathscr{H}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{H}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{H}^{(2)}(u, v)+\cdots \\
\Delta=\Delta^{(0)}+\frac{1}{N^{2}} \gamma^{(1)}+\frac{1}{N^{4}} \gamma^{(2)}+\cdots \quad \begin{array}{c}
\lambda \rightarrow \infty \\
\text { Multi-trace } \\
\text { operators }
\end{array} \\
\mathscr{G}^{\text {short }(u, v)=} \begin{array}{c}
\mathscr{G}^{s h, 0}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{s h, 1}(u, v) \\
c \sim N^{2} \\
18
\end{array}
\end{gathered}
$$

Correlators

$$
\mathscr{H}(u, v)=\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell-4}{2}} g_{\Delta+4, \ell}(u, v)
$$

We would like to focus on the supergravity regime, which means that we need to expand all the ingredients in large N and λ

$$
\mathscr{H}(u, v)=\mathscr{H}^{(0)}(u, v)+\frac{1}{N^{2}} \mathscr{H}^{(1)}(u, v)+\frac{1}{N^{4}} \mathscr{H}^{(2)}(u, v)+\cdots
$$

$$
\Delta_{S T} \rightarrow \lambda^{1 / 4}
$$

$$
\Delta=\Delta^{(0)}+\frac{1}{N^{2}} \gamma^{(1)}+\frac{1}{N^{4}} \gamma^{(2)}+\cdots
$$

$$
\begin{gathered}
\lambda \rightarrow \infty \\
\text { Multi-trace }
\end{gathered}
$$

$$
\mathscr{G}^{\text {short }}(u, v)=\mathscr{G}^{s h, 0}(u, v)+\frac{1}{N^{2}} \mathscr{G}^{s h, 1}(u, v)
$$

operators

$$
c \sim N^{2}
$$

Inversion Formula

It is possible to write a relation that invert the OPE allowing us to reconstruct the correlator by knowing only its singularities as $v \rightarrow 0$ or

$$
\bar{z} \rightarrow 1
$$

Inversion Formula

It is possible to write a relation that invert the OPE allowing us to reconstruct the correlator by knowing only its singularities as $v \rightarrow 0$ or

$$
\bar{z} \rightarrow 1
$$

How?

Inversion Formula

It is possible to write a relation that invert the OPE allowing us to reconstruct the correlator by knowing only its singularities as $v \rightarrow 0$ or

$$
\bar{z} \rightarrow 1
$$

How?

$$
c_{\Delta, \ell} \sim \int_{0}^{1} d z d \bar{z} \mu(z, \bar{z}) \mathrm{dDisc}[\mathscr{G}(z, \bar{z})]
$$

Inversion Formula

It is possible to write a relation that invert the OPE allowing us to reconstruct the correlator by knowing only its singularities as $v \rightarrow 0$ or

$$
\bar{z} \rightarrow 1
$$

How?

$$
c_{\Delta, \ell} \sim \int_{0}^{1} d z d \bar{z} \mu(z, \bar{z}) \mathrm{dDisc}[\mathscr{G}(z, \bar{z})]
$$

Inversion Formula

It is possible to write a relation that invert the OPE allowing us to reconstruct the correlator by knowing only its singularities as $v \rightarrow 0$ or

$$
\bar{z} \rightarrow 1
$$

How?

$$
c_{\Delta, \ell} \sim \int_{0}^{1} d z d \bar{z} \mu(z, \bar{z}) \mathrm{dDisc}[\mathscr{G}(z, \bar{z})]
$$

$$
\begin{array}{r}
\mathrm{dDisc}[\mathscr{G}(z, \bar{z})]=\mathscr{G}_{\text {eucl }}(z, \bar{z})-\frac{1}{2} \mathscr{G} \circlearrowleft(z, \bar{z})-\frac{1}{2} \mathscr{G} \cup(z, \bar{z}) \\
\text { analytic continuation } \\
\text { around } \bar{z} \rightarrow 1
\end{array}
$$

Inversion Formula

It is possible to write a relation that invert the OPE allowing us to reconstruct the correlator by knowing only its singularities as $v \rightarrow 0$ or

$$
\bar{z} \rightarrow 1
$$

How?

$$
c_{\Delta, \ell} \sim \int_{0}^{1} d z d \bar{z} \mu(z, \bar{z}) \mathrm{dDisc}[\mathscr{G}(z, \bar{z})]
$$

Inversion Formula

It is possible to write a relation that invert the OPE allowing us to reconstruct the correlator by knowing only its singularities as $v \rightarrow 0$ or

$$
\bar{z} \rightarrow 1
$$

How?

$$
c_{\Delta, \ell} \sim \int_{0}^{1} d z d \bar{z} \mu(z, \bar{z}) \mathrm{dDisc}[\mathscr{G}(z, \bar{z})]
$$

$$
c_{\Delta, \ell} \xrightarrow[\Delta \rightarrow \Delta_{k}]{ } \frac{a_{\Delta_{k}, \ell}}{\Delta-\Delta_{k}} \quad \begin{gathered}
\text { has poles at the } \\
\begin{array}{c}
\text { dimension of the } \\
\text { exchanged operator with } \\
\text { residue the square of the } \\
\text { three point function }
\end{array}
\end{gathered}
$$

Tree Level

We expand at leading order N^{-2} and we get

Tree Level

We expand at leading order N^{-2} and we get

$$
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\log u+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v)
$$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{array}{r}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
\text { crossing }
\end{array}
$$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{gathered}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
\text { crossing } \mid \text { symmetry } \\
\mathscr{H}^{(1)}(u, v) \supset \log v
\end{gathered}
$$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{aligned}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\right. & \left.\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
& \text { crossing } \downarrow \text { symmetry } \\
& \text { dDisc }[\log (1-\bar{z})(1-z)]=0
\end{aligned}
$$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{aligned}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\right. & \left.\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
& \text { crossing } \downarrow \text { symmetry } \\
& \text { dDisc }[\log (1-\bar{z})(1-z)]=0
\end{aligned}
$$

Crossing symmetry relates $\mathscr{H}^{(1)}(u, v)$ to $\mathscr{G}^{s h, 1}(u, v)$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{aligned}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\right. & \left.\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
& \text { crossing } \downarrow \text { symmetry } \\
& \text { dDisc }[\log (1-\bar{z})(1-z)]=0
\end{aligned}
$$

Crossing symmetry relates $\mathscr{H}^{(1)}(u, v)$ to $\mathscr{G}^{s h, 1}(u, v)$

$$
v^{2} \mathscr{G}^{\text {short }}(u, v)-u^{2} \mathscr{G}^{\text {short }}(v, u)+u^{2}-v^{2}=-\frac{u-v}{c}+v^{2} \mathscr{H}(u, v)+u^{2} \mathscr{H}(v, u)
$$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{aligned}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\right. & \left.\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
& \text { crossing } \downarrow \text { symmetry } \\
& \text { dDisc }[\log (1-\bar{z})(1-z)]=0
\end{aligned}
$$

Crossing symmetry relates $\mathscr{H}^{(1)}(u, v)$ to $\mathscr{G}^{s h, 1}(u, v)$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{aligned}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\right. & \left.\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
& \text { crossing } \downarrow \text { symmetry } \\
& \text { dDisc }[\log (1-\bar{z})(1-z)]=0
\end{aligned}
$$

Crossing symmetry relates $\mathscr{H}^{(1)}(u, v)$ to $\mathscr{G}^{s h, 1}(u, v)$

$$
\mathscr{G}^{s h, 1}(u, v) \supset \frac{z}{1-z}
$$

Tree Level

We expand at leading order N^{-2} and we get

$$
\begin{aligned}
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\right. & \left.\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\underline{\log u}+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v) \\
& \text { crossing } \downarrow \text { symmetry } \\
& \text { dDisc }[\log (1-\bar{z})(1-z)]=0
\end{aligned}
$$

Crossing symmetry relates $\mathscr{H}^{(1)}(u, v)$ to $\mathscr{G}^{s h, 1}(u, v)$

$$
\mathscr{C}^{s h, 1}(u, v) \supset \frac{z}{1-z} \longrightarrow \operatorname{dDisc}\left[\frac{\bar{z}}{1-\bar{z}}\right] \neq 0
$$

D'Hoker, Freedman, Mathur, Matusis, Rastelli 1999

Tree Level

Caveat:

$$
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\log u+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v)
$$

Tree Level

Caveat:

$$
\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\log u+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v)
$$

Tree Level

Caveat:

$\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\log u+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v)$
the fact that at leading order there are double traces, it avoids producing a dDisc.

Tree Level

Caveat:

$\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\log u+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v)$
the fact that at leading order there are double traces, it avoids producing a dDisc.

Tree Level

Caveat:

$\mathscr{H}^{(1)}(u, v)=\sum_{n, \ell} u^{2+n}\left(a_{n, \ell}^{(1)}+\frac{1}{2} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)}\left(\log u+\frac{\partial}{\partial n}\right)\right) g_{4+2 n+\ell, \ell}(u, v)$
the fact that at leading order there are double traces, it avoids producing a dDisc.

completely fixed by the knowledge of the protected part of the correlator and the leading order data

Schematically

$$
\sum_{\Delta, \ell} a_{\Delta, \ell} \frac{u}{} \frac{\Delta-\ell}{2}^{\Delta, \ell}(u, v)=\left(\frac{u}{v}\right)^{2}\left(1+a_{2,0} v g_{2,0}(v, u)+a_{4,0} v^{2} g_{4,0}(v, u)+\ldots\right)
$$

Schematically

$$
\sum_{\Delta, \ell} a_{\Delta, \ell} \frac{u}{} \frac{\Delta-\ell}{2}^{\Delta, \ell}(u, v)=\left(\frac{u}{v}\right)^{2}\left(1+a_{2,0} v g_{2,0}(v, u)+a_{4,0} v^{2} g_{4,0}(v, u)+\ldots\right)
$$

Schematically

$$
\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell}{2}} g_{\Delta, \ell}(u, v)=\left(\frac{u}{v}\right)^{2}\left(1+a_{2,0} v g_{2,0}(v, u)+a_{4,0} v^{2} g_{4,0}(v, u)+\ldots\right)
$$

identity

Schematically

$$
\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell}{2}} g_{\Delta, \ell}(u, v)=\left(\frac{u}{v}\right)^{2}\left(1+a_{2,0} v g_{2,0}(v, u)+a_{4,0} v^{2} g_{4,0}(v, u)+\ldots\right)
$$

Schematically

$\sum_{\Delta, \ell} a_{\Delta, \ell} u^{\frac{\Delta-\ell}{2}} g_{\Delta, \ell}(u, v)=\left(\frac{u}{v}\right)^{2}\left(1+a_{2,0} v g_{2,0}(v, u)+a_{4,0} v^{2} g_{4,0}(v, u)+\ldots\right)$

One Loop

At one loop the situation is different, mainly for two reasons:

One Loop

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N^{-4}

One Loop

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N^{-4}
2) the decomposition in blocks contains a term with non-vanishing double discontinuity:

One Loop

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N^{-4}
2) the decomposition in blocks contains a term with non-vanishing double discontinuity:

$$
\mathscr{H}^{(2)}(u, v) \supset \sum_{n, \ell} u^{2+n} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{2} \log ^{2} u g_{4+2 n+\ell, \ell}(u, v)
$$

One Loop

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N^{-4}
2) the decomposition in blocks contains a term with non-vanishing double discontinuity:

$$
\begin{array}{r}
\mathscr{H}^{(2)}(u, v) \supset \sum_{n, \ell} u^{2+n} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{2} \underline{\log ^{2} u} g_{4+2 n+\ell, \ell}(u, v) \\
\text { dDisc }\left[\log ^{2}(1-\bar{z})(1-z)\right] \neq 0
\end{array}
$$

One Loop

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N^{-4}
2) the decomposition in blocks contains a term with non-vanishing double discontinuity:

$$
\begin{array}{r}
\mathscr{H}^{(2)}(u, v) \supset \sum_{n, \ell} u^{2+n} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{2} \underline{\log ^{2} u} g_{4+2 n+\ell, \ell}(u, v) \\
\operatorname{dDisc}\left[\log ^{2}(1-\bar{z})(1-z)\right] \neq 0
\end{array}
$$

completely specified by tree level data!

Mixing

Caveat: mixing between different operators with the same bare dimension and quantum numbers.

$$
\sum_{n, \ell} a_{n, \ell}^{(0)} \quad \sum_{n, \ell} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)} \quad \sum_{n, \ell} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{2}
$$

Mixing

Caveat: mixing between different operators with the same bare dimension and quantum numbers.

$$
\sum_{n, \ell} a_{n, \ell}^{(0)} \quad \sum_{n, \ell} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)} \quad \sum_{n, \ell} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{2}
$$

This mixing can be solved by considering all the four point functions of the type

$$
\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{p} \mathcal{O}_{p}\right\rangle
$$

Mixing

Caveat: mixing between different operators with the same bare dimension and quantum numbers.

$$
\sum_{n, \ell} a_{n, \ell}^{(0)} \quad \sum_{n, \ell} a_{n, \ell}^{(0)} \gamma_{n, \ell}^{(1)} \quad \sum_{n, \ell} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{2}
$$

This mixing can be solved by considering all the four point functions of the type

All Loops

Can we go further?

All Loops

Can we go further?

There are two obstructions:

All Loops

Can we go further?

There are two obstructions:

1) At higher orders, there are higher trace operators that start contributing to the double discontinuity.

All Loops

Can we go further?

There are two obstructions:

1) At higher orders, there are higher trace operators that start contributing to the double discontinuity.
2) There are further mixing problems to take into account and it becomes unfeasible.

How to approach higher trace

How to approach higher trace

1) Quarter-BPS intrinsically double trace

How to approach higher trace

1) Quarter-BPS intrinsically double trace
2) Half-BPS double trace

How to approach higher trace

1) Quarter-BPS intrinsically double trace

2) Half-BPS double trace

3) Higher loops

Quarter BPS operators

AB, G. Fardelli, A. Manenti 2022

$$
\mathcal{O}_{p q} \sim \operatorname{Tr}\left(\varphi^{M_{1}} \ldots\right) \operatorname{Tr}\left(\ldots \varphi^{M_{\Delta}}\right) P_{M_{1} \ldots M_{\Delta}}+\frac{1}{N}(\text { single trace })
$$

Quarter BPS operators

AB, G. Fardelli, A. Manenti 2022

$$
\mathcal{O}_{p q} \sim \operatorname{Tr}\left(\varphi^{M_{1}} \ldots\right) \operatorname{Tr}\left(\ldots \varphi^{M_{\Delta}}\right) \overbrace{M_{1} \ldots M_{\Delta}}-\frac{1}{N}(\text { single trace })
$$

Quarter BPS operators

AB, G. Fardelli, A. Manenti 2022

$$
\mathcal{O}_{p q} \sim \operatorname{Tr}\left(\varphi^{M_{1}} \ldots\right) \operatorname{Tr}\left(\ldots \varphi^{M_{\Delta}}\right) \underbrace{}_{M_{1} \ldots M_{\Delta}}-\frac{1}{N}(\text { single trace })
$$

For $\ell=0, \Delta=2 q+p$

Quarter BPS operators

$$
\mathcal{O}_{p q} \sim \operatorname{Tr}\left(\varphi^{M_{1}} \ldots\right) \operatorname{Tr}\left(\ldots \varphi^{M_{\Delta}}\right) \underbrace{}_{M_{1} \ldots M_{\Delta}}-\frac{1}{N}(\text { single trace })
$$

$$
\text { For } \ell=0, \Delta=2 q+p
$$

Annihilated by four supercharges: less protected!

Quarter BPS operators

$$
\mathcal{O}_{p q} \sim \operatorname{Tr}\left(\varphi^{M_{1}} \ldots\right) \operatorname{Tr}\left(\ldots \varphi^{M_{\Delta}}\right) \underbrace{}_{M_{1} \ldots M_{\Delta}}-\frac{1}{N}(\text { single trace })
$$

$$
\text { For } \ell=0, \Delta=2 q+p
$$

Annihilated by four supercharges: less protected!

Proliferation of $S U(4)_{R}$ tensor structure in the OPEs.
For instance $\mathcal{O}_{2} \times \mathcal{O}_{2}$ has 6 structure, $\mathcal{O}_{02} \times \mathcal{O}_{2}$ has 10 structures, $\mathcal{O}_{02} \times \mathcal{O}_{02}$ has 42 structures

How to deal with them?

How to deal with them?

Use null polarization vectors and use their invariants to group structures.

How to deal with them?

Use null polarization vectors and use their invariants to group structures.

Use supersymmetry!

How to deal with them?

Use null polarization vectors and use their invariants to group structures.

Use supersymmetry!

In $\mathcal{N}=2$ language, it is a half-BPS Schur operator

How to deal with them?

Use null polarization vectors and use their invariants to group structures.

Use supersymmetry!

In $\mathcal{N}=2$ language, it is a half-BPS Schur operator

Detect protected multiplets!

Four point functions

$$
\left\langle\mathcal{O}_{p_{1} q_{1}} \mathcal{O}_{p_{2} q_{2}} \mathcal{O}_{p_{3} q_{3}} \mathcal{O}_{p_{4} q_{4}}\right\rangle \sim \sum_{k} \mathbb{T}_{k} \mathscr{G}_{k}(z, \bar{z})
$$

Four point functions

$$
\left\langle\mathcal{O}_{p_{1} q_{1}} \mathcal{O}_{p_{2} q_{2}} \mathcal{O}_{p_{3} q_{3}} \mathcal{O}_{p_{4} q_{4}}\right\rangle-\sum_{k} \mathbb{T}_{k} \mathcal{G}_{k}(z, \bar{z})
$$

Four point functions

$$
\left\langle\mathcal{O}_{p_{1} q_{1}} \mathcal{O}_{p_{2} q_{2}} \mathcal{O}_{p_{3} q_{3}} \mathcal{O}_{p_{4} q_{4}}\right\rangle \sum_{k} \mathbb{T}_{k} \mathcal{G}_{k}(z, \bar{z})
$$

tensor structures in

$$
\mathcal{O}_{p_{1} q_{1}} \times \mathcal{O}_{p_{2} q_{2}} \cap \mathcal{O}_{p_{3} q_{3}} \times \mathcal{O}_{p_{4} q_{4}}
$$

Four point functions

$$
\begin{array}{r}
\left\langle\mathcal{O}_{p_{1} q_{1}} \mathcal{O}_{p_{2} q_{2}} \mathcal{O}_{p_{3} q_{3}} \mathcal{O}_{p_{4} q_{4}}\right\rangle \sim \sum_{k} \mathbb{T}_{k}(z, \bar{z}) \\
\text { tensor structures in } \\
\mathcal{O}_{p_{1} q_{1}} \times \mathcal{O}_{p_{2} q_{2}} \cap \mathcal{O}_{p_{3} q_{3}} \times \mathcal{O}_{p_{4} q_{4}}
\end{array}
$$

We can use the chiral algebra to solve the Ward Identities and identify the protected sector

Four point functions

$$
\left\langle\mathcal{O}_{p_{1} q_{1}} \mathcal{O}_{p_{2} q_{2}} \mathcal{O}_{p_{3} q_{3}} \mathcal{O}_{p_{4} q_{4}}\right\rangle \sum_{k} \mathbb{T}_{k} \mathcal{G}_{k}(z, \bar{z})
$$

tensor structures in

$$
\mathcal{O}_{p_{1} q_{1}} \times \mathcal{O}_{p_{2} q_{2}} \cap \mathcal{O}_{p_{3} q_{3}} \times \mathcal{O}_{p_{4} q_{4}}
$$

We can use the chiral algebra to solve the Ward Identities and identify the protected sector

$$
\mathscr{G}_{k}(z, \bar{z})=w_{k}(z, \bar{z})+\sum_{m=1}^{\operatorname{dim}(k e r \chi)} \mathscr{H}_{k}(z, \bar{z}) v_{k}^{(m)}(z, \bar{z})
$$

Four point functions

$$
\left\langle\mathcal{O}_{p_{1} q_{1}} \mathcal{O}_{p_{2} q_{2}} \mathcal{O}_{p_{3} q_{3}} \mathcal{O}_{p_{4} q_{4}}\right\rangle \sum_{k} \mathbb{\pi}_{k} \mathcal{G}_{k}(z, \bar{z})
$$

tensor structures in

$$
\mathcal{O}_{p_{1} q_{1}} \times \mathcal{O}_{p_{2} q_{2}} \cap \mathcal{O}_{p_{3} q_{3}} \times \mathcal{O}_{p_{4} q_{4}}
$$

We can use the chiral algebra to solve the Ward Identities and identify the protected sector

$$
\mathscr{G}_{k}(z, \bar{z})=w_{k}(z, \bar{z})+\sum_{m=1}^{\operatorname{dim}(k e r \chi)} \mathscr{H}_{k}(z, \bar{z}) v_{k}^{(m)}(z, \bar{z})
$$

non protected

Four point functions

$$
\left\langle\mathcal{O}_{p_{1} q_{1}} \mathcal{O}_{p_{2} q_{2}} \mathcal{O}_{p_{3} q_{3}} \mathcal{O}_{p_{4} q_{4}}\right\rangle \sum_{k} \mathbb{\pi}_{k} \mathcal{G}_{k}(z, \bar{z})
$$

tensor structures in

$$
\mathcal{O}_{p_{1} q_{1}} \times \mathcal{O}_{p_{2} q_{2}} \cap \mathcal{O}_{p_{3} q_{3}} \times \mathcal{O}_{p_{4} q_{4}}
$$

We can use the chiral algebra to solve the Ward Identities and identify the protected sector

$$
\begin{gathered}
\mathscr{G}_{k}(z, \bar{z})=w_{k}(z, \bar{z})+\sum_{m=1}^{\operatorname{dim}(k e r \chi)} \mathscr{H}_{k}(z, \bar{z}) v_{k}^{(m)}(z, \bar{z}) \\
\text { protected } \\
\text { non protected }
\end{gathered}
$$

Four point functions

$$
\left\langle\mathcal{O}_{p_{1} q_{1}} \mathcal{O}_{p_{2} q_{2}} \mathcal{O}_{p_{3} q_{3}} \mathcal{O}_{p_{4} q_{4}}\right\rangle \sum_{k} \mathbb{\pi}_{k} \mathcal{G}_{k}(z, \bar{z})
$$

tensor structures in

$$
\mathcal{O}_{p_{1} q_{1}} \times \mathcal{O}_{p_{2} q_{2}} \cap \mathcal{O}_{p_{3} q_{3}} \times \mathcal{O}_{p_{4} q_{4}}
$$

We can use the chiral algebra to solve the Ward Identities and identify the protected sector

$$
\begin{array}{r}
\mathscr{G}_{k}(z, \bar{z})=w_{k}(z, \bar{z})+\sum_{m=1}^{\operatorname{dim}(k e r \chi)} \mathscr{H}_{k}(z, \bar{z}) v_{k}^{(m)}(z, \bar{z}) \\
\text { protected } \xrightarrow{ } \text { non protected }
\end{array}
$$

Invert the protected part

As in the half-BPS case, we can use the inversion formula

$$
w_{k}(z, \bar{z})
$$

Invert the protected part

As in the half-BPS case, we can use the inversion formula

$$
w_{k}(z, \bar{z})
$$

Invert the protected part

As in the half-BPS case, we can use the inversion formula

Invert the protected part

As in the half-BPS case, we can use the inversion formula

$w_{k}(z, \bar{z})$
|
d Disc
OPE data

Invert the protected part

As in the half-BPS case, we can use the inversion formula

Invert the protected part

As in the half-BPS case, we can use the inversion formula

$\left\langle a_{\Delta, \ell}^{(0)} \gamma_{\Delta, \ell}^{(1)}\right\rangle \quad\left\langle a_{\Delta, \ell}^{(1)}\right\rangle$
Large degeneracy of states!

Specific case

We studied in details mixed correlators involving $(p, q) \rightarrow(0,2)$

$$
\begin{aligned}
& \left\langle\mathcal{O}_{02} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle \\
& \left\langle\mathcal{O}_{2} \mathcal{O}_{02} \mathcal{O}_{02} \mathcal{O}_{2}\right\rangle \\
& \left\langle\mathcal{O}_{02} \mathcal{O}_{02} \mathcal{O}_{02} \mathcal{O}_{02}\right\rangle
\end{aligned}
$$

Specific case

We studied in details mixed correlators involving $(p, q) \rightarrow(0,2)$

$$
\begin{aligned}
& \left\langle\mathcal{O}_{02} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle \\
& \left\langle\mathcal{O}_{2} \mathcal{O}_{02} \mathcal{O}_{02} \mathcal{O}_{2}\right\rangle \\
& \left\langle\mathcal{O}_{02} \mathcal{O}_{02} \mathcal{O}_{02} \mathcal{O}_{02}\right\rangle
\end{aligned}
$$

Triple trace operators appearing at lower orders in $1 / N$

Specific case

We studied in details mixed correlators involving $(p, q) \rightarrow(0,2)$

$$
\begin{aligned}
& \left\langle\mathcal{O}_{02} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle \\
& \left\langle\mathcal{O}_{2} \mathcal{O}_{02} \mathcal{O}_{02} \mathcal{O}_{2}\right\rangle \\
& \left\langle\mathcal{O}_{02} \mathcal{O}_{02} \mathcal{O}_{02} \mathcal{O}_{02}\right\rangle
\end{aligned}
$$

Triple trace operators appearing at lower orders in $1 / N$
Disentangling the degeneracy is cumbersome

Specific case

We studied in details mixed correlators involving $(p, q) \rightarrow(0,2)$

$$
\begin{aligned}
& \left\langle\mathcal{O}_{02} \mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle \\
& \left\langle\mathcal{O}_{2} \mathcal{O}_{02} \mathcal{O}_{02} \mathcal{O}_{2}\right\rangle \\
& \left\langle\mathcal{O}_{02} \mathcal{O}_{02} \mathcal{O}_{02} \mathcal{O}_{02}\right\rangle
\end{aligned}
$$

Triple trace operators appearing at lower orders in $1 / N$
Disentangling the degeneracy is cumbersome

Double trace half-BPS

AB, G. Fardelli, A. Manenti in progress
Starting from dimension four operators, there are two half-BPS operators

Double trace half-BPS

AB, G. Fardelli, A. Manenti in progress
Starting from dimension four operators, there are two half-BPS operators

Schematically they are

$$
\left(\operatorname{Tr}\left(\phi^{2}\right)\right)^{2} \quad \operatorname{Tr}\left(\phi^{4}\right)
$$

Double trace half-BPS

AB, G. Fardelli, A. Manenti in progress
Starting from dimension four operators, there are two half-BPS operators

Schematically they are
$\left(\operatorname{Tr}\left(\phi^{2}\right)\right)^{2} \quad \operatorname{Tr}\left(\phi^{4}\right)$

The properly normalised operators are of the form

Double trace half-BPS

Starting from dimension four operators, there are two half-BPS operators

Schematically they are

$$
\left(\operatorname{Tr}\left(\phi^{2}\right)\right)^{2} \quad \operatorname{Tr}\left(\phi^{4}\right)
$$

The properly normalised operators are of the form

$$
\begin{gathered}
\mathcal{O}_{4}^{\mathrm{sp}}(x)=\sqrt{\frac{4\left(N^{2}+1\right)}{\left(N^{2}-1\right)\left(N^{2}-4\right)\left(N^{2}-9\right)}}\left(\operatorname{Tr}\left(\phi^{4}\right)-\frac{2 N^{2}-3}{N\left(N^{2}+1\right)} \operatorname{Tr}\left(\phi^{2}\right)^{2}\right) \\
\mathcal{O}_{4}^{\mathrm{dt}}(x)=\sqrt{\frac{2}{N^{4}-1}} \operatorname{Tr}\left(\phi^{2}\right)^{2}
\end{gathered}
$$

Idea

Idea

The operator which is usually considered is $\mathcal{O}_{4}^{\mathrm{sp}}$ since it is dual to a single particle state in $A d S$.

Idea

The operator which is usually considered is $\mathcal{O}_{4}^{\mathrm{sp}}$ since it is dual to a single particle state in $A d S$.

$$
\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{4}^{\mathrm{sp}}\right\rangle=0 \quad\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{4}^{\mathrm{dt}}\right\rangle \neq 0
$$

Idea

The operator which is usually considered is $\mathcal{O}_{4}^{\mathrm{sp}}$ since it is dual to a single particle state in $A d S$.

$$
\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{4}^{\mathrm{sp}}\right\rangle=0 \quad\left\langle\mathcal{O}_{2} \mathcal{O}_{2} \mathcal{O}_{4}^{\mathrm{dt}}\right\rangle \neq 0
$$

We will be mostly interested in $\mathcal{O}_{4}^{\mathrm{dt}}$

We found the structure of protected operators and computed the correlator at order $1 / c$

Results

$\left\langle\mathcal{O}_{4}^{\mathrm{dt}} \mathcal{O}_{4}^{\mathrm{dt}} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle$

Results

$\left\langle\mathcal{O}_{4}^{\mathrm{dt}} \mathrm{O}_{4}^{\mathrm{dt}} \mathfrak{O}_{2} \mathcal{O}_{2}\right\rangle$

Computed CFT data of non protected, dimension six operators.

Results

$\left\langle\mathcal{O}_{4}^{\mathrm{dt}} \mathcal{O}_{4}^{\mathrm{dt}} \mathcal{O}_{2} \mathcal{O}_{2}\right\rangle$

Computed CFT data of non protected, dimension six operators.
While supersymmetry imposes more constraints, there is higher degeneracy.

Open questions

Understand how to systematise these computations

Connect with systematics of AdS Witten diagrams

Use this together with higher point functions

Understand the contribution of higher traces in OPE

Basis of functions?

In $A d S_{3}$ it has been shown that it is necessary to include Bloch-WignerRamakrishnan functions.

Other results

Other results

- Two loops: OPE reasoning + educated ansatz for the $\mathscr{H}^{(3)}(u, v)$

Drummond, Paul 2022
Huang, Ye Yuan 2021

Other results

- Two loops: OPE reasoning + educated ansatz for the $\mathscr{H}^{(3)}(u, v)$

Drummond, Paul 2022
Huang, Ye Yuan 2021
checked with flat space
unavoidability of for triple traces

All-loops sugra

All-loops sugra

- All loop structure:

All-loops sugra

- All loop structure: $\mathscr{H}^{(k)}(u, v) \supset \log ^{k} u \sum_{n, \ell, I} \frac{u^{n+2}}{2^{k} k!} a_{n, \ell, I}^{(0)}\left(\gamma_{n, \ell, I}^{(1)}\right)^{k} g_{4+2 n+\ell, \ell}(u, v)$

All-loops sugra

- All loop structure: $\mathscr{H}^{(k)}(u, v) \supset \log ^{k} u \sum_{n, \ell, I} \frac{u^{n+2}}{2^{k} k!} a_{n, \ell, I}^{(0)}\left(\gamma_{n, l, l}^{(1)}\right)^{k} g_{4+2 n+\ell,(}(u, v)$
known!

All-loops sugra

- All loop structure: $\mathscr{H}^{(k)}(u, v) \supset \log ^{k} u \sum_{n, \ell, I} \frac{u^{n+2}}{2^{k} k!} a_{n, \ell, I}^{(0)}\left(\gamma_{n, \ell, I}^{(1)}\right)^{k} g_{4+2 n+\ell, \ell}(u, v)$

> known!

s-channel consecutive cuts
comparison with flat space

All- loops in ϕ^{4}

All- loops in ϕ^{4}

$$
\mathscr{H}^{(k)}(u, v) \supset \log ^{k} u \sum_{n, \ell} \frac{u^{n+2}}{2^{k} k!} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{k} g_{4+2 n+\ell, \ell}(u, v)
$$

All- loops in ϕ^{4}

$$
\mathscr{H}^{(k)}(u, v) \supset \log ^{k} u \sum_{n, \ell} \frac{u^{n+2}}{2^{k} k!} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{k} g_{4+2 n+\ell, \ell}(u, v)
$$

All- loops in ϕ^{4}

$$
\mathscr{H}^{(k)}(u, v) \supset \log ^{k} u \sum_{n, \ell} \frac{u^{n+2}}{2^{k} k!} a_{n, \ell}^{(0)}\left(\gamma_{n, \ell}^{(1)}\right)^{k} g_{4+2 n+\ell, \ell}(u, v)
$$

$$
\gamma^{(k)} \underset{\ell \rightarrow \infty}{\sim} \frac{\log ^{k-3} \ell}{\ell^{2}}+\ldots
$$

> Can this behaviour constrain higher trace contribution?

AB, G. Fardelli, M.R. Khansari in progress

Conclusions

Conclusions

Approaches to study double and higher trace operators

Mostly for supersymmetric theories

In some cases, there are strong differences between the two

Conclusions

Approaches to study double and higher trace operators

Mostly for supersymmetric theories

In some cases, there are strong differences between the two

Use this technology with integrability to include single traces

Conclusions

Approaches to study double and higher trace operators

Mostly for supersymmetric theories

In some cases, there are strong differences between the two

Understand how to resum the N expansion
Use this technology with integrability to include single traces

