Bootstrapping $\mathcal{N}=4$ SYM for all N and coupling

Shai M. Chester
Imperial College London

Based on 2312.12576 with S. Pufu and R. Dempsey
2310.12322 with L. F. Alday, D. Dorigoni, M. Green and C. Wen

$\mathcal{N}=4$ Super-Yang-Mills (SYM)

- $\mathcal{N}=4$ SYM is maximally supersymmetric gauge theory in 4d, defined by gauge group $G\left(\right.$ e.g. $S U(N)$), coupling $g_{Y M}$, and θ.
- It is conformal for any complex $\tau \equiv \frac{4 \pi i}{g_{\mathrm{YM}}^{2}}+\frac{\theta}{2 \pi}$.
- It's the most well-studied toy model in high energy theory bc e.g.:
- AdS/CFT: its dual to Type IIB string theory on $A d S_{5} \times S^{5}$, with gravity description for large N and large $\lambda \equiv g_{\mathrm{YM}}^{2} N$.
- Simplest (most symmetric) gauge theory, model for QCD.
- Perturbative approaches: weak coupling for finite N, integrability for $N \rightarrow \infty$ and any λ, holography for large N and strong coupling.

$\mathcal{N}=4$ Super-Yang-Mills (SYM)

- $\mathcal{N}=4$ SYM is maximally supersymmetric gauge theory in 4d, defined by gauge group G (e.g. $S U(N)$), coupling g_{YM}, and θ.
- It is conformal for any complex $\tau \equiv \frac{4 \pi i}{g_{\mathrm{YM}}^{2}}+\frac{\theta}{2 \pi}$.
- It's the most well-studied toy model in high energy theory bc e.g.:
- AdS/CFT: its dual to Type IIB string theory on $A d S_{5} \times S^{5}$, with gravity description for large N and large $\lambda \equiv g_{\mathrm{YM}}^{2} N$.
- Simplest (most symmetric) gauge theory, model for QCD.
- Perturbative approaches: weak coupling for finite N, integrability for $N \rightarrow \infty$ and any λ, holography for large N and strong coupling.

$\mathcal{N}=4$ Super-Yang-Mills (SYM)

- $\mathcal{N}=4$ SYM is maximally supersymmetric gauge theory in 4 d , defined by gauge group $G(e . g . S U(N))$, coupling g_{YM}, and θ.
- It is conformal for any complex $\tau \equiv \frac{4 \pi i}{g_{\mathrm{VM}}^{2}}+\frac{\theta}{2 \pi}$.
- It's the most well-studied toy model in high energy theory bc e.g.:
- AdS/CFT: its dual to Type IIB string theory on $A d S_{5} \times S^{5}$, with gravity description for large N and large $\lambda \equiv g_{\mathrm{YM}}^{2} N$.
- Simplest (most symmetric) gauge theory, model for QCD.
- Perturbative approaches: weak coupling for finite N, integrability for $N \rightarrow \infty$ and any λ, holography for large N and strong coupling.

$\mathcal{N}=4$ Super-Yang-Mills (SYM)

- $\mathcal{N}=4$ SYM is maximally supersymmetric gauge theory in 4 d , defined by gauge group $G(e . g . S U(N))$, coupling g_{YM}, and θ.
- It is conformal for any complex $\tau \equiv \frac{4 \pi i}{g_{\mathrm{YM}}^{2}}+\frac{\theta}{2 \pi}$.
- It's the most well-studied toy model in high energy theory bc e.g.:
- AdS/CFT: its dual to Type IIB string theory on $A d S_{5} \times S^{5}$, with gravity description for large N and large $\lambda \equiv g_{\mathrm{YM}}^{2} N$.
- Simplest (most symmetric) gauge theory, model for QCD.
- Perturbative approaches: weak coupling for finite N, integrability for $N \rightarrow \infty$ and any λ, holography for large N and strong coupling.

$\mathcal{N}=4$ Super-Yang-Mills (SYM)

- $\mathcal{N}=4$ SYM is maximally supersymmetric gauge theory in 4 d , defined by gauge group $G(e . g . S U(N))$, coupling g_{YM}, and θ.
- It is conformal for any complex $\tau \equiv \frac{4 \pi i}{g_{\mathrm{rM}}^{2}}+\frac{\theta}{2 \pi}$.
- It's the most well-studied toy model in high energy theory bc e.g.:
- AdS/CFT: its dual to Type IIB string theory on $A d S_{5} \times S^{5}$, with gravity description for large N and large $\lambda \equiv g_{\mathrm{YM}}^{2} N$.
- Simplest (most symmetric) gauge theory, model for QCD.
- Perturbative approaches: weak coupling for finite N, integrability for $N \rightarrow \infty$ and any λ, holography for large N and strong coupling.

$\mathcal{N}=4$ Super-Yang-Mills (SYM)

- $\mathcal{N}=4$ SYM is maximally supersymmetric gauge theory in 4d, defined by gauge group $G(e . g . S U(N))$, coupling g_{YM}, and θ.
- It is conformal for any complex $\tau \equiv \frac{4 \pi i}{g_{i N}^{2}}+\frac{\theta}{2 \pi}$.
- It's the most well-studied toy model in high energy theory bc e.g.:
- AdS/CFT: its dual to Type IIB string theory on $\operatorname{AdS}_{5} \times S^{5}$, with gravity description for large N and large $\lambda \equiv g_{\text {YM }}^{2} N$.
- Simplest (most symmetric) gauge theory, model for QCD.
- Perturbative approaches: weak coupling for finite N, integrability for $N \rightarrow \infty$ and any λ, holography for large N and strong coupling.

Weak coupling

- When $\lambda \equiv g_{\mathrm{YM}}^{2} N$ is small, can study SYM with Feynman diagrams for any N like any weakly coupled gauge theory.
- E.g. lowest unprotected singlet (the Konishi) has

$65536 \pi^{8}$
- First non-planar correction only at 4-loops!
- But bulk dual is very stringy in this regime, no gravity approximation, no black holes.

Weak coupling

- When $\lambda \equiv g_{\mathrm{YM}}^{2} N$ is small, can study SYM with Feynman diagrams for any N like any weakly coupled gauge theory.
- E.g. lowest unprotected singlet (the Konishi) has [Velizhanin '09] :

$65536 \pi^{8}$
- First non-planar correction only at 4-loops!
- But bulk dual is very stringy in this regime, no gravity approximation, no black holes.

Weak coupling

- When $\lambda \equiv g_{\mathrm{YM}}^{2} N$ is small, can study SYM with Feynman diagrams for any N like any weakly coupled gauge theory.
- E.g. lowest unprotected singlet (the Konishi) has [Velizhanin '09] :

$$
\begin{aligned}
\Delta= & 2+\frac{3 \lambda}{4 \pi^{2}}-\frac{3 \lambda^{2}}{16 \pi^{4}}+\frac{21 \lambda^{3}}{256 \pi^{6}} \\
& +\frac{\lambda^{4}\left(-1440\left(\frac{12}{N^{2}}+1\right) \zeta(5)+576 \zeta(3)-2496\right)}{65536 \pi^{8}}+O\left(\lambda^{5}\right)
\end{aligned}
$$

- First non-planar correction only at 4-loops!
- But bulk dual is very stringy in this regime, no gravity approximation, no black holes.

Weak coupling

- When $\lambda \equiv g_{\mathrm{YM}}^{2} N$ is small, can study SYM with Feynman diagrams for any N like any weakly coupled gauge theory.
- E.g. lowest unprotected singlet (the Konishi) has [Velizhanin '09] :

$$
\begin{aligned}
\Delta= & 2+\frac{3 \lambda}{4 \pi^{2}}-\frac{3 \lambda^{2}}{16 \pi^{4}}+\frac{21 \lambda^{3}}{256 \pi^{6}} \\
& +\frac{\lambda^{4}\left(-1440\left(\frac{12}{N^{2}}+1\right) \zeta(5)+576 \zeta(3)-2496\right)}{65536 \pi^{8}}+O\left(\lambda^{5}\right)
\end{aligned}
$$

- First non-planar correction only at 4-loops!
- But bulk dual is very stringy in this regime, no gravity approximation, no black holes.

Weak coupling

- When $\lambda \equiv g_{\mathrm{YM}}^{2} N$ is small, can study SYM with Feynman diagrams for any N like any weakly coupled gauge theory.
- E.g. lowest unprotected singlet (the Konishi) has [Velizhanin '09] :

$$
\begin{aligned}
\Delta= & 2+\frac{3 \lambda}{4 \pi^{2}}-\frac{3 \lambda^{2}}{16 \pi^{4}}+\frac{21 \lambda^{3}}{256 \pi^{6}} \\
& +\frac{\lambda^{4}\left(-1440\left(\frac{12}{N^{2}}+1\right) \zeta(5)+576 \zeta(3)-2496\right)}{65536 \pi^{8}}+O\left(\lambda^{5}\right)
\end{aligned}
$$

- First non-planar correction only at 4-loops!
- But bulk dual is very stringy in this regime, no gravity approximation, no black holes.

Holography

- AdS/CFT dictionary for $A d S_{5} \times S^{5}$ string theory with string length ℓ_{s} and complex string coupling $\tau_{s}=\chi+i / g_{s}$:
- In principle could study using worldsheet for small g_{s}, but hard due to RR flux. At finite g_{s}, no method even in principle.
- At large N, can study $A d S_{5} \times S^{5}$ supergravity, e.g. lowest unprotected singlet is double trace

$$
\Delta=4-16 / N^{2}+O\left(N^{-7 / 2}\right)
$$

Holography

- AdS/CFT dictionary for $A d S_{5} \times S^{5}$ string theory with string length ℓ_{s} and complex string coupling $\tau_{s}=\chi+i / g_{s}$:

$$
L^{4} / \ell_{s}^{4}=g_{\mathrm{YM}}^{2} N \quad \tau=\tau_{s},
$$

- In principle could study using worldsheet for small g_{s}, but hard due to RR flux. At finite g_{s}, no method even in principle.
- At large N, can study $A d S_{5} \times S^{5}$ supergravity, e.g. lowest unprotected singlet is double trace

$$
\Delta=4-16 / N^{2}+O\left(N^{-7 / 2}\right)
$$

Holography

- AdS/CFT dictionary for $A d S_{5} \times S^{5}$ string theory with string length ℓ_{s} and complex string coupling $\tau_{s}=\chi+i / g_{s}$:

$$
L^{4} / \ell_{s}^{4}=g_{\mathrm{YM}}^{2} N \quad \tau=\tau_{s},
$$

- In principle could study using worldsheet for small g_{s}, but hard due to RR flux. At finite g_{s}, no method even in principle.
- At large N, can study $A d S_{5} \times S^{5}$ supergravity, e.g. lowest unprotected singlet is double trace

$$
\Delta=4-16 / N^{2}+O\left(N^{-7 / 2}\right)
$$

Holography

- AdS/CFT dictionary for $\operatorname{AdS}_{5} \times S^{5}$ string theory with string length ℓ_{s} and complex string coupling $\tau_{s}=\chi+i / g_{s}$:

$$
L^{4} / \ell_{s}^{4}=g_{\mathrm{YM}}^{2} N \quad \tau=\tau_{s},
$$

- In principle could study using worldsheet for small g_{s}, but hard due to RR flux. At finite g_{s}, no method even in principle.
- At large N, can study $A d S_{5} \times S^{5}$ supergravity, e.g. lowest unprotected singlet is double trace [D'Hoker, Mathur, Matusis, Rastelli '99] :

Holography

- AdS/CFT dictionary for $\operatorname{AdS}_{5} \times S^{5}$ string theory with string length ℓ_{s} and complex string coupling $\tau_{s}=\chi+i / g_{s}$:

$$
L^{4} / \ell_{s}^{4}=g_{\mathrm{YM}}^{2} N \quad \tau=\tau_{s},
$$

- In principle could study using worldsheet for small g_{s}, but hard due to RR flux. At finite g_{s}, no method even in principle.
- At large N, can study $A d S_{5} \times S^{5}$ supergravity, e.g. lowest unprotected singlet is double trace [D'Hoker, Mathur, Matusis, Rastelli '99] :

$$
\Delta=4-16 / N^{2}+O\left(N^{-7 / 2}\right)
$$

Holography

- AdS/CFT dictionary for $\operatorname{AdS}_{5} \times S^{5}$ string theory with string length ℓ_{s} and complex string coupling $\tau_{s}=\chi+i / g_{s}$:

$$
L^{4} / \ell_{s}^{4}=g_{\mathrm{YM}}^{2} N \quad \tau=\tau_{s},
$$

- In principle could study using worldsheet for small g_{s}, but hard due to RR flux. At finite g_{s}, no method even in principle.
- At large N, can study $A d S_{5} \times S^{5}$ supergravity, e.g. lowest unprotected singlet is double trace [D'Hoker, Mathur, Matusis, Rastelli '99]:

$$
\Delta=4-16 / N^{2}+O\left(N^{-7 / 2}\right)
$$

- Higher orders from loops and stringy corrections, e.g. $R^{4} \sim N^{-7 / 2}$.

Planar integrability

- Can compute all scaling dimensions for $N \rightarrow \infty$ and finite λ from quantum spectral curve [Gromov, Kazakov, Leurent, Volin '14].
- Implemented numerically for entire spectrum just recently
- At small λ matches weak coupling, at large λ single trace operators like Konishi match stringy prediction:

- Higher traces just trivial products of single traces, e.g. lowest double trace has $\Delta=2+2$.
- OPE coefficients not yet computed for generic operators.

Planar integrability

- Can compute all scaling dimensions for $N \rightarrow \infty$ and finite λ from quantum spectral curve [Gromov, Kazakov, Leurent, Volin '14].
- Implemented numerically for entire spectrum just recently [Gromov, Hegedus, Julius, Sokolova '23] .
- At small λ matches weak coupling, at large λ single trace operators like Konishi match stringy prediction:
- Higher traces just trivial products of single traces, e.g. Iowest double trace has $\Delta=2+2$.
- OPE coefficients not yet computed for generic operators.

Planar integrability

- Can compute all scaling dimensions for $N \rightarrow \infty$ and finite λ from quantum spectral curve [Gromov, Kazakov, Leurent, Volin '14].
- Implemented numerically for entire spectrum just recently [Gromov, Hegedus, Julius, Sokolova '23] .
- At small λ matches weak coupling, at large λ single trace operators like Konishi match stringy prediction:

$$
\Delta_{\text {Kon }}=2 \lambda^{1 / 4}-2+2 / \lambda^{1 / 4}+\ldots,
$$

- Higher traces just trivial products of single traces, e.g. lowest double trace has $\Delta=2+2$.
- OPE coefficients not yet computed for generic operators.

Planar integrability

- Can compute all scaling dimensions for $N \rightarrow \infty$ and finite λ from quantum spectral curve [Gromov, Kazakov, Leurent, Volin '14].
- Implemented numerically for entire spectrum just recently [Gromov, Hegedus, Julius, Sokolova '23] .
- At small λ matches weak coupling, at large λ single trace operators like Konishi match stringy prediction:

$$
\Delta_{\text {Kon }}=2 \lambda^{1 / 4}-2+2 / \lambda^{1 / 4}+\ldots,
$$

- Higher traces just trivial products of single traces, e.g. lowest double trace has $\Delta=2+2$.
- OPE coefficients not yet computed for generic operators.

Planar integrability

- Can compute all scaling dimensions for $N \rightarrow \infty$ and finite λ from quantum spectral curve [Gromov, Kazakov, Leurent, Volin '14].
- Implemented numerically for entire spectrum just recently [Gromov, Hegedus, Julius, Sokolova '23].
- At small λ matches weak coupling, at large λ single trace operators like Konishi match stringy prediction:

$$
\Delta_{\text {Kon }}=2 \lambda^{1 / 4}-2+2 / \lambda^{1 / 4}+\ldots,
$$

- Higher traces just trivial products of single traces, e.g. lowest double trace has $\Delta=2+2$.
- OPE coefficients not yet computed for generic operators.

Planar spectrum: limitations

- Shows level crossing, should not exist in finite N theory.
- Light operators at strong coupling (e.g. double trace) are trivial, insensitive to gravity corrections.

Planar spectrum: limitations

- Shows level crossing, should not exist in finite N theory.
- Light operators at strong coupling (e.g. double trace) are trivial, insensitive to gravity corrections.

This talk

Combine non-perturbative methods, bootstrap and supersymmetric localization, to study stress tensor correlator for all N and τ.

Outline:

- Basics of stress tensor correlator.
- Non-perturbative constraints at large or finite N.
- Numerical' bootstrap bound's
- Compare to weak and strong coupling perturbative results.
- Non-pert improvement to planar integrability spectrum

This talk

Combine non-perturbative methods, bootstrap and supersymmetric localization, to study stress tensor correlator for all N and τ.

Outline:

- Basics of stress tensor correlator.
- Non-perturbative constraints at large or finite N.
- Numerical bootstrap bounds
- Compare to weak and strong coupling perturbative results.
- Non-pert improvement to planar integrability spectrum

This talk

Combine non-perturbative methods, bootstrap and supersymmetric localization, to study stress tensor correlator for all N and τ.

Outline:

- Basics of stress tensor correlator.
- Non-perturbative constraints at large or finite N.
- Numerical bootstrap bounds
- Compare to weak and strong coupling perturbative results.
- Non-nert improvement to planar integrability snectrum

This talk

Combine non-perturbative methods, bootstrap and supersymmetric localization, to study stress tensor correlator for all N and τ.

Outline:

- Basics of stress tensor correlator.
- Non-perturbative constraints at large or finite N.
- Numerical bootstrap bounds
- Compare to weak and strong coupling perturbative results.
- Non-pert improvement to planar integrability spectrum

This talk

Combine non-perturbative methods, bootstrap and supersymmetric localization, to study stress tensor correlator for all N and τ.

Outline:

- Basics of stress tensor correlator.
- Non-perturbative constraints at large or finite N.
- Numerical bootstrap bounds
- Compare to weak and strong coupling perturbative results.
- Non-pert improvement to planar integrability spectrum

This talk

Combine non-perturbative methods, bootstrap and supersymmetric localization, to study stress tensor correlator for all N and τ.

Outline:

- Basics of stress tensor correlator.
- Non-perturbative constraints at large or finite N.
- Numerical bootstrap bounds
- Compare to weak and strong coupling perturbative results.
- Non-pert improvement to planar integrability spectrum

$\mathcal{N}=4$ SYM basics

- All $\mathcal{N}=4$ CFTs have $S U(4)$ R-symmetry, and are conformal manifolds with one complex parameter τ.
- Defined by values of central charge $c=\operatorname{dim}(G) / 4$ and complex τ.
- $\mathcal{N}=4$ SYM is gauge theory where matter transform in adjoint of gauge group G, which must be compact classical lie group.
- For this talk, we take $G=S U(N)$, with $C=\frac{N^{2}-1}{4}$
- Duality group of $\mathcal{N}=4 S U(N) S Y M$ is $S L(2, \mathbb{Z})$.
- Self dual points are $\tau=i$ with enhanced \mathbb{Z}_{2}, and $\tau=e^{\frac{i \pi}{3}}$ with \mathbb{Z}_{3}.

$\mathcal{N}=4$ SYM basics

- All $\mathcal{N}=4$ CFTs have $S U(4)$ R-symmetry, and are conformal manifolds with one complex parameter τ.
- Defined by values of central charge $c=\operatorname{dim}(G) / 4$ and complex τ.
- $\mathcal{N}=4$ SYM is gauge theory where matter transform in adjoint of gauge group G, which must be compact classical lie group.
- For this talk, we take $G=S U(N)$, with $c=\frac{N^{2}-1}{4}$.
- Duality group of $\mathcal{N}=4 S U(N) S Y M$ is $S L(2, \mathbb{Z})$.
- Self dual points are $\tau=i$ with enhanced \mathbb{Z}_{2}, and $\tau=e^{\frac{i \pi}{3}}$ with \mathbb{Z}_{3}.

$\mathcal{N}=4$ SYM basics

- All $\mathcal{N}=4$ CFTs have $\operatorname{SU}(4)$ R-symmetry, and are conformal manifolds with one complex parameter τ.
- Defined by values of central charge $c=\operatorname{dim}(G) / 4$ and complex τ.
- $\mathcal{N}=4$ SYM is gauge theory where matter transform in adjoint of gauge group G, which must be compact classical lie group.
- For this talk, we take $G=S U(N)$, with $C=\frac{N^{2}-1}{4}$.
- Duality group of $\mathcal{N}=4 S U(N) S Y M$ is $S L(2, \mathbb{Z})$.
- Self dual points are $\tau=i$ with enhanced \mathbb{Z}_{2}, and $\tau=e^{\frac{i \pi}{3}}$ with \mathbb{Z}_{3}.

$\mathcal{N}=4$ SYM basics

- All $\mathcal{N}=4$ CFTs have $\operatorname{SU}(4)$ R-symmetry, and are conformal manifolds with one complex parameter τ.
- Defined by values of central charge $c=\operatorname{dim}(G) / 4$ and complex τ.
- $\mathcal{N}=4$ SYM is gauge theory where matter transform in adjoint of gauge group G, which must be compact classical lie group.
- For this talk, we take $G=S U(N)$, with $c=\frac{N^{2}-1}{4}$.
- Duality group of $\mathcal{N}=4 S U(N) S Y M$ is $S L(2, \mathbb{Z})$.
- Self dual points are $\tau=i$ with enhanced \mathbb{Z}_{2}, and $\tau=e^{\frac{i \pi}{3}}$ with \mathbb{Z}_{3}.

$\mathcal{N}=4$ SYM basics

- All $\mathcal{N}=4$ CFTs have $\operatorname{SU}(4)$ R-symmetry, and are conformal manifolds with one complex parameter τ.
- Defined by values of central charge $c=\operatorname{dim}(G) / 4$ and complex τ.
- $\mathcal{N}=4$ SYM is gauge theory where matter transform in adjoint of gauge group G, which must be compact classical lie group.
- For this talk, we take $G=S U(N)$, with $c=\frac{N^{2}-1}{4}$.
- Duality group of $\mathcal{N}=4 \operatorname{SU}(N) \operatorname{SYM}$ is $\operatorname{SL}(2, \mathbb{Z})$.
- Self dual points are $\tau=i$ with enhanced \mathbb{Z}_{2}, and $\tau=e^{\frac{i \pi}{3}}$ with \mathbb{Z}_{3}.

$\mathcal{N}=4$ SYM basics

- All $\mathcal{N}=4$ CFTs have $\operatorname{SU}(4)$ R-symmetry, and are conformal manifolds with one complex parameter τ.
- Defined by values of central charge $c=\operatorname{dim}(G) / 4$ and complex τ.
- $\mathcal{N}=4$ SYM is gauge theory where matter transform in adjoint of gauge group G, which must be compact classical lie group.
- For this talk, we take $G=S U(N)$, with $c=\frac{N^{2}-1}{4}$.
- Duality group of $\mathcal{N}=4 \operatorname{SU}(N) \operatorname{SYM}$ is $\operatorname{SL}(2, \mathbb{Z})$.
- Self dual points are $\tau=i$ with enhanced \mathbb{Z}_{2}, and $\tau=e^{i \frac{i \pi}{3}}$ with \mathbb{Z}_{3}.

Stress tensor correlator

- 4-point function of stress-tensor superprimary S^{a} with $\mathbf{2 0}^{\prime}$ index a :

$$
\left\langle S^{a}\left(x_{1}\right) S^{b}\left(x_{2}\right) S^{c}\left(x_{3}\right) S^{d}\left(x_{4}\right)\right\rangle=\frac{G^{a b c d}(U, V)}{x_{12}^{4} x_{34}^{4}}, \quad U \equiv \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, V \equiv \frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

- 〈SSSS〉 Ward identity has formal solution $G^{a b c d}(U, V)=G^{a b c d}(U, V)_{\text {short }}+\Theta^{a b c d}(U, V) \mathcal{T}(U, V)$ - $G^{\text {abcd }}(U, V)_{\text {short }}$ fixed by free theory, so no τ-dependence. - $\Theta^{a b c d}(U, V)$ fixed by symmetry.
- All interacting data in $\mathcal{T}(U, V)$, which is $S U(4)_{R}$ singlet.

Stress tensor correlator

- 4-point function of stress-tensor superprimary S^{a} with $\mathbf{2 0}^{\prime}$ index a :
$\left\langle S^{a}\left(x_{1}\right) S^{b}\left(x_{2}\right) S^{c}\left(x_{3}\right) S^{d}\left(x_{4}\right)\right\rangle=\frac{G^{a b c d}(U, V)}{x_{12}^{4} x_{34}^{4}}, \quad U \equiv \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, V \equiv \frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$.
- 〈SSSS〉 Ward identity has formal solution [Dolan, Osborn '02] :

- $G^{a b c d}(U, V)_{\text {short }}$ fixed by free theory, so no τ-dependence. - $\Theta^{a b c d}(11, V)$ fixed by symmetry.
- All interacting data in $\mathcal{T}(U, V)$, which is $S U(4)_{R}$ singlet.

Stress tensor correlator

- 4-point function of stress-tensor superprimary S^{a} with $\mathbf{2 0}^{\prime}$ index a :

$$
\left\langle S^{a}\left(x_{1}\right) S^{b}\left(x_{2}\right) S^{c}\left(x_{3}\right) S^{d}\left(x_{4}\right)\right\rangle=\frac{G^{a b c d}(U, V)}{x_{12}^{4} x_{34}^{4}}, \quad U \equiv \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, V \equiv \frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

- 〈SSSS〉 Ward identity has formal solution [Dolan, Osborn '02] :

$$
G^{a b c d}(U, V)=G^{a b c d}(U, V)_{\text {short }}+\Theta^{a b c d}(U, V) \mathcal{T}(U, V)
$$

- $G^{a b c d}(U, V)_{\text {short }}$ fixed by free theory, so no τ-dependence. - $\Theta^{a b c d}(U, V)$ fixed by symmetry.
- All interacting data in $\mathcal{T}(U, V)$, which is $S U(4)_{R}$ singlet.

Stress tensor correlator

- 4-point function of stress-tensor superprimary S^{a} with $\mathbf{2 0}^{\prime}$ index a :
$\left\langle S^{a}\left(x_{1}\right) S^{b}\left(x_{2}\right) S^{c}\left(x_{3}\right) S^{d}\left(x_{4}\right)\right\rangle=\frac{G^{a b c d}(U, V)}{x_{12}^{4} x_{34}^{4}}, \quad U \equiv \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, V \equiv \frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$.
- 〈SSSS〉 Ward identity has formal solution [Dolan, Osborn '02] :

$$
G^{a b c d}(U, V)=G^{a b c d}(U, V)_{\text {short }}+\Theta^{a b c d}(U, V) \mathcal{T}(U, V)
$$

- $G^{a b c d}(U, V)_{\text {short }}$ fixed by free theory, so no τ-dependence.
- $\Theta^{\text {abcd }}(U, V)$ fixed by symmetry.
- All interacting data in $\mathcal{T}(U, V)$, which is $S U(4)_{R}$ singlet.

Stress tensor correlator

- 4-point function of stress-tensor superprimary S^{a} with $\mathbf{2 0}^{\prime}$ index a :
$\left\langle S^{a}\left(x_{1}\right) S^{b}\left(x_{2}\right) S^{c}\left(x_{3}\right) S^{d}\left(x_{4}\right)\right\rangle=\frac{G^{a b c d}(U, V)}{x_{12}^{4} x_{34}^{4}}, \quad U \equiv \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, V \equiv \frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$.
- $\langle S S S S\rangle$ Ward identity has formal solution [Dolan, Osborn '02] :

$$
G^{a b c d}(U, V)=G^{a b c d}(U, V)_{\text {short }}+\Theta^{a b c d}(U, V) \mathcal{T}(U, V)
$$

- $G^{a b c d}(U, V)_{\text {short }}$ fixed by free theory, so no τ-dependence.
- $\Theta^{a b c d}(U, V)$ fixed by symmetry.
- All interacting data in $\mathcal{T}(U, V)$, which is $S U(4)_{R}$ singlet.

Stress tensor correlator

- 4-point function of stress-tensor superprimary S^{a} with $\mathbf{2 0}^{\prime}$ index a :
$\left\langle S^{a}\left(x_{1}\right) S^{b}\left(x_{2}\right) S^{c}\left(x_{3}\right) S^{d}\left(x_{4}\right)\right\rangle=\frac{G^{a b c d}(U, V)}{x_{12}^{4} x_{34}^{4}}, \quad U \equiv \frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, V \equiv \frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}$
- $\langle S S S S\rangle$ Ward identity has formal solution [Dolan, Osborn '02] :

$$
G^{a b c d}(U, V)=G^{a b c d}(U, V)_{\text {short }}+\Theta^{a b c d}(U, V) \mathcal{T}(U, V)
$$

- $G^{a b c d}(U, V)_{\text {short }}$ fixed by free theory, so no τ-dependence.
- $\Theta^{a b c d}(U, V)$ fixed by symmetry.
- All interacting data in $\mathcal{T}(U, V)$, which is $S U(4)_{R}$ singlet.

Block expansion

- Expand $\mathcal{T}(U, V)$ in even spin $\ell 4$ d conformal blocks $g_{\Delta, \ell}(U, V)$:
- $F_{\text {short }}$ for protected multiplets fixed by free theory, so no τ-dependence.
- Δ, ℓ correspond to long multiplets in singlet irrep of $S U(4)_{R}$.
- Goal: compute Δ and $\lambda_{\Delta, \ell}^{2}$.

Block expansion

- Expand $\mathcal{T}(U, V)$ in even spin $\ell 4 d$ conformal blocks $g_{\Delta, \ell}(U, V)$:

$$
\mathcal{T}=U^{-2} \sum_{\ell, \Delta \geq \ell+2} \lambda_{\Delta, \ell}^{2} g_{\Delta+4, \ell}(U, V)+F_{\text {short }}^{(0)}(U, V)+\frac{1}{c} F_{\text {short }}^{(1)}(U, V) .
$$

- $F_{\text {short }}$ for protected multiplets fixed by free theory, so no τ-dependence.
- Δ, ℓ correspond to long multiplets in singlet irrep of $\operatorname{SU}(4)_{R}$.
- Goal: compute Δ and $\lambda_{\Delta, \ell}^{2}$

Block expansion

- Expand $\mathcal{T}(U, V)$ in even spin $\ell 4$ d conformal blocks $g_{\Delta, \ell}(U, V)$:

$$
\mathcal{T}=U^{-2} \sum_{\ell, \Delta \geq \ell+2} \lambda_{\Delta, \ell}^{2} g_{\Delta+4, \ell}(U, V)+F_{\text {short }}^{(0)}(U, V)+\frac{1}{c} F_{\text {short }}^{(1)}(U, V)
$$

- $F_{\text {short }}$ for protected multiplets fixed by free theory, so no τ-dependence.
- Δ, ℓ correspond to long multiplets in singlet irrep of $S U(4)_{R}$.
- Goal: compute Δ and $\lambda_{\Delta, \ell}^{2}$

Block expansion

- Expand $\mathcal{T}(U, V)$ in even spin $\ell 4$ d conformal blocks $g_{\Delta, \ell}(U, V)$:

$$
\mathcal{T}=U^{-2} \sum_{\ell, \Delta \geq \ell+2} \lambda_{\Delta, \ell}^{2} g_{\Delta+4, \ell}(U, V)+F_{\text {short }}^{(0)}(U, V)+\frac{1}{c} F_{\text {short }}^{(1)}(U, V)
$$

- $F_{\text {short }}$ for protected multiplets fixed by free theory, so no τ-dependence.
- Δ, ℓ correspond to long multiplets in singlet irrep of $S U(4)_{R}$.
- Goal: compute Δ and λ_{Δ}^{2},

Block expansion

- Expand $\mathcal{T}(U, V)$ in even spin $\ell 4$ d conformal blocks $g_{\Delta, \ell}(U, V)$:

$$
\mathcal{T}=U^{-2} \sum_{\ell, \Delta \geq \ell+2} \lambda_{\Delta, \ell}^{2} g_{\Delta+4, \ell}(U, V)+F_{\text {short }}^{(0)}(U, V)+\frac{1}{c} F_{\text {short }}^{(1)}(U, V)
$$

- $F_{\text {short }}$ for protected multiplets fixed by free theory, so no τ-dependence.
- Δ, ℓ correspond to long multiplets in singlet irrep of $S U(4)_{R}$.
- Goal: compute Δ and $\lambda_{\Delta, \ell}^{2}$.

Non-perturbative constraints: Crossing

- Impose that $\left\langle S^{a}\left(x_{1}\right) S^{b}\left(x_{2}\right) S^{c}\left(x_{3}\right) S^{d}\left(x_{4}\right)\right\rangle$ is permutation invariant.
- Fixes large $c \sim N^{2}$ correlator in terms of finite \# of coeffs b_{i} at each 1/c

- At finite N, gives infinite set of constraints on CFT data:

Non-perturbative constraints: Crossing

- Impose that $\left\langle S^{a}\left(x_{1}\right) S^{b}\left(x_{2}\right) S^{c}\left(x_{3}\right) S^{d}\left(x_{4}\right)\right\rangle$ is permutation invariant.
- Fixes large $c \sim N^{2}$ correlator in terms of finite \# of coeffs b_{i} at each 1/C [Heemskerk, Penedones, Polchinski, Sully '09; Alday, Bissi, Lukowski '14]:

Non-perturbative constraints: Crossing

- Impose that $\left\langle S^{a}\left(x_{1}\right) S^{b}\left(x_{2}\right) S^{c}\left(x_{3}\right) S^{d}\left(x_{4}\right)\right\rangle$ is permutation invariant.
- Fixes large $c \sim N^{2}$ correlator in terms of finite \# of coeffs b_{i} at each 1/C [Heemskerk, Penedones, Polchinski, Sully '09; Alday, Bissi, Lukowski '14]:

$$
\mathcal{T}=\frac{\mathcal{T}_{R}}{c}+b_{1} \frac{\mathcal{T}_{R^{4}}}{c^{7 / 4}}+\frac{\mathcal{T}_{R \mid R}+b_{2} \mathcal{T}_{R^{4}}}{c^{2}}+\frac{b_{3} \mathcal{T}_{D^{4} R^{4}}^{1}+b_{4} \mathcal{T}_{D^{4} R^{4}}^{2}}{c^{9 / 4}}+\ldots
$$

- At finite N, gives infinite set of constraints on CFT data:

Non-perturbative constraints: Crossing

- Impose that $\left\langle S^{a}\left(x_{1}\right) S^{b}\left(x_{2}\right) S^{c}\left(x_{3}\right) S^{d}\left(x_{4}\right)\right\rangle$ is permutation invariant.
- Fixes large $c \sim N^{2}$ correlator in terms of finite \# of coeffs b_{i} at each 1/C [Heemskerk, Penedones, Polchinski, Sully '09; Alday, Bissi, Lukowski '14]:

$$
\mathcal{T}=\frac{\mathcal{T}_{R}}{c}+b_{1} \frac{\mathcal{T}_{R^{4}}}{c^{7 / 4}}+\frac{\mathcal{T}_{R \mid R}+b_{2} \mathcal{T}_{R^{4}}}{c^{2}}+\frac{b_{3} \mathcal{T}_{D^{4} R^{4}}^{1}+b_{4} \mathcal{T}_{D^{4} R^{4}}^{2}}{c^{9 / 4}}+\ldots
$$

- At finite N, gives infinite set of constraints on CFT data:

Non-perturbative constraints: Crossing

- Impose that $\left\langle S^{a}\left(x_{1}\right) S^{b}\left(x_{2}\right) S^{c}\left(x_{3}\right) S^{d}\left(x_{4}\right)\right\rangle$ is permutation invariant.
- Fixes large $c \sim N^{2}$ correlator in terms of finite \# of coeffs b_{i} at each 1/C [Heemskerk, Penedones, Polchinski, Sully '09; Alday, Bissi, Lukowski '14]:

$$
\mathcal{T}=\frac{\mathcal{T}_{R}}{c}+b_{1} \frac{\mathcal{T}_{R^{4}}}{c^{7 / 4}}+\frac{\mathcal{T}_{R \mid R}+b_{2} \mathcal{T}_{R^{4}}}{c^{2}}+\frac{b_{3} \mathcal{T}_{D^{4} R^{4}}^{1}+b_{4} \mathcal{T}_{D^{4} R^{4}}^{2}}{c^{9 / 4}}+\ldots
$$

- At finite N, gives infinite set of constraints on CFT data:

$$
\begin{aligned}
& \sum_{\ell=0,2, \ldots \Delta \geq \ell+2} \sum_{\Delta, \ell} \lambda_{\Delta, \ell}^{2}(U, V)+\mathcal{F}_{\text {short }}^{(0)}(U, V)+c^{-1} \mathcal{F}_{\text {short }}^{(1)}(U, V)=0 \\
& F_{\Delta, \ell}(U, V) \equiv V^{4} g_{\Delta+4, \ell}(U, V)-U^{4} g_{\Delta+4, \ell}(V, U)
\end{aligned}
$$

Non-perturbative constraints: Unitarity

- Impose that $\lambda_{\Delta, \ell}^{2} \geq 0$ and $\Delta \geq \ell+2$.
- At large N, trivially satisfied by $N \rightarrow \infty$ disconnected part $G_{\text {short }}^{\text {abcd }}(U, V)$, so does not constrain $1 / N$ corrections to $\mathcal{T}(U, V)$.
- At finite N, implies crossing equations are infinite set of vectors multiplying positive coefficients \Rightarrow numerical bootstrap algorithm bounds CFT data
- Bounds monotonically improve with truncation size \wedge.
- Bounds can be more constraining than analytic bootstrap EVEN at largish $N, b c$ unitarity is now nontrivial constraint.

Non-perturbative constraints: Unitarity

- Impose that $\lambda_{\Delta, \ell}^{2} \geq 0$ and $\Delta \geq \ell+2$.
- At large N, trivially satisfied by $N \rightarrow \infty$ disconnected part $G_{\text {short }}^{a b c d}(U, V)$, so does not constrain $1 / N$ corrections to $\mathcal{T}(U, V)$.
- At finite N, implies crossing equations are infinite set of vectors multiplying positive coefficients \Rightarrow numerical bootstrap algorithm bounds CFT data
- Bounds monotonically improve with truncation size \wedge.
- Bounds can be more constraining than analytic bootstrap EVEN at largish N, bc unitarity is now nontrivial constraint.

Non-perturbative constraints: Unitarity

- Impose that $\lambda_{\Delta, \ell}^{2} \geq 0$ and $\Delta \geq \ell+2$.
- At large N, trivially satisfied by $N \rightarrow \infty$ disconnected part $G_{\text {short }}^{a b c d}(U, V)$, so does not constrain $1 / N$ corrections to $\mathcal{T}(U, V)$.
- At finite N, implies crossing equations are infinite set of vectors multiplying positive coefficients \Rightarrow numerical bootstrap algorithm bounds CFT data [Rattazzi, Rychkov, Tonni, Vichi '08; Beem, Rastelli, van Rees '13]
- Bounds monotonically improve with truncation size Λ.
- Bounds can be more constraining than analytic bootstrap EVEN at largish $N, b c$ unitarity is now nontrivial constraint.

Non-perturbative constraints: Unitarity

- Impose that $\lambda_{\Delta, \ell}^{2} \geq 0$ and $\Delta \geq \ell+2$.
- At large N, trivially satisfied by $N \rightarrow \infty$ disconnected part $G_{\text {short }}^{a b c d}(U, V)$, so does not constrain $1 / N$ corrections to $\mathcal{T}(U, V)$.
- At finite N, implies crossing equations are infinite set of vectors multiplying positive coefficients \Rightarrow numerical bootstrap algorithm bounds CFT data [Rattazzi, Rychkov, Tonni, Vichi '08; Beem, Rastelli, van Rees '13]
- Bounds monotonically improve with truncation size \wedge.
- Bounds can be more constraining than analytic bootstrap EVEN at largish N, bc unitarity is now nontrivial constraint.

Non-perturbative constraints: Unitarity

- Impose that $\lambda_{\Delta, \ell}^{2} \geq 0$ and $\Delta \geq \ell+2$.
- At large N, trivially satisfied by $N \rightarrow \infty$ disconnected part $G_{\text {short }}^{a b c d}(U, V)$, so does not constrain $1 / N$ corrections to $\mathcal{T}(U, V)$.
- At finite N, implies crossing equations are infinite set of vectors multiplying positive coefficients \Rightarrow numerical bootstrap algorithm bounds CFT data [Rattazzi, Rychkov, Tonni, Vichi '08; Beem, Rastelli, van Rees '13]
- Bounds monotonically improve with truncation size \wedge.
- Bounds can be more constraining than analytic bootstrap EVEN at largish N, bc unitarity is now nontrivial constraint.

Non-perturbative constraints: localization

- Derivatives of free energy $F(m)$ deformed by hyper mass relate to S^{4} integrals of correlator [Binder, SMC, Pufu, Wang '19; SMC, Pufu '20]:

- At large N, can be used to fix two b_{i} at each $1 / N$.
- At finite N, allows us to input τ into numerical bootstrap, as two extra linear constraints on CFT data

Non-perturbative constraints: localization

- Derivatives of free energy $F(m)$ deformed by hyper mass relate to S^{4} integrals of correlator [Binder, SMC, Pufu, Wang '19; SMC, Pufu '20]:

$$
\begin{aligned}
\left.\mathcal{F}_{2}(\tau) \equiv \frac{1}{8 c} \frac{\partial_{m}^{2} \partial_{\tau} \partial_{\bar{\tau}} F}{\partial_{\tau} \partial_{\bar{\tau}} F}\right|_{m=0} & =I_{2}\left[\mathcal{T}(U, V)-\left(1+\frac{1}{V^{2}}+\frac{1}{c V}\right)\right], \\
\mathcal{F}_{4}(\tau) \equiv-48 \zeta(3) c^{-1}-\left.c^{-2} \partial_{m}^{4} F\right|_{m=0} & =I_{4}\left[\mathcal{T}(U, V)-\left(1+\frac{1}{V^{2}}+\frac{1}{c V}\right)\right] .
\end{aligned}
$$

- At large N, can be used to fix two b_{i} at each $1 / N$.
- At finite N , allows us to input τ into numerical bootstrap, as two extra linear constraints on CFT data

Non-perturbative constraints: localization

- Derivatives of free energy $F(m)$ deformed by hyper mass relate to S^{4} integrals of correlator [Binder, SMC, Pufu, Wang '19; SMC, Pufu '20]:

$$
\begin{aligned}
\left.\mathcal{F}_{2}(\tau) \equiv \frac{1}{8 c} \frac{\partial_{m}^{2} \partial_{\tau} \partial_{\bar{\tau}} F}{\partial_{\tau} \partial_{\bar{\tau}} F}\right|_{m=0} & =I_{2}\left[\mathcal{T}(U, V)-\left(1+\frac{1}{V^{2}}+\frac{1}{c V}\right)\right], \\
\mathcal{F}_{4}(\tau) \equiv-48 \zeta(3) c^{-1}-\left.c^{-2} \partial_{m}^{4} F\right|_{m=0} & =I_{4}\left[\mathcal{T}(U, V)-\left(1+\frac{1}{V^{2}}+\frac{1}{c V}\right)\right] .
\end{aligned}
$$

- At large N, can be used to fix two b_{i} at each $1 / N$.
- At finite N, allows us to input τ into numerical bootstrap, as two extra linear constraints on CFT data

Non-perturbative constraints: localization

- Derivatives of free energy $F(m)$ deformed by hyper mass relate to S^{4} integrals of correlator [Binder, SMC, Pufu, Wang '19; SMC, Pufu '20]:

$$
\begin{aligned}
\left.\mathcal{F}_{2}(\tau) \equiv \frac{1}{8 c} \frac{\partial_{m}^{2} \partial_{\tau} \partial_{\bar{\tau}} F}{\partial_{\tau} \partial_{\bar{\tau}} F}\right|_{m=0} & =I_{2}\left[\mathcal{T}(U, V)-\left(1+\frac{1}{V^{2}}+\frac{1}{c V}\right)\right], \\
\mathcal{F}_{4}(\tau) \equiv-48 \zeta(3) c^{-1}-\left.c^{-2} \partial_{m}^{4} F\right|_{m=0} & =I_{4}\left[\mathcal{T}(U, V)-\left(1+\frac{1}{V^{2}}+\frac{1}{c V}\right)\right] .
\end{aligned}
$$

- At large N, can be used to fix two b_{i} at each $1 / N$.
- At finite N, allows us to input τ into numerical bootstrap, as two extra linear constraints on CFT data [SMC, Dempsey, Pufu '21] .

Mass deformed sphere partition function

- Computed using localization in terms of $\operatorname{rank}(G)$ dimensional matrix model integral for gauge group G [Pestun '08] .
- For $S U(N)$ we have explicitly (with $a_{i j} \equiv a_{i}-a_{j}$):

- $H(z)$ is product of Barnes G-functions.
- 0 -dependence only appears in instanton contributions $Z_{\text {inst }}\left(m, \tau, a_{i j}\right)$, which are complicated infinite sums
- Can compute $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ numerically for small N, but need analytic expression for larger N.

Mass deformed sphere partition function

- Computed using localization in terms of $\operatorname{rank}(G)$ dimensional matrix model integral for gauge group G [Pestun '08] .
- For $S U(N)$ we have explicitly (with $a_{i j} \equiv a_{i}-a_{j}$):

- $H(z)$ is product of Barnes G-functions.
- θ-dependence only appears in instanton contributions $Z_{\text {inst }}\left(m, \tau, a_{i j}\right)$, which are complicated infinite sums
- Can compute $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ numerically for small N, but need analytic expression for larger N.

Mass deformed sphere partition function

- Computed using localization in terms of $\operatorname{rank}(G)$ dimensional matrix model integral for gauge group G [Pestun '08] .
- For $S U(N)$ we have explicitly (with $a_{i j} \equiv a_{i}-a_{j}$):

$$
Z=\int \frac{d^{N-1} a}{N!} \frac{\prod_{i<j} a_{i j}^{2} H^{2}\left(a_{i j}\right)}{H(m)^{N-1} \prod_{i \neq j} H\left(a_{i j}+m\right)} e^{-\frac{8 \pi^{2}}{g_{\mathrm{YM}}^{2}} \sum_{i} a_{i}^{2}}\left|Z_{\text {inst }}\left(m, \tau, a_{i j}\right)\right|^{2}
$$

- $H(z)$ is product of Barnes G-functions.
- θ-dependence only appears in instanton contributions $Z_{\text {inst }}\left(m, \tau, a_{i j}\right)$, which are complicated infinite sums
- Can compute $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ numerically for small N, but need analytic expression for larger N.

Mass deformed sphere partition function

- Computed using localization in terms of $\operatorname{rank}(G)$ dimensional matrix model integral for gauge group G [Pestun '08] .
- For $S U(N)$ we have explicitly (with $a_{i j} \equiv a_{i}-a_{j}$):

$$
Z=\int \frac{d^{N-1} a}{N!} \frac{\prod_{i<j} a_{i j}^{2} H^{2}\left(a_{i j}\right)}{H(m)^{N-1} \prod_{i \neq j} H\left(a_{i j}+m\right)} e^{-\frac{8 \pi^{2}}{g_{\mathrm{Y}}^{2}} \sum_{i} a_{i}^{2}}\left|Z_{\text {inst }}\left(m, \tau, a_{i j}\right)\right|^{2}
$$

- $H(z)$ is product of Barnes G-functions.
- θ-dependence only appears in instanton contributions $Z_{\text {inst }}\left(m, \tau, \boldsymbol{a}_{i j}\right)$, which are complicated infinite sums
- Can compute $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ numerically for small N, but need analytic expression for larger N.

Mass deformed sphere partition function

- Computed using localization in terms of $\operatorname{rank}(G)$ dimensional matrix model integral for gauge group G [Pestun '08].
- For $S U(N)$ we have explicitly (with $a_{i j} \equiv a_{i}-a_{j}$):

$$
Z=\int \frac{d^{N-1} a}{N!} \frac{\prod_{i<j} a_{i j}^{2} H^{2}\left(a_{i j}\right)}{H(m)^{N-1} \prod_{i \neq j} H\left(a_{i j}+m\right)} e^{-\frac{8 \pi^{2}}{g_{\mathrm{Y}}^{2}} \sum_{i} a_{i}^{2}}\left|Z_{\text {inst }}\left(m, \tau, a_{i j}\right)\right|^{2}
$$

- $H(z)$ is product of Barnes G-functions.
- θ-dependence only appears in instanton contributions
$Z_{\text {inst }}\left(m, \tau, a_{i j}\right)$, which are complicated infinite sums [Nekrasov '03].
- Can compute $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ numerically for small N, but
need analytic expression for larger N.

Mass deformed sphere partition function

- Computed using localization in terms of $\operatorname{rank}(G)$ dimensional matrix model integral for gauge group G [Pestun ' 08$]$.
- For $\operatorname{SU}(N)$ we have explicitly (with $a_{i j} \equiv a_{i}-a_{j}$):

$$
Z=\int \frac{d^{N-1} a}{N!} \frac{\prod_{i<j} a_{i j}^{2} H^{2}\left(a_{i j}\right)}{H(m)^{N-1} \prod_{i \neq j} H\left(a_{i j}+m\right)} e^{-\frac{8 \pi^{2}}{g_{M}^{2}} \sum_{i} a_{i}^{2}}\left|Z_{\text {inst }}\left(m, \tau, a_{i j}\right)\right|^{2} .
$$

- $H(z)$ is product of Barnes G-functions.
- θ-dependence only appears in instanton contributions $Z_{\text {inst }}\left(m, \tau, a_{i j}\right)$, which are complicated infinite sums [Nekrasov '03].
- Can compute $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ numerically for small N, but need analytic expression for larger N.

Non-instanton contribution

- When $m=0$, we have free gaussian matrix model:

- Compute non-instanton part of $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ using orthogonal polynomials [Mehta '81]. For instance, for $\mathcal{F}_{2}(\tau)$ we have

Non-instanton contribution

- When $m=0$, we have free gaussian matrix model:

$$
Z(0)=\int \frac{d^{N-1} a}{N!} \prod_{i<j} a_{i j}^{2} e^{-\frac{8 \pi^{2}}{g_{\mathrm{YM}}^{2}} \sum_{i} a_{i}^{2}}
$$

- Compute non-instanton part of $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ using orthogonal polynomials [Mehta '81]. For instance, for $\mathcal{F}_{2}(\tau)$ we have

- $\mathcal{F}_{4}(\tau)$ also written as 2 integrals of 4 Laguerre's

Non-instanton contribution

- When $m=0$, we have free gaussian matrix model:

$$
Z(0)=\int \frac{d^{N-1} a}{N!} \prod_{i<j} a_{i j}^{2} e^{-\frac{8 \pi^{2}}{g_{\mathrm{YM}}^{2}} \sum_{i} a_{i}^{2}}
$$

- Compute non-instanton part of $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ using orthogonal polynomials [Mehta '81]. For instance, for $\mathcal{F}_{2}(\tau)$ we have [SMC '19]:

- $\mathcal{F}_{4}(\tau)$ also written as 2 integrals of 4 Laguerre's

Non-instanton contribution

- When $m=0$, we have free gaussian matrix model:

$$
Z(0)=\int \frac{d^{N-1} a}{N!} \prod_{i<j} a_{i j}^{2} e^{-\frac{8 \pi^{2}}{g_{\mathrm{YM}}^{2}} \sum_{i} a_{i}^{2}}
$$

- Compute non-instanton part of $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ using orthogonal polynomials [Mehta '81]. For instance, for $\mathcal{F}_{2}(\tau)$ we have [SMC '19]:

$$
-\frac{\tau_{2}^{2} \partial_{\tau_{2}}^{2}}{4 c^{2}} \int_{0}^{\infty} d w \frac{e^{-\frac{w^{2}}{\pi \tau_{2}}}}{2 \sinh ^{2} w}\left[\left[L_{N-1}^{(1)}\left(\frac{w^{2}}{\pi \tau_{2}}\right)\right]^{2}-\sum_{i, j=1}^{N}(-1)^{i-j} L_{i-1}^{(j-i)}\left(\frac{w^{2}}{\pi \tau_{2}}\right) L_{j-1}^{(i-j)}\left(\frac{w^{2}}{\pi \tau_{2}}\right)\right]
$$

Non-instanton contribution

- When $m=0$, we have free gaussian matrix model:

$$
Z(0)=\int \frac{d^{N-1} a}{N!} \prod_{i<j} a_{i j}^{2} e^{-\frac{8 \pi^{2}}{g_{\mathrm{YM}}^{2}} \sum_{i} a_{i}^{2}}
$$

- Compute non-instanton part of $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ using orthogonal polynomials [Mehta '81]. For instance, for $\mathcal{F}_{2}(\tau)$ we have [SMC '19]:

$$
-\frac{\tau_{2}^{2} \partial_{\tau_{2}}^{2}}{4 c^{2}} \int_{0}^{\infty} d w \frac{e^{-\frac{w^{2}}{\pi \tau_{2}}}}{2 \sinh ^{2} w}\left[\left[L_{N-1}^{(1)}\left(\frac{w^{2}}{\pi \tau_{2}}\right)\right]^{2}-\sum_{i, j=1}^{N}(-1)^{i-j} L_{i-1}^{(j-i)}\left(\frac{w^{2}}{\pi \tau_{2}}\right) L_{j-1}^{(i-j)}\left(\frac{w^{2}}{\pi \tau_{2}}\right)\right]
$$

- $\mathcal{F}_{4}(\tau)$ also written as 2 integrals of 4 Laguerre's [SMC, Pufu '20].

Instanton contribution

- Expand $Z_{\text {inst }}\left(m, \tau, a_{i j}\right)$ in instanton number k as

- Using $Z_{\text {inst }}$, computed $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ to any order in $1 / N$ and finite τ

- Non-holomorphic Eisensteins $E(s, \tau)$ also written as instanton sum.
- $\mathcal{F}_{4}(\tau)$ expanded in terms of $E(s, \tau)$ and other modular invariant function called generalized Eisenstein series.

Instanton contribution

- Expand $Z_{\text {inst }}\left(m, \tau, a_{i j}\right)$ in instanton number k as

$$
Z_{\text {inst }}\left(m, \tau, a_{i j}\right)=\sum_{k=0}^{\infty} e^{2 \pi i k \tau} Z_{\text {inst }}^{(k)}\left(m, a_{i j}\right)
$$

- Using $Z_{\text {inst }}$, computed $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ to any order in $1 / N$ and finite τ

- Non-holomorphic Eisensteins $E(s, \tau)$ also written as instanton sum.
- $\mathcal{F}_{4}(\tau)$ expanded in terms of $E(s, \tau)$ and other modular invariant function called generalized Eisenstein series.

Instanton contribution

- Expand $Z_{\text {inst }}\left(m, \tau, a_{i j}\right)$ in instanton number k as

$$
Z_{\text {inst }}\left(m, \tau, a_{i j}\right)=\sum_{k=0}^{\infty} e^{2 \pi i k \tau} Z_{\text {inst }}^{(k)}\left(m, a_{i j}\right)
$$

- Using $Z_{\text {inst }}$, computed $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ to any order in $1 / N$ and finite τ [SMC, Green, Pufu, Wang, Wen '19; Alday; Dorigoni; SMC, Green, Wen '23] :

- Non-holomorphic Eisensteins $E(s, \tau)$ also written as instanton sum.
- $\mathcal{F}_{4}(\tau)$ expanded in terms of $E(s, \tau)$ and other modular invariant function called generalized Eisenstein series.

Instanton contribution

- Expand $Z_{\text {inst }}\left(m, \tau, a_{i j}\right)$ in instanton number k as

$$
Z_{\text {inst }}\left(m, \tau, a_{i j}\right)=\sum_{k=0}^{\infty} e^{2 \pi i k \tau} Z_{\text {inst }}^{(k)}\left(m, a_{i j}\right)
$$

- Using $Z_{\text {inst }}$, computed $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ to any order in $1 / N$ and finite τ [SMC, Green, Pufu, Wang, Wen '19; Alday; Dorigoni; SMC, Green, Wen '23] :

$$
\mathcal{F}_{2}(\tau) \approx \frac{1}{4 c^{2}}\left[\frac{N^{2}}{4}-\frac{3 \sqrt{N}}{2^{4}} E\left(\frac{3}{2} ; \tau\right)+\frac{45}{2^{8} \sqrt{N}} E\left(\frac{5}{2} ; \tau\right)+\ldots\right]
$$

- Non-holomorphic Eisensteins $E(s, \tau)$ also written as instanton sum.
- $\mathcal{F}_{4}(\tau)$ expanded in terms of $E(s, \tau)$ and other modular invariant function called generalized Eisenstein series.

Instanton contribution

- Expand $Z_{\text {inst }}\left(m, \tau, a_{i j}\right)$ in instanton number k as

$$
Z_{\text {inst }}\left(m, \tau, a_{i j}\right)=\sum_{k=0}^{\infty} e^{2 \pi i k \tau} Z_{\text {inst }}^{(k)}\left(m, a_{i j}\right)
$$

- Using $Z_{\text {inst }}$, computed $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ to any order in $1 / N$ and finite τ [SMC, Green, Pufu, Wang, Wen '19; Alday; Dorigoni; SMC, Green, Wen '23] :

$$
\mathcal{F}_{2}(\tau) \approx \frac{1}{4 c^{2}}\left[\frac{N^{2}}{4}-\frac{3 \sqrt{N}}{2^{4}} E\left(\frac{3}{2} ; \tau\right)+\frac{45}{2^{8} \sqrt{N}} E\left(\frac{5}{2} ; \tau\right)+\ldots\right]
$$

- Non-holomorphic Eisensteins $E(s, \tau)$ also written as instanton sum.
- $\mathcal{F}_{4}(\tau)$ expanded in terms of $E(s, \tau)$ and other modular invariant function called generalized Eisenstein series.

Instanton contribution

- Expand $Z_{\text {inst }}\left(m, \tau, a_{i j}\right)$ in instanton number k as

$$
Z_{\text {inst }}\left(m, \tau, a_{i j}\right)=\sum_{k=0}^{\infty} e^{2 \pi i k \tau} Z_{\text {inst }}^{(k)}\left(m, a_{i j}\right)
$$

- Using $Z_{\text {inst }}$, computed $\mathcal{F}_{2}(\tau)$ and $\mathcal{F}_{4}(\tau)$ to any order in $1 / N$ and finite τ [SMC, Green, Pufu, Wang, Wen '19; Alday; Dorigoni; SMC, Green, Wen '23] :

$$
\mathcal{F}_{2}(\tau) \approx \frac{1}{4 c^{2}}\left[\frac{N^{2}}{4}-\frac{3 \sqrt{N}}{2^{4}} E\left(\frac{3}{2} ; \tau\right)+\frac{45}{2^{8} \sqrt{N}} E\left(\frac{5}{2} ; \tau\right)+\ldots\right]
$$

- Non-holomorphic Eisensteins $E(s, \tau)$ also written as instanton sum.
- $\mathcal{F}_{4}(\tau)$ expanded in terms of $E(s, \tau)$ and other modular invariant function called generalized Eisenstein series.

Localization inputs for any N

- Eisenstein series diverges for weak coupling due to $1 / g_{\mathrm{Ym}}$ terms:

$$
E\left(\frac{3}{2} ; \tau\right)=\frac{16 \pi^{3 / 2} \zeta(3)}{g_{\mathrm{YM}}^{3}}+\frac{1}{3} \pi^{3 / 2} g_{\mathrm{YM}}+\sum_{k=1}^{\infty} \frac{32 \cos (\theta) \pi^{3 / 2} k \sigma_{-2}(k) K_{1}\left(\frac{8 k \pi^{2}}{g_{\mathrm{YM}}^{2}}\right)}{g_{\mathrm{YM}}}
$$

- But $k>1$ instantons in large N terms converge quickly for any τ.
- Consider $k>1$ part of large $N /$ plus exact expression for $k=0$.

Localization inputs for any N

- Eisenstein series diverges for weak coupling due to $1 / g_{\mathrm{Ym}}$ terms:

$$
E\left(\frac{3}{2} ; \tau\right)=\frac{16 \pi^{3 / 2} \zeta(3)}{g_{\mathrm{YM}}^{3}}+\frac{1}{3} \pi^{3 / 2} g_{\mathrm{YM}}+\sum_{k=1}^{\infty} \frac{32 \cos (\theta) \pi^{3 / 2} k \sigma_{-2}(k) K_{1}\left(\frac{8 k \pi^{2}}{g_{\mathrm{YM}}^{2}}\right)}{g_{\mathrm{YM}}}
$$

- But $k>1$ instantons in large N terms converge quickly for any τ.
- Consider $k>1$ part of large N plus exact expression for $k=0$:

Localization inputs for any N

- Eisenstein series diverges for weak coupling due to $1 / g_{\mathrm{Ym}}$ terms:

$$
E\left(\frac{3}{2} ; \tau\right)=\frac{16 \pi^{3 / 2} \zeta(3)}{g_{\mathrm{YM}}^{3}}+\frac{1}{3} \pi^{3 / 2} g_{\mathrm{YM}}+\sum_{k=1}^{\infty} \frac{32 \cos (\theta) \pi^{3 / 2} k \sigma_{-2}(k) K_{1}\left(\frac{8 k \pi^{2}}{g_{\mathrm{YM}}^{2}}\right)}{g_{\mathrm{YM}}}
$$

- But $k>1$ instantons in large N terms converge quickly for any τ.
- Consider $k>1$ part of large N plus exact expression for $k=0$:

Localization inputs for any N

- Eisenstein series diverges for weak coupling due to $1 / g_{\mathrm{YM}}$ terms:

$$
E\left(\frac{3}{2} ; \tau\right)=\frac{16 \pi^{3 / 2} \zeta(3)}{g_{\mathrm{YM}}^{3}}+\frac{1}{3} \pi^{3 / 2} g_{\mathrm{YM}}+\sum_{k=1}^{\infty} \frac{32 \cos (\theta) \pi^{3 / 2} k \sigma_{-2}(k) K_{1}\left(\frac{8 k \pi^{2}}{g_{\mathrm{YM}}^{2}}\right)}{g_{\mathrm{YM}}}
$$

- But $k>1$ instantons in large N terms converge quickly for any τ.
- Consider $k>1$ part of large N plus exact expression for $k=0$:
$\mathcal{F}_{2}(\tau) \approx \frac{1}{4 c^{2}}\left[-\frac{3 \sqrt{N}}{2^{4}} E\left(\frac{3}{2} ; \tau\right)+\frac{45}{2^{8} \sqrt{N}} E\left(\frac{5}{2} ; \tau\right)+\ldots\right]_{k>1}$
$-\frac{\tau_{2}^{2} \partial_{\tau_{2}}^{2}}{4 C^{2}} \int_{0}^{\infty} d w \frac{e^{-\frac{w^{2}}{\pi \tau_{2}}}}{2 \sinh ^{2} w}\left[\left[L_{N-1}^{(1)}\left(\frac{w^{2}}{\pi \tau_{2}}\right)\right]^{2}-\sum_{i, j=1}^{N}(-1)^{i-j} L_{i-1}^{(j-i)}\left(\frac{w^{2}}{\pi \tau_{2}}\right) L_{j-1}^{(i-j)}\left(\frac{w^{2}}{\pi \tau_{2}}\right)\right]$

Localization input comparison

$\left.\mathcal{F}_{2} \equiv \frac{1}{8 c} \frac{\partial_{m}^{2} \partial_{\tau} \partial_{\mp} \mathcal{F}}{\partial_{\tau} \partial_{\bar{\tau}} F}\right|_{m=0}$ for $S U(2)$ in the $S L(2, \mathbb{Z})$ fundamental domain $\left(\mathcal{F}_{4}\right.$ is similar), with cusps at self-dual points $\tau=i, e^{\frac{i \pi}{3}}$:

Localization input comparison

$\left.\mathcal{F}_{2} \equiv \frac{1}{8 c} \frac{\partial_{m}^{2} \partial_{\tau} \partial_{\mp} \mathcal{F}}{\partial_{\tau} \partial_{\bar{\tau}} F}\right|_{m=0}$ for $S U(2)$ in the $S L(2, \mathbb{Z})$ fundamental domain $\left(\mathcal{F}_{4}\right.$ is similar), with cusps at self-dual points $\tau=i, e^{\frac{i \pi}{3}}$:

Numerical bootstrap+localization

- Combine all non-perturbative constraints (unitarity, crossing, localization) to bootstrap CFT data [SMC, Dempsey, Pufu '21].
- Input N via c in short contributions.
- Input τ via 2 localization inputs. Without localization, bootstrap independent of τ [B
- Impose crossing and localization inputs as linear constraints, bounds improve monotonically with truncation size Λ of infinite crossing constraints.
- In '21 paper, we could only do low N bc $N-1$ integrals for localization input, now in '23 paper we can do any N.

Numerical bootstrap+localization

- Combine all non-perturbative constraints (unitarity, crossing, localization) to bootstrap CFT data [SMC, Dempsey, Pufu '21].
- Input N via c in short contributions.
- Input τ via 2 localization inputs. Without localization, bootstrap independent of τ [B
- Impose crossing and localization inputs as linear constraints, bounds improve monotonically with truncation size \wedge of infinite crossing constraints.
- In '21 paper, we could on'y do low N bc N - 1 integrals for localization input, now in '23 paper we can do any N.

Numerical bootstrap+localization

- Combine all non-perturbative constraints (unitarity, crossing, localization) to bootstrap CFT data [SMC, Dempsey, Pufu '21].
- Input N via c in short contributions.
- Input τ via 2 localization inputs. Without localization, bootstrap independent of τ [Beem, Rastelli, van Rees '13].
- Impose crossing and localization inputs as linear constraints, bounds improve monotonically with truncation size Λ of infinite crossing constraints.
- In '21 paper, we could only do low N bc $N-1$ integrals for localization input, now in '23 paper we can do any N.

Numerical bootstrap+localization

- Combine all non-perturbative constraints (unitarity, crossing, localization) to bootstrap CFT data [SMC, Dempsey, Pufu '21].
- Input N via c in short contributions.
- Input τ via 2 localization inputs. Without localization, bootstrap independent of τ [Beem, Rastelli, van Rees '13].
- Impose crossing and localization inputs as linear constraints, bounds improve monotonically with truncation size Λ of infinite crossing constraints.
- In '21 paper, we could only do low N bc $N-1$ integrals for localization input, now in '23 paper we can do any N.

Numerical bootstrap+localization

- Combine all non-perturbative constraints (unitarity, crossing, localization) to bootstrap CFT data [SMC, Dempsey, Pufu '21].
- Input N via c in short contributions.
- Input τ via 2 localization inputs. Without localization, bootstrap independent of τ [Beem, Rastelli, van Rees '13].
- Impose crossing and localization inputs as linear constraints, bounds improve monotonically with truncation size Λ of infinite crossing constraints.
- In '21 paper, we could only do low N bc $N-1$ integrals for localization input, now in '23 paper we can do any N.

Bounds: Lowest Δ for $S U(2)$

- All these bounds with truncation $\Lambda=39$, converged for $\operatorname{SU}(2)$.
- Matches weak coupling to 4-loops!
- Bounds from crossing without localization not saturated for any τ (instead, correspond to pure AdS_{5} supergravity [Alday, SMC '22]).

Bounds: Lowest Δ for $S U(2)$

- All these bounds with truncation $\Lambda=39$, converged for $S U(2)$.
- Matches weak coupling to 4-loops!
- Bounds from crossing without localization not saturated for any τ (instead, correspond to pure AdS_{5} supergravity

Bounds: Lowest Δ for $S U(2)$

- All these bounds with truncation $\Lambda=39$, converged for $S U(2)$.
- Matches weak coupling to 4-loops!
- Bounds from crossing without localization not saturated for any τ (instead, correspond to pure AdS_{5} supergravity

Bounds: Lowest Δ for $S U(2)$

- All these bounds with truncation $\Lambda=39$, converged for $S U(2)$.
- Matches weak coupling to 4-loops!
- Bounds from crossing without localization not saturated for any τ (instead, correspond to pure AdS_{5} supergravity [Alday, SMC '22]).

Bounds: Lowest λ^{2} for $S U(2)$

- Bit less converged for OPE coefficient.
- Still matches weak coupling (in smaller regime than Δ.)
- Extremal value no longer at cusps (unlike \triangle).

Bounds: Lowest λ^{2} for $S U(2)$

- Bit less converged for OPE coefficient.
- Still matches weak coupling (in smaller regime than \triangle.)
- Extremal value no longer at cusps (unlike Δ).

Bounds: Lowest λ^{2} for $S U(2)$

- Bit less converged for OPE coefficient.
- Still matches weak coupling (in smaller regime than Δ.)
- Extremal value no longer at cusps (unlike \triangle).

Bounds: Lowest λ^{2} for $S U(2)$

- Bit less converged for OPE coefficient.
- Still matches weak coupling (in smaller regime than Δ.)
- Extremal value no longer at cusps (unlike Δ).

Bounds on lowest Δ for various N

- For large N, convergence gets worse, we computed many \wedge and extrapolated to $\Lambda \rightarrow \infty$ (see next slides for more details).
- Bounds are converging to Planar integrability spectrum (similar to Pade resummed 4-loop weak coupling in this regime).

Bounds on lowest Δ for various N

- For large N, convergence gets worse, we computed many Λ and extrapolated to $\Lambda \rightarrow \infty$ (see next slides for more details).
- Bounds are converging to Planar integrability spectrum (similar to Pade resummed 4-loop weak coupling in this regime).

Bounds on lowest Δ for various N

- For large N, convergence gets worse, we computed many \wedge and extrapolated to $\Lambda \rightarrow \infty$ (see next slides for more details).
- Bounds are converging to Planar integrability spectrum (similar to Pade resummed 4 -loop weak coupling in this regime).

Bounds on lowest λ^{2} for various N

- For large N, convergence gets worse, we computed many \wedge and extrapolated to $\Lambda \rightarrow \infty$ (see next slides for more details).
- No planar integrability results to compare to now.

Bounds on lowest λ^{2} for various N

- For large N, convergence gets worse, we computed many Λ and extrapolated to $\Lambda \rightarrow \infty$ (see next slides for more details).
- No planar integrability results to compare to now.

Bounds on lowest λ^{2} for various N

- For large N, convergence gets worse, we computed many Λ and extrapolated to $\Lambda \rightarrow \infty$ (see next slides for more details).
- No planar integrability results to compare to now.

Analytic bootstrap+localization

- Recall that analytic bootstrap (i.e. crossing, pole structure of Witten diagrams, and flat space limit) fixes correlator to:

$$
\mathcal{T}=\frac{\mathcal{T}_{R}}{c}+b_{1} \frac{\mathcal{T}_{R^{4}}}{c^{7 / 4}}+\frac{\mathcal{T}_{R \mid R}+b_{2} \mathcal{T}_{R^{4}}}{c^{2}}+\frac{b_{3} \mathcal{T}_{D^{4} R^{4}}^{1}+b_{4} \mathcal{T}_{D^{4} R^{4}}^{2}}{c^{9 / 4}}+\ldots
$$

- 2 localization constraints fix b_{i} in terms of Eisensteins and generalized eisensteins that appear in localization inputs.
- Matches type IIB S-matrix in flat space limit at finite τ 1-loop b_{2} fixed in
- Extract CFT data of dou'ble trace operators, e.g. Iowest \triangle :

Analytic bootstrap+localization

- Recall that analytic bootstrap (i.e. crossing, pole structure of Witten diagrams, and flat space limit) fixes correlator to:

$$
\mathcal{T}=\frac{\mathcal{T}_{R}}{c}+b_{1} \frac{\mathcal{T}_{R^{4}}}{c^{7 / 4}}+\frac{\mathcal{T}_{R \mid R}+b_{2} \mathcal{T}_{R^{4}}}{c^{2}}+\frac{b_{3} \mathcal{T}_{D^{4} R^{4}}^{1}+b_{4} \mathcal{T}_{D^{4} R^{4}}^{2}}{c^{9 / 4}}+\ldots
$$

- 2 localization constraints fix b_{i} in terms of Eisensteins and generalized eisensteins that appear in localization inputs.
- Matches type IIB S-matrix in flat space limit at finite τ

$$
\text { 1-loop } b_{2} \text { fixed in }
$$

- Extract CFT data of double trace operators, e.g. lowest Δ

Analytic bootstrap+localization

- Recall that analytic bootstrap (i.e. crossing, pole structure of Witten diagrams, and flat space limit) fixes correlator to:

$$
\mathcal{T}=\frac{\mathcal{T}_{R}}{c}+b_{1} \frac{\mathcal{T}_{R^{4}}}{c^{7 / 4}}+\frac{\mathcal{T}_{R \mid R}+b_{2} \mathcal{T}_{R^{4}}}{c^{2}}+\frac{b_{3} \mathcal{T}_{D^{4} R^{4}}^{1}+b_{4} \mathcal{T}_{D^{4} R^{4}}^{2}}{c^{9 / 4}}+\ldots
$$

- 2 localization constraints fix b_{i} in terms of Eisensteins and generalized eisensteins that appear in localization inputs.
- Matches type IIB S-matrix in flat space limit at finite τ [SMC, Green, Pufu, Wang, Wen '19] . 1-loop b_{2} fixed in [SMC '19].
- Extract CFT data of double trace operators, e.g. Iowest \triangle :

Analytic bootstrap+localization

- Recall that analytic bootstrap (i.e. crossing, pole structure of Witten diagrams, and flat space limit) fixes correlator to:

$$
\mathcal{T}=\frac{\mathcal{T}_{R}}{c}+b_{1} \frac{\mathcal{T}_{R^{4}}}{c^{7 / 4}}+\frac{\mathcal{T}_{R \mid R}+b_{2} \mathcal{T}_{R^{4}}}{c^{2}}+\frac{b_{3} \mathcal{T}_{D^{4} R^{4}}^{1}+b_{4} \mathcal{T}_{D^{4} R^{4}}^{2}}{c^{9 / 4}}+\ldots
$$

- 2 localization constraints fix b_{i} in terms of Eisensteins and generalized eisensteins that appear in localization inputs.
- Matches type IIB S-matrix in flat space limit at finite τ [SMC, Green, Pufu, Wang, Wen '19] . 1-loop b_{2} fixed in [SMC '19].
- Extract CFT data of double trace operators, e.g. lowest Δ :

Analytic bootstrap+localization

- Recall that analytic bootstrap (i.e. crossing, pole structure of Witten diagrams, and flat space limit) fixes correlator to:

$$
\mathcal{T}=\frac{\mathcal{T}_{R}}{c}+b_{1} \frac{\mathcal{T}_{R^{4}}}{c^{7 / 4}}+\frac{\mathcal{T}_{R \mid R}+b_{2} \mathcal{T}_{R^{4}}}{c^{2}}+\frac{b_{3} \mathcal{T}_{D^{4} R^{4}}^{1}+b_{4} \mathcal{T}_{D^{4} R^{4}}^{2}}{c^{9 / 4}}+\ldots
$$

- 2 localization constraints fix b_{i} in terms of Eisensteins and generalized eisensteins that appear in localization inputs.
- Matches type IIB S-matrix in flat space limit at finite τ [SMC, Green, Pufu, Wang, Wen '19]. 1-loop b_{2} fixed in [SMC '19].
- Extract CFT data of double trace operators, e.g. lowest Δ :
$\Delta_{4,0}=4-\frac{4}{c}+\frac{135}{7 \sqrt{2} \pi^{3 / 2} c^{7 / 4}} E\left(\frac{3}{2}, \tau\right)+\frac{1199}{42 c^{2}}-\frac{3825}{32 \sqrt{2} \pi^{5 / 2} c^{9 / 4}} E\left(\frac{5}{2}, \tau\right)+\ldots$

Bounds: Lowest Δ for $\operatorname{SU}(10)$

- Use extrapolation to overcome slow convergence (next slides).
- Matches BOTH weak coupling and strong coupling expansions!
- Observe non-pert level repulsion, in 'between weak coupling for single trace and strong coupling for double trace.

Bounds: Lowest Δ for $S U(10)$

- Use extrapolation to overcome slow convergence (next slides).
- Matches BOTH weak coupling and strong coupling expansions!
- Observe non-pert level repulsion, in between weak coupling for single trace and strong coupling for double trace.

Bounds: Lowest Δ for $\operatorname{SU}(10)$

- Use extrapolation to overcome slow convergence (next slides).
- Matches BOTH weak coupling and strong coupling expansions!
- Observe non-pert level repulsion, in between weak coupling for single trace and strong coupling for double trace.

Bounds: Lowest Δ for $S U(10)$

- Use extrapolation to overcome slow convergence (next slides).
- Matches BOTH weak coupling and strong coupling expansions!
- Observe non-pert level repulsion, in between weak coupling for single trace and strong coupling for double trace.

Bounds: Lowest Δ for $S U(9)$ and $S U(11)$

Bounds: Lowest λ^{2} for $\operatorname{SU}(10)$

- Use extrapolation to overcome slow convergence.
- Matches BOTH weak coupling and strong coupling expansions!
- Observe non-pert level reputsion, in between weak coupling for single trace and strong coupling for double trace.

Bounds: Lowest λ^{2} for $\operatorname{SU}(10)$

- Use extrapolation to overcome slow convergence.
- Matches BOTH weak coupling and strong coupling expansions!
- Observe non-pert level repulsion, in between weak coupling for single trace and strong coupling for double trace.

Bounds: Lowest λ^{2} for $\operatorname{SU}(10)$

	$\Lambda=19$
	$\Lambda=27$
	$\Lambda=35$
	$\Lambda=43$
	$\Lambda=51$
	$\Lambda=\infty$
- =- - -	Weak Coupling Padè
--"--	Strong Coupling
..	Without ICs

- Use extrapolation to overcome slow convergence.
- Matches BOTH weak coupling and strong coupling expansions!
- Observe non-pert level repulsion, in between weak coupling for single trace and strong coupling for double trace.

Bounds: Lowest λ^{2} for $S U(10)$

- Use extrapolation to overcome slow convergence.
- Matches BOTH weak coupling and strong coupling expansions!
- Observe non-pert level repulsion, in between weak coupling for single trace and strong coupling for double trace.

Bounds: Lowest λ^{2} for $S U(9)$ and $S U(11)$

Extrapolation in \wedge

- We use simple polynomial ansatz for extrapolation:

$$
\Delta=\Delta_{0}+\Delta_{1} / \Lambda+\Delta_{2} / \Lambda^{2}
$$

- Similar ansatz used in original $\mathcal{N}=4$ bootstrap
- Extrapolation gives results that match perturbative data for all N.

Extrapolation in \wedge

- We use simple polynomial ansatz for extrapolation:
$\Delta=\Delta_{0}+\Delta_{1} / \Lambda+\Delta_{2} / \Lambda^{2}$.
- Similar ansatz used in original $\mathcal{N}=4$ bootstrap
- Extrapolation gives results that match perturbative data for all N.

Extrapolation in \wedge

- We use simple polynomial ansatz for extrapolation:
$\Delta=\Delta_{0}+\Delta_{1} / \Lambda+\Delta_{2} / \Lambda^{2}$.
- Similar ansatz used in original $\mathcal{N}=4$ bootstrap [Rastelli, van Rees '13].
- Extrapolation gives results that match perturbative data for all N.

Extrapolation in \wedge

- We use simple polynomial ansatz for extrapolation:
$\Delta=\Delta_{0}+\Delta_{1} / \Lambda+\Delta_{2} / \Lambda^{2}$.
- Similar ansatz used in original $\mathcal{N}=4$ bootstrap [Rastelli, van Rees '13].
- Extrapolation gives results that match perturbative data for all N.

Sensitivity to stringy corrections

- For largish N (e.g. $S U(10))$, we see that analytic bootstrap result gets closer to bound as we include more 1/c corrections.
- $1 / c$ is supergravity, $1 / c^{7 / 4}$ is R^{4} correction [19], $1 / C^{2}$ is 1 -loop correction (which included contact term fixed from localization [SMC 19]).
- So bootstrap sensitive to stringy corrections!

Sensitivity to stringy corrections

- For largish N (e.g. $S U(10)$), we see that analytic bootstrap result gets closer to bound as we include more 1/c corrections.
- $1 / c$ is supergravity, $1 / c^{7 / 4}$ is R^{4} correction $1 / c^{2}$ is 1 -loop correction (which included contact term fixed from localization
- So bootstrap sensitive to stringy corrections!

Sensitivity to stringy corrections


```
- \(\cdot \cdots=\) Strong Coupling \(O\left(c^{-1}\right)\)
1= = = = \(=\) Strong Coupling \(O\left(c^{-7 / 4}\right)\)
[-1=- Strong Coupling \(O\left(c^{-2}\right)\)
—— \(\Lambda=\infty\)
Without ICs
```

- For largish N (e.g. $S U(10)$), we see that analytic bootstrap result gets closer to bound as we include more $1 / c$ corrections.
- $1 / c$ is supergravity, $1 / c^{7 / 4}$ is R^{4} correction [SMC, Green, Pufu, Wang, Wen $\left.{ }^{1} 19\right], 1 / c^{2}$ is 1 -loop correction [Alday, Bissi' 177; Aprile, Drummond, Heslop, Paul '17] (which included contact term fixed from localization [SMC '19]).
- So bootstrap sensitive to stringy corrections!

Sensitivity to stringy corrections

- . . - = Strong Coupling $O\left(c^{-1}\right)$
1 $=\cdot=1=$ Strong Coupling $O\left(c^{-7 / 4}\right)$
[-1=1- Strong Coupling $O\left(c^{-2}\right)$
—— $\Lambda=\infty$
Without ICs
- For largish N (e.g. $S U(10)$), we see that analytic bootstrap result gets closer to bound as we include more 1/c corrections.
- $1 / c$ is supergravity, $1 / c^{7 / 4}$ is R^{4} correction [SMC, Green, Pufu, Wang, Wen '19], $1 / C^{2}$ is 1 -loop correction [Alday, Bissi' '17; Aprile, Drummond, Heslop, Paul $\left.{ }^{\prime} 17\right]$ (which included contact term fixed from localization [SMC '19]).
- So bootstrap sensitive to stringy corrections!

Conclusion

- Need localization to get bootstrap bounds saturated by SYM (i.e., a non-perturbative solution to SYM for all N and $\tau!$).
- For smallish GYM, bounds saturated by weak coupling (indistinguishable from integrability in this regime) for single trace.
- For largish gYM, bounds saturated by strong coupling from holography (i.e. analytic bootstrap) for double trace including stringy corrections.
- In intermediate regime, we see non-perturbative level repulsion between lowest single and double trace operators.

Conclusion

- Need localization to get bootstrap bounds saturated by SYM (i.e., a non-perturbative solution to SYM for all N and τ !).
- For smallish g_{Ym}, bounds saturated by weak coupling (indistinguishable from integrability in this regime) for single trace.
- For largish g_{YM}, bounds saturated by strong coupling from holography (i.e. analytic bootstrap) for double trace including stringy corrections.
- In intermediate regime, we see non-perturbative level repulsion between lowest single and double trace operators.

Conclusion

- Need localization to get bootstrap bounds saturated by SYM (i.e., a non-perturbative solution to SYM for all N and τ !).
- For smallish g_{Ym}, bounds saturated by weak coupling (indistinguishable from integrability in this regime) for single trace.
- For largish g_{Ym}, bounds saturated by strong coupling from holography (i.e. analytic bootstrap) for double trace including stringy corrections.
- In intermediate regime, we see non-perturbative level repulsion between lowest single and double trace operators.

Conclusion

- Need localization to get bootstrap bounds saturated by SYM (i.e., a non-perturbative solution to SYM for all N and τ !).
- For smallish g_{Ym}, bounds saturated by weak coupling (indistinguishable from integrability in this regime) for single trace.
- For largish g_{Ym}, bounds saturated by strong coupling from holography (i.e. analytic bootstrap) for double trace including stringy corrections.
- In intermediate regime, we see non-perturbative level repulsion between lowest single and double trace operators.

Near future directions

- More accurate bounds, sensitive to higher twist or spin operators.
- In bootstrap without localization, higher spins usually easier to access than higher twists, but with localization both equally hard.
- Get greater accuracy from imposing more localization constraints (e.g. from the squashed sphere), or from mixing with lowest dimension long operator (which is also relevant).
- If we are sensitive to second lowest twist, then impose ≤ 2 relevant operators to get islands for each τ, rigorously solve SYM!
- Combine localization + bootstrap to numerically solve ANY 3d $\mathcal{N}=2,4 d \mathcal{N}=2$, or $5 d \mathcal{N}=1$ Lagrangian CFT, e.g.:
- $4 \mathrm{~d} \mathcal{N}=2$ dual to open strings
- 3d $\mathcal{N}=6 \mathrm{ABJ}(\mathrm{M})$ in string, M-theory, and higher spin regimes

Near future directions

- More accurate bounds, sensitive to higher twist or spin operators.
- In bootstrap without localization, higher spins usually easier to access than higher twists, but with localization both equally hard.
- Get greater accuracy from imposing more localization constraints (e.g. from the squashed sphere), or from mixing with lowest dimension long operator (which is also relevant).
- If we are sensitive to second lowest twist, then impose ≤ 2 relevant operators to get islands for each τ, rigorously solve SYM!
- Combine Iocalization + bootstran to numerically solve ANY 3d $\mathcal{N}=2,4 \mathrm{~d} \mathcal{N}=2$, or 5d $\mathcal{N}=1$ Lagrangian CFT, e.g.
- $4 \mathrm{~d} \mathcal{N}=2$ dual to open strings
- 3d $\mathcal{N}=6 \triangle \mathrm{BI}(M)$ in string, M-theory, and higher spin regimes

Near future directions

- More accurate bounds, sensitive to higher twist or spin operators.
- In bootstrap without localization, higher spins usually easier to access than higher twists, but with localization both equally hard.
- Get greater accuracy from imposing more localization constraints (e.g. from the squashed sphere), or from mixing with lowest dimension long operator (which is also relevant).
- If we are sensitive to second lowest twist, then impose ≤ 2 relevant operators to get islands for each τ, rigorously solve SYM!
- Combine Iocalization + bootstran to numerically solve ANY 3d
- $4 \mathrm{~d} \mathcal{N}=2$ dual to open strings
- 3d $\mathcal{N}=6 \triangle B I(M)$ in string, M-theory, and higher spin regimes

Near future directions

- More accurate bounds, sensitive to higher twist or spin operators.
- In bootstrap without localization, higher spins usually easier to access than higher twists, but with localization both equally hard.
- Get greater accuracy from imposing more localization constraints (e.g. from the squashed sphere), or from mixing with lowest dimension long operator (which is also relevant).
- If we are sensitive to second lowest twist, then impose ≤ 2 relevant operators to get islands for each τ, rigorously solve SYM!
- Combine localization + bootstrap to numerically solve ANY 3d
- $4 \mathrm{~d} \mathcal{N}=2$ dual to open strings
- $3 \mathrm{~d} \mathcal{N}=6 \mathrm{ABI}(M)$ in string, M-theory, and higher spin regimes

Near future directions

- More accurate bounds, sensitive to higher twist or spin operators.
- In bootstrap without localization, higher spins usually easier to access than higher twists, but with localization both equally hard.
- Get greater accuracy from imposing more localization constraints (e.g. from the squashed sphere), or from mixing with lowest dimension long operator (which is also relevant).
- If we are sensitive to second lowest twist, then impose ≤ 2 relevant operators to get islands for each τ, rigorously solve SYM!
- Combine localization + bootstrap to numerically solve ANY 3d $\mathcal{N}=2,4 \mathrm{~d} \mathcal{N}=2$, or $5 \mathrm{~d} \mathcal{N}=1$ Lagrangian CFT, e.g.:
- $4 \mathrm{~d} \mathcal{N}=2$ dual to open strings
- 3d $\mathcal{N}=6 \mathrm{ABJ}(\mathrm{M})$ in string, M -theory, and higher spin regimes

Near future directions

- More accurate bounds, sensitive to higher twist or spin operators.
- In bootstrap without localization, higher spins usually easier to access than higher twists, but with localization both equally hard.
- Get greater accuracy from imposing more localization constraints (e.g. from the squashed sphere), or from mixing with lowest dimension long operator (which is also relevant).
- If we are sensitive to second lowest twist, then impose ≤ 2 relevant operators to get islands for each τ, rigorously solve SYM!
- Combine localization + bootstrap to numerically solve ANY 3d $\mathcal{N}=2,4 \mathrm{~d} \mathcal{N}=2$, or $5 \mathrm{~d} \mathcal{N}=1$ Lagrangian CFT, e.g.:
- $4 \mathrm{~d} \mathcal{N}=2$ dual to open strings [SMC '22; Behan, SMC, Ferrero '23].
- 3d $\mathcal{N}=6 \mathrm{ABJ}(\mathrm{M})$ in string, M -theory, and higher spin regimes

Near future directions

- More accurate bounds, sensitive to higher twist or spin operators.
- In bootstrap without localization, higher spins usually easier to access than higher twists, but with localization both equally hard.
- Get greater accuracy from imposing more localization constraints (e.g. from the squashed sphere), or from mixing with lowest dimension long operator (which is also relevant).
- If we are sensitive to second lowest twist, then impose ≤ 2 relevant operators to get islands for each τ, rigorously solve SYM!
- Combine localization + bootstrap to numerically solve ANY 3d $\mathcal{N}=2,4 \mathrm{~d} \mathcal{N}=2$, or $5 \mathrm{~d} \mathcal{N}=1$ Lagrangian CFT, e.g.:
- $4 \mathrm{~d} \mathcal{N}=2$ dual to open strings [SMC '22; Behan, SMC, Ferrero '23].
- 3d $\mathcal{N}=6 \mathrm{ABJ}(\mathrm{M})$ in string, M -theory, and higher spin regimes [Binder, SMC, Jerdee, Pufu '20] .

Far future directions

- Imagine bootstrap sensitive to higher twist operators with
$\Delta \sim c \sim N^{2}$.
- These operators are dual to black-hole states for largish N.
- First steps to computing 1/16-BPS black-hole states for low N in but not for unprotected black hole states.
- Can study statistics of black-hole states, i.e. how many states appear in given window of Δ.
- Can see how these statistics change as function of τ and N, i.e. as we go from weak to strong coupling.

Far future directions

- Imagine bootstrap sensitive to higher twist operators with
$\Delta \sim c \sim N^{2}$.
- These operators are dual to black-hole states for largish N.
- First steps to computing 1/16-BPS black-hole states for low N in but not for unprotected black hole states.
- Can study statistics of black-hole states, i.e. how many states appear in given window of Δ.
- Can see how these statistics change as function of τ and N, i.e. as we go from weak to strong coupling.

Far future directions

- Imagine bootstrap sensitive to higher twist operators with
$\Delta \sim c \sim N^{2}$.
- These operators are dual to black-hole states for largish N.
- First steps to computing 1/16-BPS black-hole states for low N in [Chang, Lin '22], but not for unprotected black hole states.
- Can study statistics of black-hole states, i.e. how many states appear in given window of Δ.
- Can see how these statistics change as function of τ and N, i.e. as we go from weak to strong coupling.

Far future directions

- Imagine bootstrap sensitive to higher twist operators with $\Delta \sim c \sim N^{2}$.
- These operators are dual to black-hole states for largish N.
- First steps to computing 1/16-BPS black-hole states for low N in [Chang, Lin '22], but not for unprotected black hole states.
- Can study statistics of black-hole states, i.e. how many states appear in given window of Δ.
- Can see how these statistics change as function of τ and N, i.e. as we go from weak to strong coupling.

Far future directions

- Imagine bootstrap sensitive to higher twist operators with $\Delta \sim c \sim N^{2}$.
- These operators are dual to black-hole states for largish N.
- First steps to computing 1/16-BPS black-hole states for low N in [Chang, Lin '22], but not for unprotected black hole states.
- Can study statistics of black-hole states, i.e. how many states appear in given window of Δ.
- Can see how these statistics change as function of τ and N, i.e. as we go from weak to strong coupling.

See you in Kyoto!

- Bootstrap, Localization, and Holography, May 20-24
- Some funding for students, poster session!

