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N = 4 Super-Yang-Mills (SYM)

N = 4 SYM is maximally supersymmetric gauge theory in 4d,
defined by gauge group G (e.g. SU(N)), coupling gYM, and θ.

It is conformal for any complex τ ≡ 4πi
g2

YM
+ θ

2π .

It’s the most well-studied toy model in high energy theory bc e.g.:

AdS/CFT: its dual to Type IIB string theory on AdS5 × S5, with
gravity description for large N and large λ ≡ g2

YMN.

Simplest (most symmetric) gauge theory, model for QCD.

Perturbative approaches: weak coupling for finite N, integrability
for N → ∞ and any λ, holography for large N and strong coupling.
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Weak coupling

When λ ≡ g2
YMN is small, can study SYM with Feynman diagrams

for any N like any weakly coupled gauge theory.

E.g. lowest unprotected singlet (the Konishi) has [Velizhanin ’09] :

∆ =2 +
3λ
4π2 − 3λ2

16π4 +
21λ3

256π6

+
λ4 (−1440

( 12
N2 + 1

)
ζ(5) + 576ζ(3)− 2496

)
65536π8 + O(λ5)

First non-planar correction only at 4-loops!

But bulk dual is very stringy in this regime, no gravity
approximation, no black holes.
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Holography

AdS/CFT dictionary for AdS5 × S5 string theory with string length
ℓs and complex string coupling τs = χ+ i/gs:

L4/ℓ4
s = g2

YMN τ = τs ,

In principle could study using worldsheet for small gs, but hard
due to RR flux. At finite gs, no method even in principle.

At large N, can study AdS5 × S5 supergravity, e.g. lowest
unprotected singlet is double trace [D’Hoker, Mathur, Matusis, Rastelli ’99] :

∆ = 4 − 16/N2 + O(N−7/2) ,

Higher orders from loops and stringy corrections, e.g. R4 ∼ N−7/2.
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Planar integrability

Can compute all scaling dimensions for N → ∞ and finite λ from
quantum spectral curve [Gromov, Kazakov, Leurent, Volin ’14] .

Implemented numerically for entire spectrum just recently [Gromov,

Hegedus, Julius, Sokolova ’23] .

At small λ matches weak coupling, at large λ single trace
operators like Konishi match stringy prediction:

∆Kon = 2λ1/4 − 2 + 2/λ1/4 + . . . ,

Higher traces just trivial products of single traces, e.g. lowest
double trace has ∆ = 2 + 2.

OPE coefficients not yet computed for generic operators.
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Planar spectrum: limitations

0 50 100 150 200 250 300
2

3

4
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7

Triple-trace

Double-trace

Single-trace

Lowest

Shows level crossing, should not exist in finite N theory.

Light operators at strong coupling (e.g. double trace) are trivial,
insensitive to gravity corrections.
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This talk

Combine non-perturbative methods, bootstrap and supersymmetric
localization, to study stress tensor correlator for all N and τ .

Outline:

Basics of stress tensor correlator.

Non-perturbative constraints at large or finite N.

Numerical bootstrap bounds

Compare to weak and strong coupling perturbative results.

Non-pert improvement to planar integrability spectrum
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N = 4 SYM basics

All N = 4 CFTs have SU(4) R-symmetry, and are conformal
manifolds with one complex parameter τ .

Defined by values of central charge c = dim(G)/4 and complex τ .

N = 4 SYM is gauge theory where matter transform in adjoint of
gauge group G, which must be compact classical lie group.

For this talk, we take G = SU(N), with c = N2−1
4 .

Duality group of N = 4 SU(N) SYM is SL(2,Z).

Self dual points are τ = i with enhanced Z2, and τ = e
iπ
3 with Z3.
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Stress tensor correlator

4-point function of stress-tensor superprimary Sa with 20′ index a:

⟨Sa(x1)Sb(x2)Sc(x3)Sd(x4)⟩ =
Gabcd(U,V )

x4
12x4

34
, U ≡

x2
12x2

34

x2
13x2

24
,V ≡

x2
14x2

23

x2
13x2

24
.

⟨SSSS⟩ Ward identity has formal solution [Dolan, Osborn ’02] :

Gabcd(U,V ) = Gabcd(U,V )short +Θabcd(U,V )T (U,V ) .

Gabcd (U,V )short fixed by free theory, so no τ -dependence.

Θabcd (U,V ) fixed by symmetry.

All interacting data in T (U,V ), which is SU(4)R singlet.
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Θabcd (U,V ) fixed by symmetry.

All interacting data in T (U,V ), which is SU(4)R singlet.
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Block expansion

Expand T (U,V ) in even spin ℓ 4d conformal blocks g∆,ℓ(U,V ):

T = U−2
∑

ℓ,∆≥ℓ+2

λ2
∆,ℓg∆+4,ℓ(U,V ) + F (0)

short(U,V ) +
1
c

F (1)
short(U,V ) .

Fshort for protected multiplets fixed by free theory, so no
τ -dependence.

∆, ℓ correspond to long multiplets in singlet irrep of SU(4)R.

Goal: compute ∆ and λ2
∆,ℓ.
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Non-perturbative constraints: Crossing

Impose that ⟨Sa(x1)Sb(x2)Sc(x3)Sd(x4)⟩ is permutation invariant.

Fixes large c ∼ N2 correlator in terms of finite # of coeffs bi at
each 1/c [Heemskerk, Penedones, Polchinski, Sully ’09; Alday, Bissi, Lukowski ’14] :

T =
TR

c
+ b1

TR4

c7/4 +
TR|R + b2TR4

c2 +
b3T 1

D4R4 + b4T 2
D4R4

c9/4 + . . . .

At finite N, gives infinite set of constraints on CFT data:∑
ℓ=0,2,...

∑
∆≥ℓ+2

λ2
∆,ℓF∆,ℓ(U,V ) + F (0)

short(U,V ) + c−1F (1)
short(U,V ) = 0 ,

F∆,ℓ(U,V ) ≡ V 4g∆+4,ℓ(U,V )− U4g∆+4,ℓ(V ,U) .
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Non-perturbative constraints: Unitarity

Impose that λ2
∆,ℓ ≥ 0 and ∆ ≥ ℓ+ 2.

At large N, trivially satisfied by N → ∞ disconnected part
Gabcd

short(U,V ), so does not constrain 1/N corrections to T (U,V ).

At finite N, implies crossing equations are infinite set of vectors
multiplying positive coefficients ⇒ numerical bootstrap algorithm
bounds CFT data [Rattazzi, Rychkov, Tonni, Vichi ’08; Beem, Rastelli, van Rees ’13]

Bounds monotonically improve with truncation size Λ.

Bounds can be more constraining than analytic bootstrap EVEN at
largish N, bc unitarity is now nontrivial constraint.
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Non-perturbative constraints: localization

Derivatives of free energy F (m) deformed by hyper mass relate to
S4 integrals of correlator [Binder, SMC, Pufu, Wang ’19; SMC, Pufu ’20] :

F2(τ) ≡
1
8c

∂2
m∂τ∂τ̄F
∂τ∂τ̄F

∣∣∣
m=0

= I2
[
T (U,V )−

(
1 +

1
V 2 +

1
cV

)]
,

F4(τ) ≡ −48ζ(3)c−1 − c−2∂4
mF

∣∣
m=0 = I4

[
T (U,V )−

(
1 +

1
V 2 +

1
cV

)]
.

At large N, can be used to fix two bi at each 1/N.

At finite N, allows us to input τ into numerical bootstrap, as two
extra linear constraints on CFT data [SMC, Dempsey, Pufu ’21] .
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Mass deformed sphere partition function

Computed using localization in terms of rank(G) dimensional
matrix model integral for gauge group G [Pestun ’08] .

For SU(N) we have explicitly (with aij ≡ ai − aj ):

Z =

∫
dN−1a

N!

∏
i<j a2

ij H
2(aij)

H(m)N−1
∏

i ̸=j H(aij + m)
e
− 8π2

g2
YM

∑
i a2

i |Zinst(m, τ, aij)|2 .

H(z) is product of Barnes G-functions.

θ-dependence only appears in instanton contributions
Zinst(m, τ, aij), which are complicated infinite sums [Nekrasov ’03] .

Can compute F2(τ) and F4(τ) numerically for small N, but
need analytic expression for larger N.

Shai Chester (Imperial College London) February 20, 2024 14 / 34



Mass deformed sphere partition function

Computed using localization in terms of rank(G) dimensional
matrix model integral for gauge group G [Pestun ’08] .

For SU(N) we have explicitly (with aij ≡ ai − aj ):

Z =

∫
dN−1a

N!

∏
i<j a2

ij H
2(aij)

H(m)N−1
∏

i ̸=j H(aij + m)
e
− 8π2

g2
YM

∑
i a2

i |Zinst(m, τ, aij)|2 .

H(z) is product of Barnes G-functions.

θ-dependence only appears in instanton contributions
Zinst(m, τ, aij), which are complicated infinite sums [Nekrasov ’03] .

Can compute F2(τ) and F4(τ) numerically for small N, but
need analytic expression for larger N.

Shai Chester (Imperial College London) February 20, 2024 14 / 34



Mass deformed sphere partition function

Computed using localization in terms of rank(G) dimensional
matrix model integral for gauge group G [Pestun ’08] .

For SU(N) we have explicitly (with aij ≡ ai − aj ):

Z =

∫
dN−1a

N!

∏
i<j a2

ij H
2(aij)

H(m)N−1
∏

i ̸=j H(aij + m)
e
− 8π2

g2
YM

∑
i a2

i |Zinst(m, τ, aij)|2 .

H(z) is product of Barnes G-functions.

θ-dependence only appears in instanton contributions
Zinst(m, τ, aij), which are complicated infinite sums [Nekrasov ’03] .

Can compute F2(τ) and F4(τ) numerically for small N, but
need analytic expression for larger N.

Shai Chester (Imperial College London) February 20, 2024 14 / 34



Mass deformed sphere partition function

Computed using localization in terms of rank(G) dimensional
matrix model integral for gauge group G [Pestun ’08] .

For SU(N) we have explicitly (with aij ≡ ai − aj ):

Z =

∫
dN−1a

N!

∏
i<j a2

ij H
2(aij)

H(m)N−1
∏

i ̸=j H(aij + m)
e
− 8π2

g2
YM

∑
i a2

i |Zinst(m, τ, aij)|2 .

H(z) is product of Barnes G-functions.

θ-dependence only appears in instanton contributions
Zinst(m, τ, aij), which are complicated infinite sums [Nekrasov ’03] .

Can compute F2(τ) and F4(τ) numerically for small N, but
need analytic expression for larger N.

Shai Chester (Imperial College London) February 20, 2024 14 / 34



Mass deformed sphere partition function

Computed using localization in terms of rank(G) dimensional
matrix model integral for gauge group G [Pestun ’08] .

For SU(N) we have explicitly (with aij ≡ ai − aj ):

Z =

∫
dN−1a

N!

∏
i<j a2

ij H
2(aij)

H(m)N−1
∏

i ̸=j H(aij + m)
e
− 8π2

g2
YM

∑
i a2

i |Zinst(m, τ, aij)|2 .

H(z) is product of Barnes G-functions.

θ-dependence only appears in instanton contributions
Zinst(m, τ, aij), which are complicated infinite sums [Nekrasov ’03] .

Can compute F2(τ) and F4(τ) numerically for small N, but
need analytic expression for larger N.

Shai Chester (Imperial College London) February 20, 2024 14 / 34



Mass deformed sphere partition function

Computed using localization in terms of rank(G) dimensional
matrix model integral for gauge group G [Pestun ’08] .

For SU(N) we have explicitly (with aij ≡ ai − aj ):

Z =

∫
dN−1a

N!

∏
i<j a2

ij H
2(aij)

H(m)N−1
∏

i ̸=j H(aij + m)
e
− 8π2

g2
YM

∑
i a2

i |Zinst(m, τ, aij)|2 .

H(z) is product of Barnes G-functions.

θ-dependence only appears in instanton contributions
Zinst(m, τ, aij), which are complicated infinite sums [Nekrasov ’03] .

Can compute F2(τ) and F4(τ) numerically for small N, but
need analytic expression for larger N.

Shai Chester (Imperial College London) February 20, 2024 14 / 34



Non-instanton contribution

When m = 0, we have free gaussian matrix model:

Z (0) =
∫

dN−1a
N!

∏
i<j

a2
ij e

− 8π2

g2
YM

∑
i a2

i
.

Compute non-instanton part of F2(τ) and F4(τ) using orthogonal
polynomials [Mehta ’81] . For instance, for F2(τ) we have [SMC ’19] :

−
τ2

2∂
2
τ2

4c2

∫ ∞

0
dw

e− w2
πτ2

2 sinh2 w

[
[L(1)

N−1(
w2
πτ2

)]2 −
N∑

i,j=1

(−1)i−jL(j−i)
i−1 ( w2

πτ2
)L(i−j)

j−1 ( w2
πτ2

)
]

F4(τ) also written as 2 integrals of 4 Laguerre’s [SMC, Pufu ’20] .
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(−1)i−jL(j−i)
i−1 ( w2

πτ2
)L(i−j)

j−1 ( w2
πτ2

)
]

F4(τ) also written as 2 integrals of 4 Laguerre’s [SMC, Pufu ’20] .
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Instanton contribution

Expand Zinst(m, τ, aij) in instanton number k as

Zinst(m, τ, aij) =
∞∑

k=0

e2πikτZ (k)
inst(m,aij) .

Using Zinst, computed F2(τ) and F4(τ) to any order in 1/N and
finite τ [SMC, Green, Pufu, Wang, Wen ’19; Alday; Dorigoni; SMC, Green, Wen ’23] :

F2(τ) ≈
1

4c2

[
N2

4
− 3

√
N

24 E( 3
2 ; τ) +

45
28

√
N

E( 5
2 ; τ) + . . .

]

Non-holomorphic Eisensteins E(s, τ) also written as instanton sum.

F4(τ) expanded in terms of E(s, τ) and other modular invariant
function called generalized Eisenstein series.
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Localization inputs for any N

Eisenstein series diverges for weak coupling due to 1/gYM terms:

E( 3
2 ; τ) =

16π3/2ζ(3)
g3

YM
+

1
3
π3/2gYM +

∞∑
k=1

32 cos(θ)π3/2kσ−2(k)K1

(
8kπ2

g2
YM

)
gYM

But k > 1 instantons in large N terms converge quickly for any τ .

Consider k > 1 part of large N plus exact expression for k = 0:

F2(τ) ≈
1

4c2

[
− 3

√
N

24 E( 3
2 ; τ) +

45
28

√
N

E( 5
2 ; τ) + . . .

]
k>1

−
τ2

2∂
2
τ2

4c2

∫ ∞

0
dw

e− w2
πτ2

2 sinh2 w

[
[L(1)

N−1(
w2
πτ2

)]2 −
N∑

i,j=1

(−1)i−jL(j−i)
i−1 ( w2

πτ2
)L(i−j)

j−1 ( w2
πτ2

)
]
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Localization input comparison

F2 ≡ 1
8c

∂2
m∂τ∂τ̄F
∂τ∂τ̄F

∣∣∣
m=0

for SU(2) in the SL(2,Z) fundamental domain (F4

is similar), with cusps at self-dual points τ = i ,e
iπ
3 :

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.6080

0.6085

0.6090

0.6095

0.6100

0.6105

0.6110

0.6115
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Numerical bootstrap+localization

Combine all non-perturbative constraints (unitarity, crossing,
localization) to bootstrap CFT data [SMC, Dempsey, Pufu ’21] .

Input N via c in short contributions.

Input τ via 2 localization inputs. Without localization, bootstrap
independent of τ [Beem, Rastelli, van Rees ’13] .

Impose crossing and localization inputs as linear constraints,
bounds improve monotonically with truncation size Λ of
infinite crossing constraints.

In ’21 paper, we could only do low N bc N − 1 integrals for
localization input, now in ’23 paper we can do any N.
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Bounds: Lowest ∆ for SU(2)

3-Loop

4-Loop

4-Loop Padé

0.2 0.4 0.6 0.8 1 2
3

2.0

2.2

2.4

2.6

2.8

3.0

With Integrated

Constraints

Without Integrated Constraints

2.856

2.858

2.860

2.862

2.864

2.866

2.868

2.870

All these bounds with truncation Λ = 39, converged for SU(2).

Matches weak coupling to 4-loops!

Bounds from crossing without localization not saturated for any τ
(instead, correspond to pure AdS5 supergravity [Alday, SMC ’22] ).
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Bounds: Lowest λ2 for SU(2)

3-Loop

4-Loop

4-Loop Padé

0.2 0.4 0.6 0.8 1
0.30

0.35

0.40

0.45

0.50

With Integrated

Constraints

Without Integrated Constraints

0.4055

0.4060

0.4065

0.4070

0.4075

0.4080

0.4085

Bit less converged for OPE coefficient.

Still matches weak coupling (in smaller regime than ∆.)

Extremal value no longer at cusps (unlike ∆).
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Bounds on lowest ∆ for various N

0 20 40 60 80
2.0

2.5

3.0

3.5

4.0
Planar

SU(11)

SU(10)

SU(9)

SU(8)

SU(7)

SU(6)

SU(5)

SU(4)

SU(3)

SU(2)

For large N, convergence gets worse, we computed many Λ and
extrapolated to Λ → ∞ (see next slides for more details).

Bounds are converging to Planar integrability spectrum (similar to
Pade resummed 4-loop weak coupling in this regime).
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Bounds on lowest λ2 for various N
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No planar integrability results to compare to now.
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Analytic bootstrap+localization

Recall that analytic bootstrap (i.e. crossing, pole structure of
Witten diagrams, and flat space limit) fixes correlator to:

T =
TR

c
+ b1

TR4

c7/4 +
TR|R + b2TR4

c2 +
b3T 1

D4R4 + b4T 2
D4R4

c9/4 + . . . .

2 localization constraints fix bi in terms of Eisensteins and
generalized eisensteins that appear in localization inputs.

Matches type IIB S-matrix in flat space limit at finite τ [SMC, Green,

Pufu, Wang, Wen ’19] . 1-loop b2 fixed in [SMC ’19] .

Extract CFT data of double trace operators, e.g. lowest ∆:

∆4,0 = 4 − 4
c
+

135
7
√

2π3/2c7/4
E( 3

2 , τ) +
1199
42c2 − 3825

32
√

2π5/2c9/4
E( 5

2 , τ) + . . .
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c2 +
b3T 1
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D4R4
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2 localization constraints fix bi in terms of Eisensteins and
generalized eisensteins that appear in localization inputs.

Matches type IIB S-matrix in flat space limit at finite τ [SMC, Green,

Pufu, Wang, Wen ’19] . 1-loop b2 fixed in [SMC ’19] .

Extract CFT data of double trace operators, e.g. lowest ∆:
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Bounds: Lowest ∆ for SU(10)
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4.0 SU(10)

Use extrapolation to overcome slow convergence (next slides).

Matches BOTH weak coupling and strong coupling expansions!

Observe non-pert level repulsion, in between weak coupling for
single trace and strong coupling for double trace.
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Bounds: Lowest ∆ for SU(9) and SU(11)
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Bounds: Lowest λ2 for SU(10)
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Use extrapolation to overcome slow convergence.

Matches BOTH weak coupling and strong coupling expansions!

Observe non-pert level repulsion, in between weak coupling for
single trace and strong coupling for double trace.
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Bounds: Lowest λ2 for SU(9) and SU(11)
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Extrapolation in Λ
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We use simple polynomial ansatz for extrapolation:
∆ = ∆0 +∆1/Λ +∆2/Λ

2.

Similar ansatz used in original N = 4 bootstrap [Rastelli, van Rees ’13] .

Extrapolation gives results that match perturbative data for all N.
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Sensitivity to stringy corrections
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Λ = ∞

Without ICs

For largish N (e.g. SU(10)), we see that analytic bootstrap result
gets closer to bound as we include more 1/c corrections.

1/c is supergravity, 1/c7/4 is R4 correction [SMC, Green, Pufu, Wang, Wen

’19] , 1/c2 is 1-loop correction [Alday, Bissi ’17; Aprile, Drummond, Heslop, Paul

’17] (which included contact term fixed from localization [SMC ’19] ).

So bootstrap sensitive to stringy corrections!
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Conclusion

Need localization to get bootstrap bounds saturated by SYM (i.e.,
a non-perturbative solution to SYM for all N and τ !).

For smallish gYM, bounds saturated by weak coupling
(indistinguishable from integrability in this regime) for single trace.

For largish gYM, bounds saturated by strong coupling from
holography (i.e. analytic bootstrap) for double trace including
stringy corrections.

In intermediate regime, we see non-perturbative level repulsion
between lowest single and double trace operators.
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Near future directions
More accurate bounds, sensitive to higher twist or spin operators.

In bootstrap without localization, higher spins usually easier to
access than higher twists, but with localization both equally hard.

Get greater accuracy from imposing more localization constraints
(e.g. from the squashed sphere), or from mixing with lowest
dimension long operator (which is also relevant).

If we are sensitive to second lowest twist, then impose ≤ 2
relevant operators to get islands for each τ , rigorously solve SYM!

Combine localization + bootstrap to numerically solve ANY 3d
N = 2, 4d N = 2, or 5d N = 1 Lagrangian CFT, e.g.:

4d N = 2 dual to open strings [SMC ’22; Behan, SMC, Ferrero ’23] .

3d N = 6 ABJ(M) in string, M-theory, and higher spin regimes
[Binder, SMC, Jerdee, Pufu ’20] .
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Far future directions

Imagine bootstrap sensitive to higher twist operators with
∆ ∼ c ∼ N2.

These operators are dual to black-hole states for largish N.

First steps to computing 1/16-BPS black-hole states for low N in
[Chang, Lin ’22] , but not for unprotected black hole states.

Can study statistics of black-hole states, i.e. how many states
appear in given window of ∆.

Can see how these statistics change as function of τ and N, i.e.
as we go from weak to strong coupling.
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See you in Kyoto!

Bootstrap, Localization, and Holography, May 20-24

Some funding for students, poster session!
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