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• In this talk I will focus on large N perturbation theory .

• This particular example is mostly interesting due to the 
connection with theories of gravity in curved space-time.
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Approach I

Warning: degeneracy among states having the same  and .Δ ℓ
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From  there are triple trace contributing to the OPE. N−6
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Approach II

Study four point functions of higher trace operators 
.𝒪DT ∼ [𝒪𝒪]

⟨𝒪DT(x1)𝒪(x2)𝒪(x3)𝒪(x4)⟩

In this case, triple-trace operators appear already at leading order. 

One example is 
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Approach III

Study higher point functions of single traces at large N

⟨𝒪(x1)𝒪(x2)𝒪(x3)𝒪(x4)𝒪(x5)⟩

This situation is much richer but also harder.

see for instance Harris, Kaviraj, Mann, Quintavalle, Schomerus, 2024 
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This talk 

In this talk I will mostly focus on approach I and approach II.

While the reasoning is equivalent in spirit, most of the results 
presented are for supersymmetric theories.

Supersymmetry helps in constraining the structure of the 
correlators (protected quantities).

It is also very interesting due to the connection with supergravity 
amplitudes.
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CFT AdS
4 dimensional  
Super Yang Mills with 
SU(N) gauge group 

and SU(4) R-symmetry 

𝒩 = 4
type IIB superstring 
theory on AdS5 × S5

• string length 

• string coupling 

α′ 

gs

• rank of the gauge group 

• coupling constant 

N
gYM

N ∼ g−1
s

λ = g2
YMN = (α′ )−2

AdS/CFT correspondence
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AdSd+1 × Sqℝd−1,1 = ∂AdSd+1

Weakly coupled regime in the bulk is supergravity and corresponds to large 
central charge and string length to zero.
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Single trace half-BPS operators 𝒪p

Δ𝒪p
= p

⟨𝒪p𝒪p𝒪q⟩ = f(N)

 of [0,p,0] SU(4)R

Scalar operators  with mass sp
m2 = Δp(Δp − 4)

the  angular momentum is S5 p

             Graviton p = 2

             Kaluza Klein modesp ≥ 3

Quarter-BPS multi trace operators Bound states of single 
particle states 

 of [p, q, p] SU(4)R

Δ = 2q + p
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𝒢short(u, v) = 𝒢sh,0(u, v) +
1

N2
𝒢sh,1(u, v)

  
Multi-trace 
operators

λ → ∞
ΔST → λ1/4

c ∼ N2
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reconstruct the correlator by knowing only its singularities as  or v → 0

z̄ → 1
How?

cΔ,ℓ ∼ ∫
1

0
dzdz̄ μ(z, z̄) dDisc[𝒢(z, z̄)]

dDisc[𝒢(z, z̄)] = 𝒢eucl(z, z̄) −
1
2

𝒢↺(z, z̄) −
1
2

𝒢↻(z, z̄)

analytic continuation 
around z̄ → 1

kernel double 
discontinuity 
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It is possible to write a relation that invert the OPE allowing us to 
reconstruct the correlator by knowing only its singularities as  or v → 0

z̄ → 1
How?

cΔ,ℓ ∼ ∫
1

0
dzdz̄ μ(z, z̄) dDisc[𝒢(z, z̄)]

kernel double 
discontinuity 

cΔ,ℓ
Δ → Δk

aΔk,ℓ

Δ − Δk

has poles at the 
dimension of the 

exchanged operator with 
residue the square of the 

three point function
Caron Huot 2017

Simmons-Duffin Stanford Witten 2017 
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v2𝒢short(u, v) − u2𝒢short(v, u) + u2 − v2 = −
u − v

c
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We expand at leading order   and we get N−2
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n,ℓγ(1)

n,ℓ (log u +
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∂n )) g4+2n+ℓ,ℓ(u, v)

crossing      symmetry 
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Crossing symmetry relates  to ℋ(1)(u, v) 𝒢sh,1(u, v)

𝒢sh,1(u, v) ⊃
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1 − z
dDisc[

z̄
1 − z̄

] ≠ 0

Alday, Caron Huot 2018

D’Hoker, Freedman, Mathur, Matusis, Rastelli 1999
Arutyunov Frolov 2000
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completely fixed by the knowledge 
of the protected part of the 

correlator and the leading order data 

Caveat:

ℋ(1)(u, v) = ∑
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∑
Δ,ℓ

aΔ,ℓu
Δ − ℓ

2 gΔ,ℓ(u, v) = ( u
v )

2

(1 + a2,0vg2,0(v, u) + a4,0v2g4,0(v, u) + …)

identity half-BPS 
single 
trace

double 
trace

Δ, ℓ
1 𝒪2 [𝒪2𝒪2]



One Loop

23

At one loop the situation is different, mainly for two reasons:

Aprile, Drummond, Heslop, Paul 2017
Alday, AB 2017



One Loop

23

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N−4

Aprile, Drummond, Heslop, Paul 2017
Alday, AB 2017



One Loop

23

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N−4

2) the decomposition in blocks contains a term with non-vanishing double 
discontinuity: 

Aprile, Drummond, Heslop, Paul 2017
Alday, AB 2017



One Loop

23

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N−4

2) the decomposition in blocks contains a term with non-vanishing double 
discontinuity: 

ℋ(2)(u, v) ⊃ ∑
n,ℓ

u2+na(0)
n,ℓ (γ(1)

n,ℓ)
2

log2 u g4+2n+ℓ,ℓ(u, v)

Aprile, Drummond, Heslop, Paul 2017
Alday, AB 2017



One Loop

23

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N−4

2) the decomposition in blocks contains a term with non-vanishing double 
discontinuity: 

ℋ(2)(u, v) ⊃ ∑
n,ℓ

u2+na(0)
n,ℓ (γ(1)

n,ℓ)
2

log2 u g4+2n+ℓ,ℓ(u, v)

dDisc[log2(1 − z̄)(1 − z)] ≠ 0

Aprile, Drummond, Heslop, Paul 2017
Alday, AB 2017



One Loop

23

At one loop the situation is different, mainly for two reasons:

1) No contribution from the protected part, from order N−4

2) the decomposition in blocks contains a term with non-vanishing double 
discontinuity: 

ℋ(2)(u, v) ⊃ ∑
n,ℓ

u2+na(0)
n,ℓ (γ(1)

n,ℓ)
2

log2 u g4+2n+ℓ,ℓ(u, v)

dDisc[log2(1 − z̄)(1 − z)] ≠ 0

completely specified by tree level data!
Aprile, Drummond, Heslop, Paul 2017

Alday, AB 2017
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All Loops 

25

Can we go further? 

There are two obstructions: 

1) At higher orders, there are higher trace operators that start contributing 
to the double discontinuity.

2) There are further mixing problems to take into account and it becomes 
unfeasible. 
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How to approach higher trace

1) Quarter-BPS intrinsically double trace

2) Half-BPS double trace

3) Higher loops
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Quarter BPS operators

𝒪pq ∼ Tr (φM1…) Tr (…φMΔ) PM1…MΔ
+

1
N (single trace)

projector in the [p, q, p]R

For ,  ℓ = 0 Δ = 2q + p

Annihilated by four supercharges: less protected! 

Proliferation of  tensor structure in the OPEs. SU(4)R

For instance  has 6 structure,  has 10 structures, 
 has 42 structures

𝒪2 × 𝒪2 𝒪02 × 𝒪2
𝒪02 × 𝒪02

AB, G. Fardelli, A. Manenti 2022



28

How to deal with them?



28

How to deal with them?
Use null polarization vectors and use their invariants to group structures.



28

How to deal with them?
Use null polarization vectors and use their invariants to group structures.

Use supersymmetry! 



28

How to deal with them?
Use null polarization vectors and use their invariants to group structures.

Use supersymmetry! 

In  language, it is a half-BPS Schur operator𝒩 = 2



28

How to deal with them?
Use null polarization vectors and use their invariants to group structures.

Use supersymmetry! 

In  language, it is a half-BPS Schur operator𝒩 = 2

Detect protected multiplets!
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Invert the protected part
As in the half-BPS case, we can use the inversion formula

wk(z, z̄)

OPE data

⟨a(0)
Δ,ℓγ(1)

Δ,ℓ⟩ ⟨a(1)
Δ,ℓ⟩

Large degeneracy of states!

d   Disc
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We studied in details mixed correlators involving  (p, q) → (0,2)
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⟨𝒪2𝒪02𝒪02𝒪2⟩

⟨𝒪02𝒪02𝒪02𝒪02⟩

protected!

Triple trace operators appearing at lower orders in 1/N

Disentangling the degeneracy is cumbersome
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Double trace half-BPS
Starting from dimension four operators, there are two half-BPS operators 

Schematically they are 

(Tr (ϕ2))2 Tr (ϕ4)

The properly normalised operators are of the form 

𝒪sp
4 (x) =

4(N2 + 1)
(N2 − 1)(N2 − 4)(N2 − 9) (Tr (ϕ4) −

2N2 − 3
N(N2 + 1)

Tr (ϕ2)2)
𝒪dt

4 (x) =
2

N4 − 1
Tr (ϕ2)2

32

AB, G. Fardelli, A. Manenti in progress
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Idea
The operator which is usually considered is  since it is dual to a single 

particle state in . 
𝒪sp

4
AdS

⟨𝒪2𝒪2𝒪
sp
4 ⟩ = 0 ⟨𝒪2𝒪2𝒪dt

4 ⟩ ≠ 0

We will be mostly interested in 𝒪dt
4

We found the structure of protected operators and computed the correlator 
at order 1/c
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Results

Computed CFT data of non protected, dimension six operators.

⟨𝒪dt
4 𝒪dt

4 𝒪2𝒪2⟩

While supersymmetry imposes more constraints, there is higher 
degeneracy.

34 Ma, Zhou 2022



Open questions

Understand how to systematise these computations

Connect with systematics of AdS Witten diagrams

Use this together with higher point functions

Basis of functions? 

In  it has been shown that it is necessary to include Bloch-Wigner-
Ramakrishnan functions.

AdS3

Understand the contribution of higher traces in OPE 

35
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Other results

36

• Two loops: OPE reasoning + educated ansatz for the ℋ(3)(u, v)
Drummond, Paul 2022

Huang, Ye Yuan 2021

checked with flat space 

unavoidability of  for triple traces
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37

• All loop structure: ℋ(k)(u, v) ⊃ logk u ∑
n,ℓ,I

un+2

2kk!
a(0)

n,ℓ,I (γ(1)
n,ℓ,I)

k
g4+2n+ℓ,ℓ(u, v)

known! 

s-channel consecutive cuts

AB, Fardelli, Georgoudis 2020
Aprile, Drummond, Heslop, Paul 2018

Caron-Huot, Trinh 2018

comparison with flat space 
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All- loops in ϕ4

38

ℋ(k)(u, v) ⊃ logk u∑
n,ℓ

un+2

2kk!
a(0)

n,ℓ (γ(1)
n,ℓ)

k
g4+2n+ℓ,ℓ(u, v)

γ(k) ∼
ℓ→∞

logk−3 ℓ
ℓ2

+ …

Can this behaviour 
constrain higher trace 

contribution? 

AB, G. Fardelli, M.R. Khansari in progress
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Conclusions
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Approaches to study double and higher trace operators 

Mostly for supersymmetric theories 

In some cases, there are strong differences between the two

Understand how to resum the N expansion

Use this technology with integrability to include single traces


