Bootstrapping gauge theories (QCD)

Vifei He LPENS CNRS

based on 2309.12402 and to appear with Martin Kruczenski

Low energy physics of asymptotically free gauge theory

asymptotically free gauge theory $SU(N_c)$

chiral symmetry breaking and confinement

 N_f massive quarks $m_q \ll \Lambda_{
m QCD}$ fundamental representation of gauge group

Low energy physics of asymptotically free gauge theory

asymptotically free gauge theory $SU(N_c)$

chiral symmetry breaking and confinement

 N_f massive quarks $m_q \ll \Lambda_{
m QCD}$ fundamental representation of gauge group

$$\mathcal{L} = i \sum_{j}^{N_f} \bar{q}_j \not{D} q_j - \sum_{j}^{N_f} m_q \bar{q}_j q_j - \frac{1}{4} G^{\mu\nu}_a G^a_{\mu\nu} + \text{gauge fixing} + \text{ghost}$$

gauge theory parameters: $N_c \ N_f \ m_q \ \Lambda_{
m QCD}$

Low energy physics of asymptotically free gauge theory

asymptotically free gauge theory $SU(N_c)$

chiral symmetry breaking and confinement

 N_f massive quarks $m_q \ll \Lambda_{
m QCD}$ fundamental representation of gauge group

$$\mathcal{L} = i \sum_{j}^{N_f} \bar{q}_j \not{D} q_j - \sum_{j}^{N_f} m_q \bar{q}_j q_j - \frac{1}{4} G^{\mu\nu}_a G^a_{\mu\nu} + \text{gauge fixing} + \text{ghost}$$

gauge theory parameters: $N_c \ N_f \ m_q \ \Lambda_{
m QCD}$

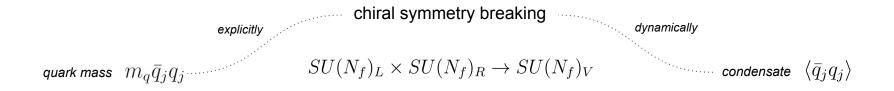
What is the low energy physics?

Physics of Goldstone bosons



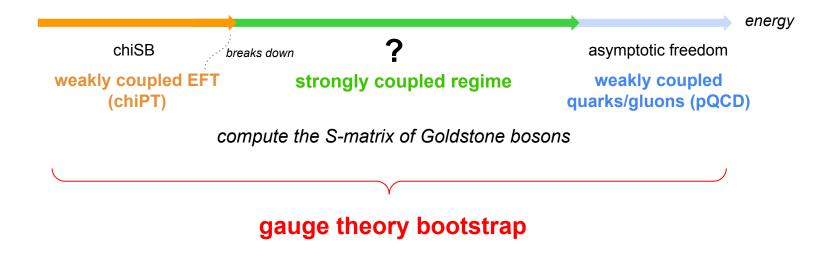
(approximate) Goldstone bosons dominate the low energy physics

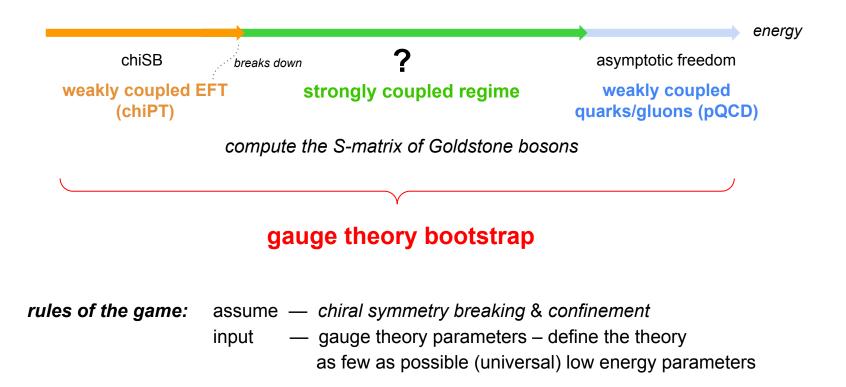
Physics of Goldstone bosons



(approximate) Goldstone bosons dominate the low energy physics

e.g.
$$N_f = 2$$
 pions $\pi_0 = \pi^3 \quad \pi_{\pm} = \frac{1}{\sqrt{2}} (\pi^1 \pm i\pi^2)$
very low energy
effective Lagrangian
(lowest order): $\mathcal{L} = \frac{f_{\pi}^2}{4} \{ \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) + m_{\pi}^2 \operatorname{Tr} \left(U + U^{\dagger} \right) \} \quad U = e^{i \frac{\vec{\tau} \cdot \vec{\pi}}{f_{\pi}}}$
 $\mathcal{L}_2^{2\pi} = \frac{1}{2} \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi} - \frac{1}{2} m_{\pi}^2 \vec{\pi}^2 \quad \mathcal{L}_2^{4\pi} = \frac{1}{6f_{\pi}^2} \left((\vec{\pi} \cdot \partial_{\mu} \vec{\pi})^2 - \vec{\pi}^2 (\partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi}) \right) + \frac{m_{\pi}^2}{24 f_{\pi}^2} (\vec{\pi}^2)^2 \quad \dots$



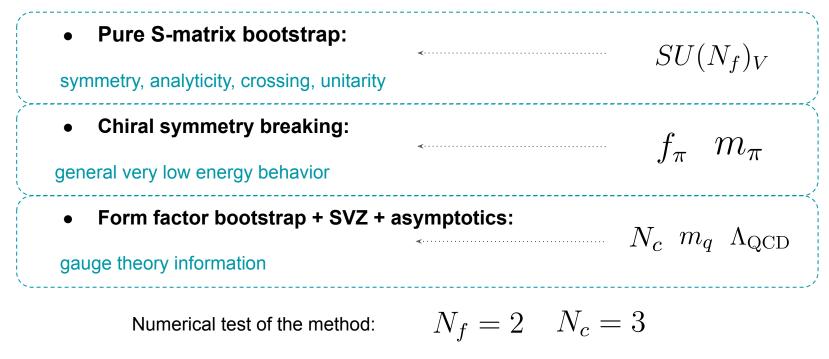


Pure S-matrix bootstrap:	
symmetry, analyticity, crossing, unitarity	
	<
>	<

Pure S-matr	bootstrap:	
symmetry, analyticit	crossing, unitarity	
Chiral symmetry	ry breaking:	
general very low ene	gy behavior	
> 		<

Pure S-matrix bootstrap:	、
symmetry, analyticity, crossing, unitarity	
Chiral symmetry breaking:	
general very low energy behavior	
Form factor bootstrap + SVZ + asymptotics:	5
gauge theory information	,

Pure S-matrix bootstrap:	<	$SU(N_f)_V$		
symmetry, analyticity, crossing, unitarity		DU(1))V		
Chiral symmetry breaking:	<	f_{π} m_{π}		
general very low energy behavior		$J\pi$ $m^{0}\pi$		
• Form factor bootstrap + SVZ + asymptotics: $M = m = \Lambda_{O}$ GD				
gauge theory information	≪	$N_c m_q \Lambda_{\rm QCD}$		



can be compared with experimental data

for general gauge theories — compare with lattice data

partial waves

$$f_{\ell}^{I}(s)$$

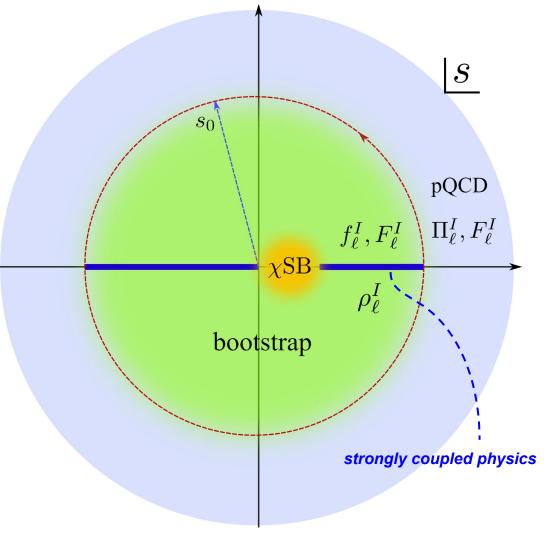
form factors

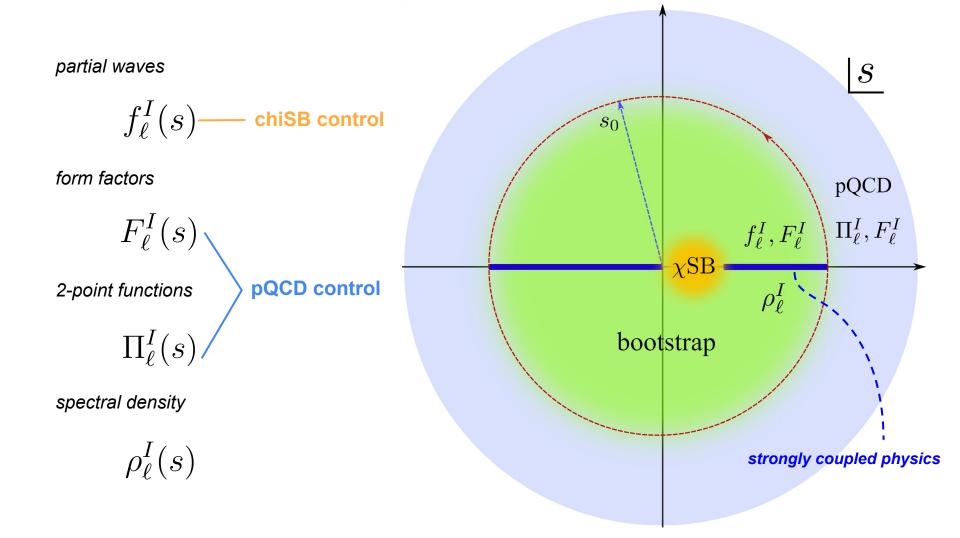
 $F_{\ell}^{I}(s)$

2-point functions

 $\Pi^I_\ell(s)$

spectral density





• Pure S-matrix bootstrap:

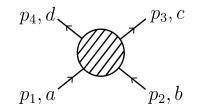
symmetry, analyticity, crossing, unitarity

$SU(N_f)_V$

modern S-matrix bootstrap: [Paulos, Penedones, Toledo, van Rees, Vieira, 2016 & 2017]

constrain amplitudes using generic consistency conditions

2-to-2 pion scattering: $\pi_a(p_1) + \pi_b(p_2) \rightarrow \pi_c(p_3) + \pi_d(p_4)$



 $s = (p_1 + p_2)^2 \qquad \langle p_1, a; p_2, b | \mathbf{T} | p_3, c; p_4, d \rangle = A(s, t, u) \delta_{ab} \delta_{cd} + A(t, s, u) \delta_{ac} \delta_{bd} + A(u, t, s) \delta_{ad} \delta_{bc}$ $t = (p_1 - p_3)^2$ $u = (p_1 - p_4)^2$

 p_4, d

 p_1, c

 p_3, c

 p_2, b

modern S-matrix bootstrap: [Paulos, Penedones, Toledo, van Rees, Vieira, 2016 & 2017]

constrain amplitudes using generic consistency conditions

2-to-2 pion scattering: $\pi_a(p_1) + \pi_b(p_2) o \pi_c(p_3) + \pi_d(p_4)$

$$s = (p_{1} + p_{2})^{2} \qquad \langle p_{1}, a; p_{2}, b | \mathbf{T} | p_{3}, c; p_{4}, d \rangle = A(s, t, u) \delta_{ab} \delta_{cd} + A(t, s, u) \delta_{ac} \delta_{bd} + A(u, t, s) \delta_{ad} \delta_{bc}$$

$$t = (p_{1} - p_{3})^{2} \qquad crossing \qquad A(s, t, u) = A(s, u, t) \qquad analyticity \qquad cuts \ s, t, u > 4$$

$$m_{\pi} = 1$$

$$A(s, t, u) = \frac{1}{\pi^{2}} \int_{4}^{\infty} dx \int_{4}^{\infty} dy \left[\frac{\rho_{1}(x, y)}{(x - s)(y - t)} + \frac{\rho_{1}(x, y)}{(x - s)(y - u)} + \frac{\rho_{2}(x, y)}{(x - t)(y - u)} \right] + subtraction terms$$

 p_4, d

 p_1, c

 p_3, c

 p_2, b

modern S-matrix bootstrap: [Paulos, Penedones, Toledo, van Rees, Vieira, 2016 & 2017]

constrain amplitudes using generic consistency conditions

2-to-2 pion scattering: $\pi_a(p_1) + \pi_b(p_2) \rightarrow \pi_c(p_3) + \pi_d(p_4)$

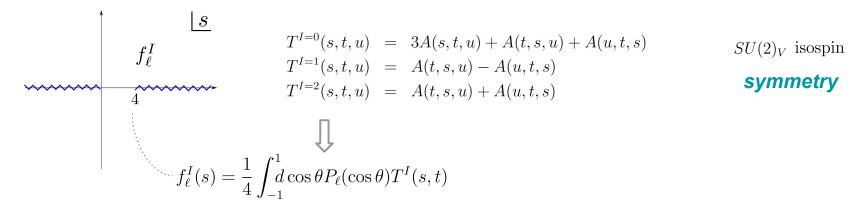
$$s = (p_1 + p_2)^2 \qquad \langle p_1, a; p_2, b | \mathbf{T} | p_3, c; p_4, d \rangle = A(s, t, u) \delta_{ab} \delta_{cd} + A(t, s, u) \delta_{ac} \delta_{bd} + A(u, t, s) \delta_{ad} \delta_{bc}$$

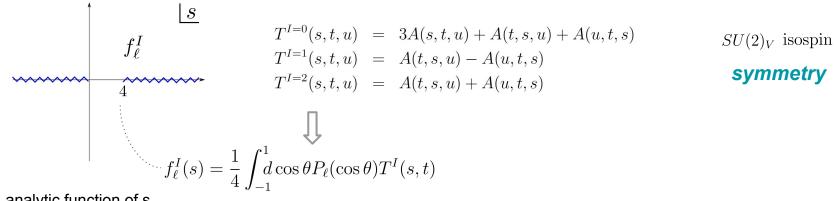
$$t = (p_1 - p_3)^2 \qquad \text{crossing} \qquad A(s, t, u) = A(s, u, t) \qquad \text{analyticity} \qquad \text{cuts} \quad s, t, u > 4$$

$$m_{\pi} = 1$$

$$A(s, t, u) = \frac{1}{\pi^2} \int_4^{\infty} dx \int_4^{\infty} dy \left[\frac{\rho_1(x, y)}{(x - s)(y - t)} + \frac{\rho_1(x, y)}{(x - s)(y - u)} + \frac{\rho_2(x, y)}{(x - s)(y - u)} \right] + \text{subtraction terms}$$

$$parameters: \left\{ \rho_{\alpha=1,2}(x, y), \dots \right\} \qquad \text{numerics: discretize} \quad \left\{ \rho_{\alpha,ij}, \dots \right\} \quad \text{bootstrap variables}$$

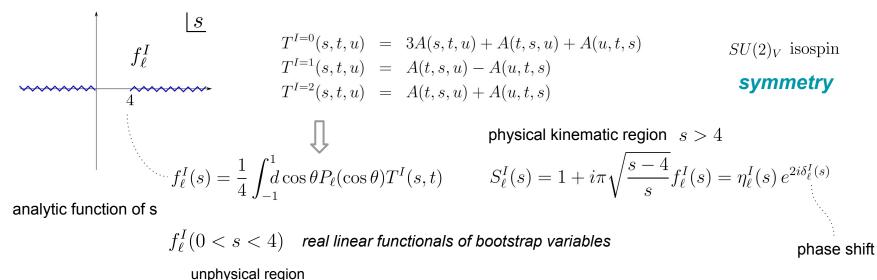


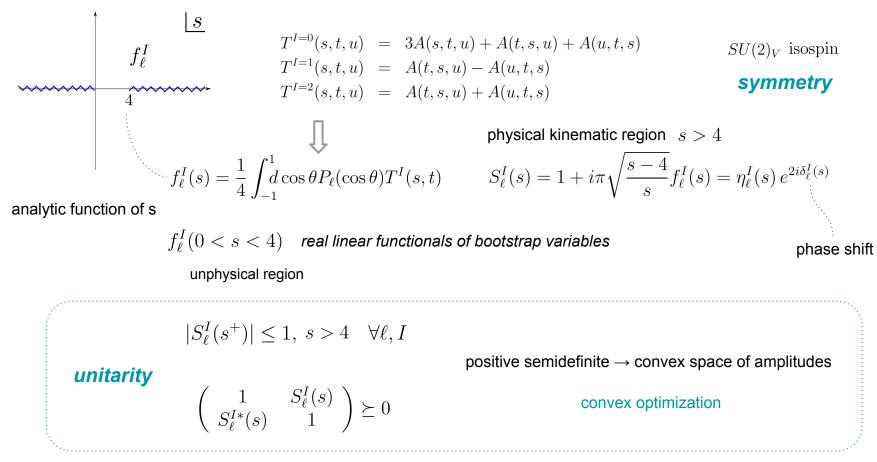


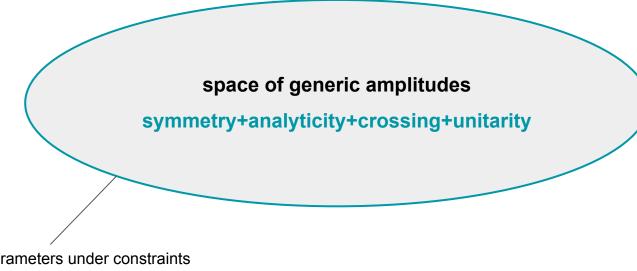
analytic function of s

 $f_{\ell}^{I}(0 < s < 4)$ real linear functionals of bootstrap variables

unphysical region

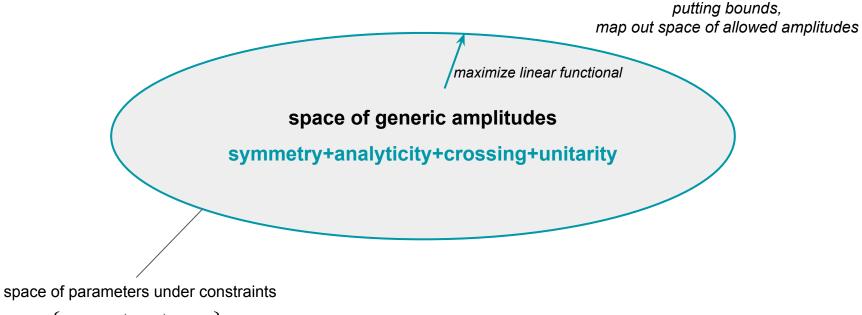




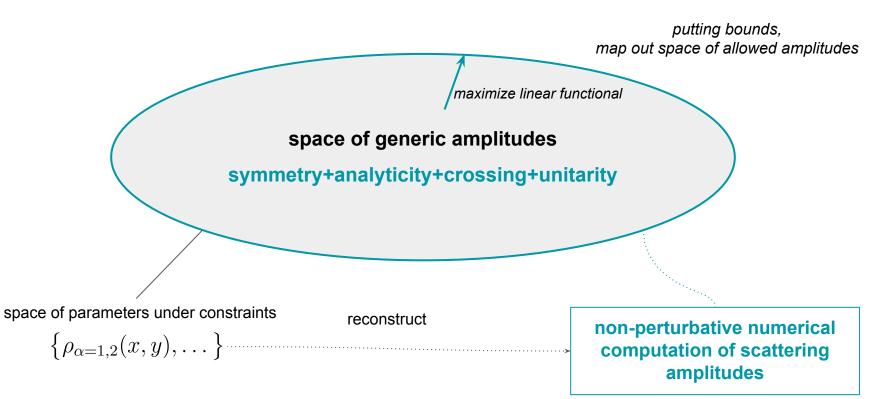


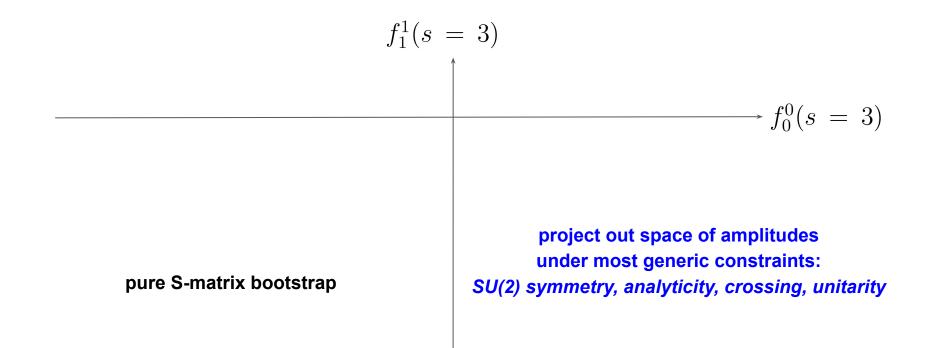
space of parameters under constraints

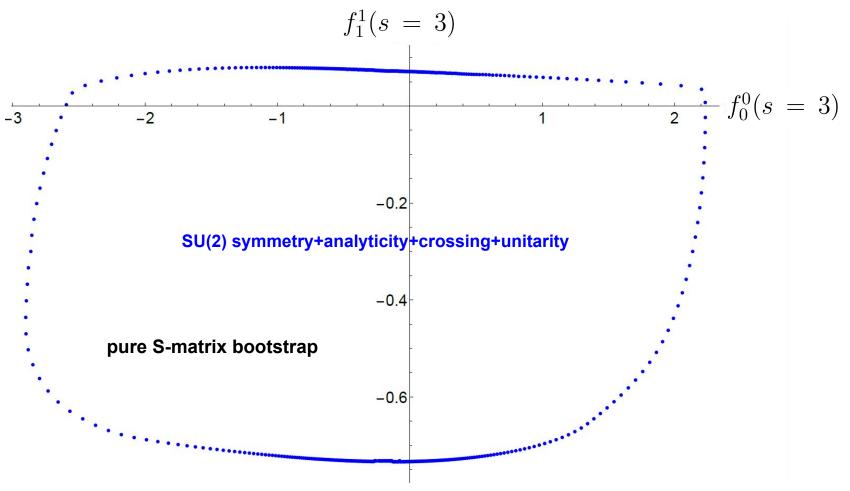
 $\{\rho_{\alpha=1,2}(x,y),\dots\}$



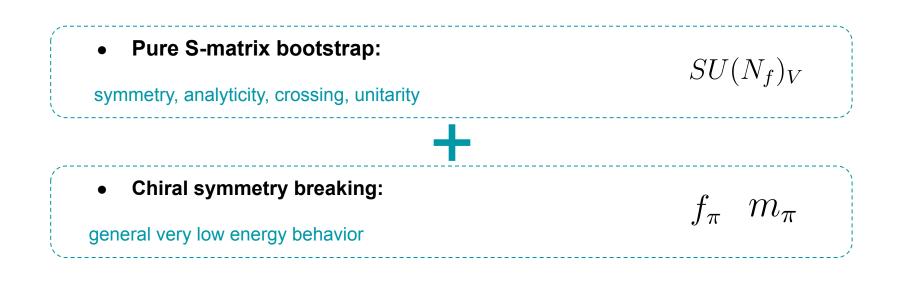
 $\{\rho_{\alpha=1,2}(x,y),\dots\}$







each boundary point: an extremal numerical amplitude



Weakly coupled Goldstone bosons

chiral symmetry breaking: weakly coupled Goldstone bosons at very low energy

interaction:
$$\mathcal{L}_{2}^{4\pi} = \frac{1}{6f_{\pi}^{2}} \Big((\vec{\pi} \cdot \partial_{\mu}\vec{\pi})^{2} - \vec{\pi}^{2} (\partial_{\mu}\vec{\pi} \cdot \partial^{\mu}\vec{\pi}) \Big) + \frac{m_{\pi}^{2}}{24f_{\pi}^{2}} (\vec{\pi}^{2})^{2}$$

tree-level amplitude: $A_{\text{tree}}(s,t,u) = \frac{4}{\pi} \frac{s - m_{\pi}^2}{32\pi f_{\pi}^2}$ linear in s [Weinberg, 1966]

good in the unphysical region (very low energy) $0 < s, t, u < 4m_{\pi}^2$

Weakly coupled Goldstone bosons

chiral symmetry breaking: weakly coupled Goldstone bosons at very low energy

interaction:
$$\mathcal{L}_{2}^{4\pi} = \frac{1}{6f_{\pi}^{2}} \Big((\vec{\pi} \cdot \partial_{\mu}\vec{\pi})^{2} - \vec{\pi}^{2} (\partial_{\mu}\vec{\pi} \cdot \partial^{\mu}\vec{\pi}) \Big) + \frac{m_{\pi}^{2}}{24f_{\pi}^{2}} (\vec{\pi}^{2})^{2}$$

tree-level amplitude:
$$A_{\text{tree}}(s,t,u) = \frac{4}{\pi} \frac{s - m_{\pi}^2}{32\pi f_{\pi}^2}$$
 linear in s [Weinberg, 1966]

good in the unphysical region (very low energy) $0 < s, t, u < 4m_{\pi}^2$

to get an idea of the weakly coupled pions: $\langle \pi^0 \pi^0 | \mathbf{T} | \pi^0 \pi^0 \rangle = A(s,t,u) + A(t,s,u) + A(u,t,s)$ $\lambda = \frac{\pi}{4} T\left(\frac{4}{3}, \frac{4}{3}, \frac{4}{3}\right)$

$$\lambda_{\text{tree}} = \frac{m_{\pi}^2}{32\pi f_{\pi}^2} \simeq 0.023 \ll \lambda_{\text{max}} \simeq 2.661$$

max coupling by S-matrix bootstrap (ACU) primal: [PPTvRV, 2017] dual: [YH, Kruczenski, 2021]

Chiral symmetry breaking input

approximate linear behavior at very low energy: input in gauge theory bootstrap

S0:
$$f_{0,\text{tree}}^{0}(s) = \frac{2}{\pi} \frac{2s - m_{\pi}^{2}}{32\pi f_{\pi}^{2}}$$
 P1: $f_{1,\text{tree}}^{1}(s) = \frac{2}{\pi} \frac{s - 4m_{\pi}^{2}}{96\pi f_{\pi}^{2}}$ S2: $f_{0,\text{tree}}^{2}(s) = \frac{2}{\pi} \frac{2m_{\pi}^{2} - s}{32\pi f_{\pi}^{2}}$
good in unphysical region (very low energy) $0 < s < 4m_{\pi}^{2}$

Chiral symmetry breaking input

approximate linear behavior at very low energy: input in gauge theory bootstrap

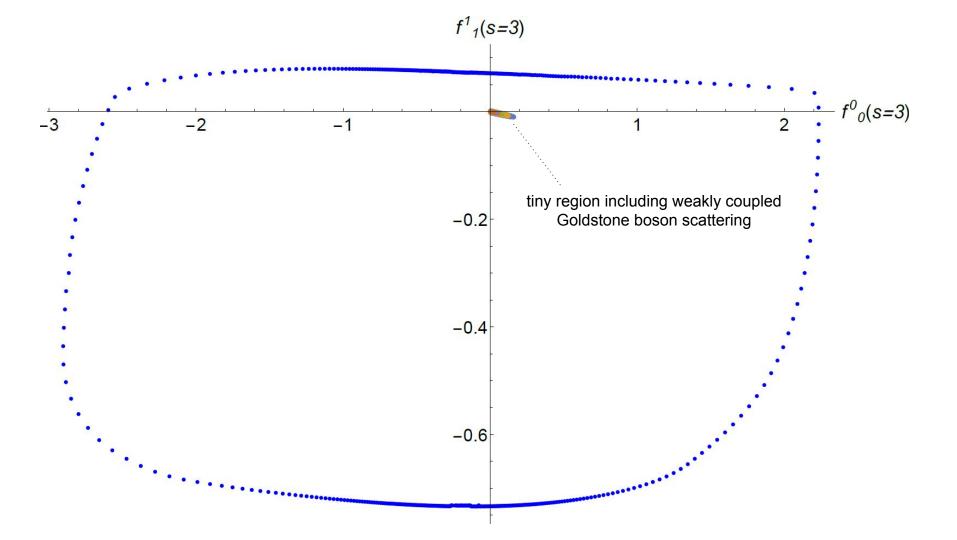
S0:
$$f_{0,\text{tree}}^0(s) = \frac{2}{\pi} \frac{2s - m_\pi^2}{32\pi f_\pi^2}$$
 P1: $f_{1,\text{tree}}^1(s) = \frac{2}{\pi} \frac{s - 4m_\pi^2}{96\pi f_\pi^2}$ S2: $f_{0,\text{tree}}^2(s) = \frac{2}{\pi} \frac{2m_\pi^2 - s}{32\pi f_\pi^2}$
good in unphysical region (very low energy) $0 < s < 4m_\pi^2$
numerically
requires p.w. in the bootstrap match the tree level p.w. in unphysical region
 $f_0^0(s) \simeq f_{0,\text{tree}}^0(s)$ $f_1^1(s) \simeq f_{1,\text{tree}}^1(s)$ $f_0^2(s) \simeq f_{0,\text{tree}}^2(s)$ $0 < s < 4m_\pi^2$

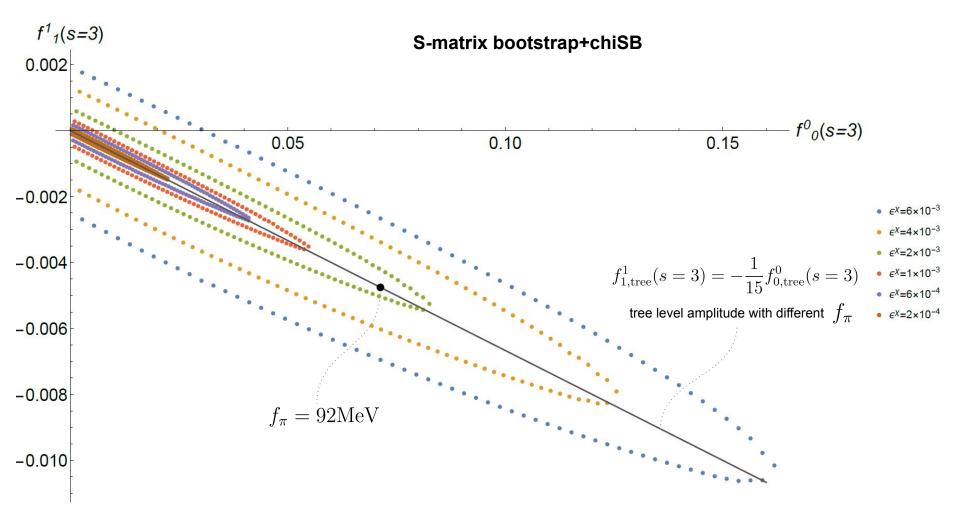
Chiral symmetry breaking input

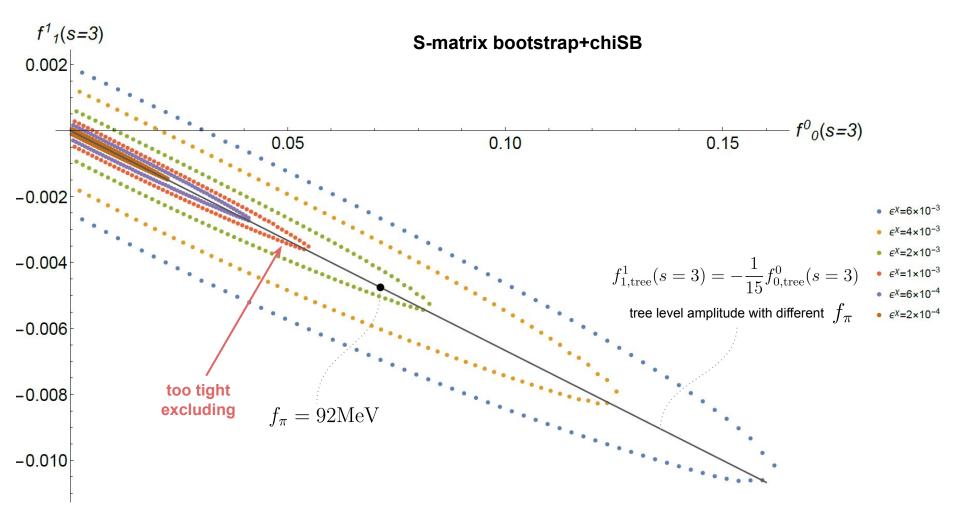
approximate linear behavior at very low energy: input in gauge theory bootstrap

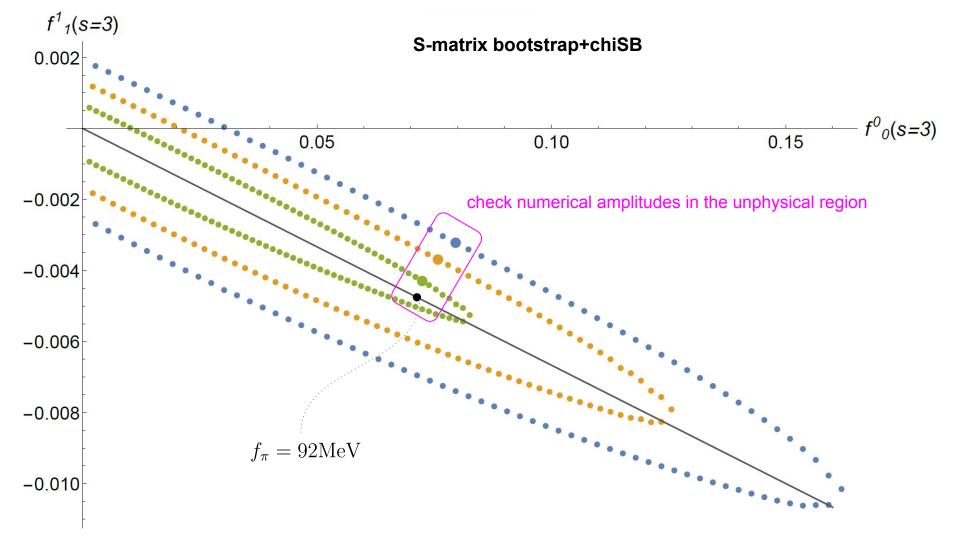
S0:
$$f_{0,\text{tree}}^0(s) = \frac{2}{\pi} \frac{2s - m_\pi^2}{32\pi f_\pi^2}$$
 P1: $f_{1,\text{tree}}^1(s) = \frac{2}{\pi} \frac{s - 4m_\pi^2}{96\pi f_\pi^2}$ S2: $f_{0,\text{tree}}^2(s) = \frac{2}{\pi} \frac{2m_\pi^2 - s}{32\pi f_\pi^2}$
good in unphysical region (very low energy) $0 < s < 4m_\pi^2$
numerically
requires p.w. in the bootstrap match the tree level p.w. in unphysical region
 $f_0^0(s) \simeq f_{0,\text{tree}}^0(s)$ $f_1^1(s) \simeq f_{1,\text{tree}}^1(s)$ $f_0^2(s) \simeq f_{0,\text{tree}}^2(s)$ $0 < s < 4m_\pi^2$
 ϵ^{χ} {
too loose: large deviation from chiSB prediction
too tight: exclude the desired theory
 $f_\pi^2 = 92 \text{MeV}$ to select appropriate tolerance

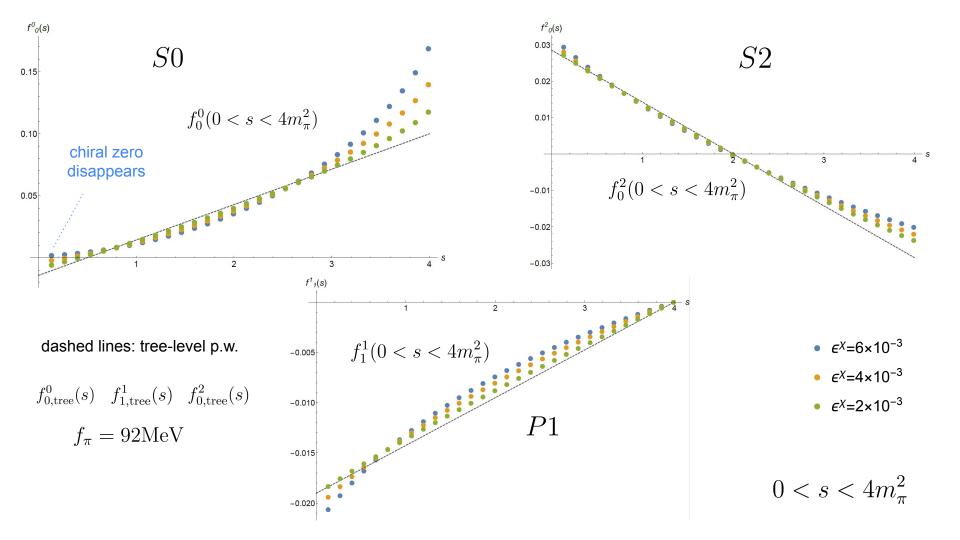
too tight: exclude the desired theory

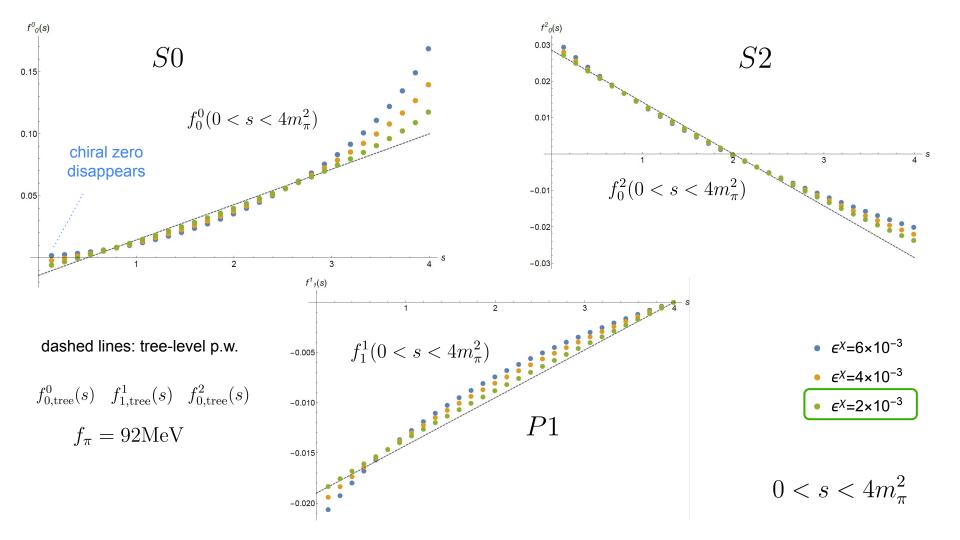


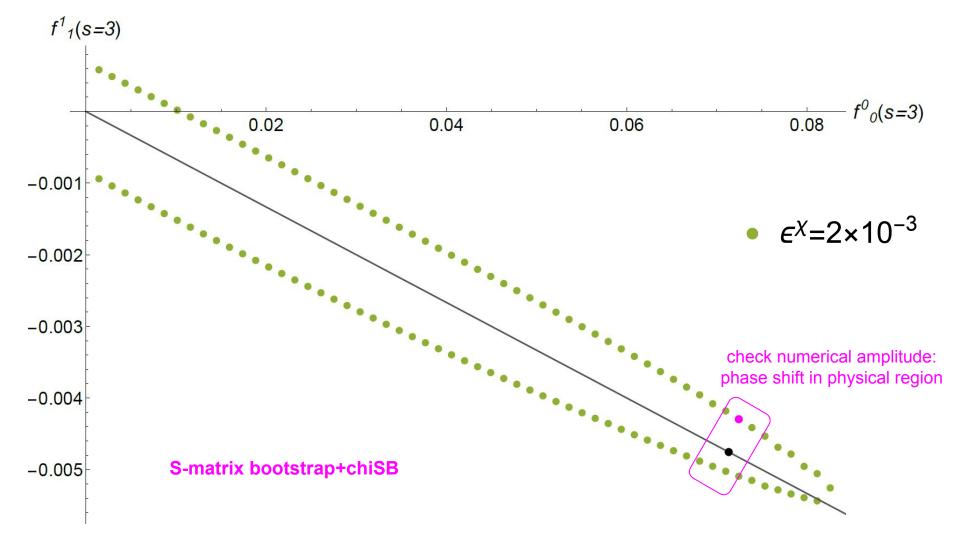


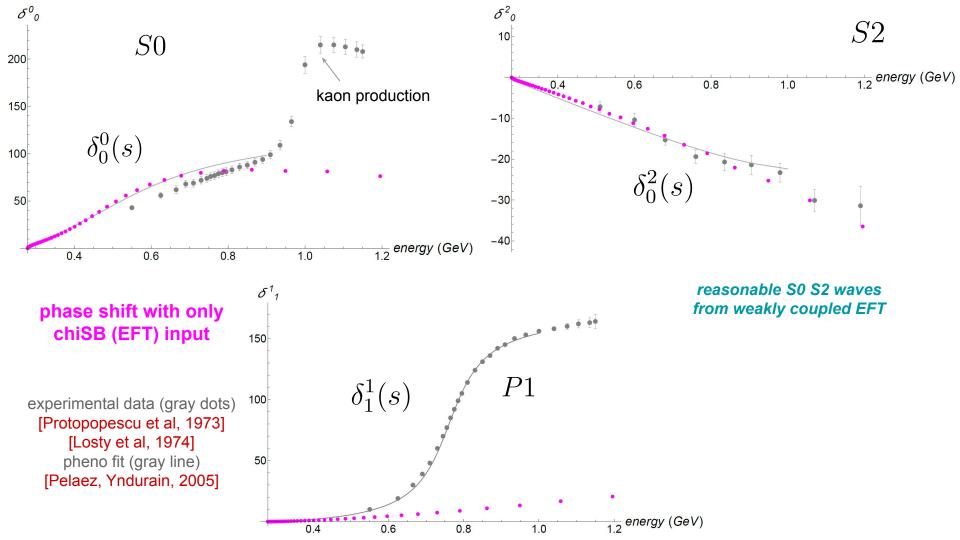


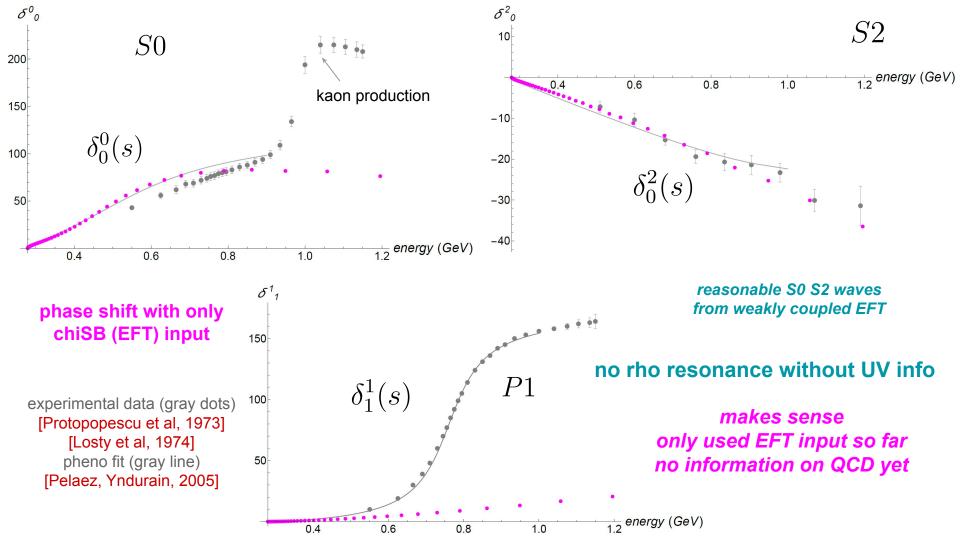




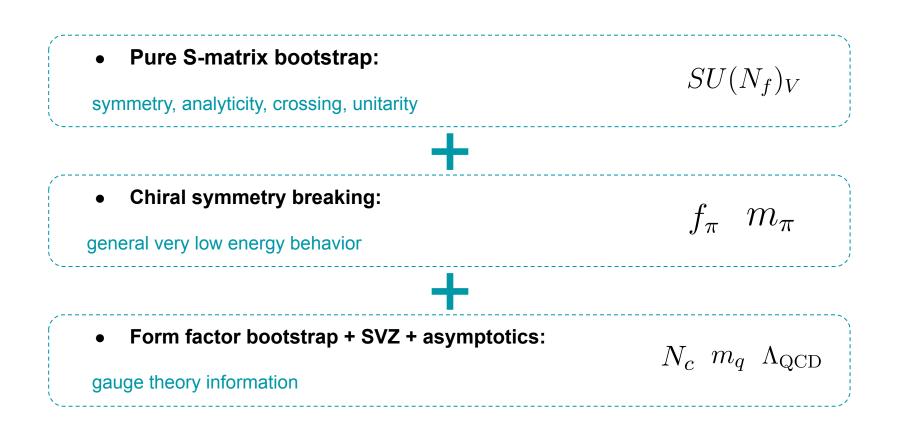








Gauge theory bootstrap



Form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

an important development: $|\psi_1\rangle = |p_1, p_2\rangle_{in}$, $|\psi_2\rangle = |p_1, p_2\rangle_{out}$, $|\psi_3\rangle = \int dx e^{-i(p_1+p_2)\cdot x} \mathcal{O}(x)|0\rangle$ positive semidefinite matrix $\langle \psi_a | \psi_b \rangle = \begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & o \end{pmatrix} \succeq 0$ state created by UV local operator

Form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

an important development: $|\psi_1\rangle = |p_1, p_2\rangle_{in}$, $|\psi_2\rangle = |p_1, p_2\rangle_{out}$, $|\psi_3\rangle = \int dx e^{-i(p_1+p_2)\cdot x} \mathcal{O}(x)|0\rangle$ positive semidefinite matrix $\langle \psi_a | \psi_b \rangle = \begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & o \end{pmatrix} \succeq 0$ state created by UV local operator S $|_{ ext{out}}\langle p_1,p_2|\mathcal{O}(0)|0
angle=F(s)$ analytic function of s 2-particle form factor: F(s) $F(s) = \frac{1}{\pi} \int_{-\infty}^{\infty} dx \frac{\mathrm{Im}F(x)}{x-s} + \text{subtractions}$ $\int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0 | \mathcal{O}^{\dagger}(x) \mathcal{O}(0) | 0 \rangle = \rho(s) \quad \text{supported at } s > 4$ spectral density:

Form factor bootstrap

[Karateev, Kuhn, Penedones, 2019]

an important development: $|\psi_1\rangle = |p_1, p_2\rangle_{in}$, $|\psi_2\rangle = |p_1, p_2\rangle_{out}$, $|\psi_3\rangle = \int dx e^{-i(p_1+p_2)\cdot x} \mathcal{O}(x)|0\rangle$ positive semidefinite matrix $\langle \psi_a | \psi_b \rangle = \begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & \rho \end{pmatrix} \succeq 0$ state created by UV local operator $\sum_{\text{out}} \langle p_1, p_2 | \mathcal{O}(0) | 0 \rangle = F(s)$ analytic function of s 2-particle form factor: $F(s) = \frac{1}{\pi} \int_{1}^{\infty} dx \frac{\mathrm{Im}F(x)}{x-s}$ +subtractions F(s)spectral density: $\int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0 | \mathcal{O}^{\dagger}(x) \mathcal{O}(0) | 0 \rangle = \rho(s) \quad \text{supported at } s > 4$ bootstrap variables: $\{\rho_{1,2}(x,y),\ldots,\operatorname{Im} F(x),\rho(x)\}$ allow connection with UV theory

Current correlators from the UV gauge theory

 $\begin{array}{c} |\mathrm{in}\rangle_{P,I,\ell} & |\mathrm{out}\rangle_{P,I,\ell} & \mathcal{O}_{P,I,\ell}|0\rangle \\ \langle \mathrm{out}|_{P',I,\ell} & \begin{pmatrix} 1 & S_{\ell}^{I}(s) & \mathcal{F}_{\ell}^{I} \\ S_{\ell}^{I*}(s) & 1 & \mathcal{F}_{\ell}^{I*} \\ \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I} & \rho_{\ell}^{I}(s) \end{pmatrix} \succeq 0 \qquad s > 4 \quad \forall \ell, I \end{array}$

to connect with UV gauge theory

construct operators from gauge theory with desired quantum numbers

Current correlators from the UV gauge theory

1: \

to connect with UV gauge theory

construct operators from gauge theory with desired quantum numbers

 $\begin{array}{l} \langle \mathrm{in}|_{P',I,\ell} \\ \langle \mathrm{out}|_{P',I,\ell} \\ \langle 0|\mathcal{O}_{P',I,\ell}^{\dagger} \end{array}$

$$\begin{pmatrix} |\mathrm{III}\rangle_{P,I,\ell} & |\mathrm{OUI}\rangle_{P,I,\ell} & \mathcal{O}_{P,I,\ell}|0\rangle \\ \begin{pmatrix} 1 & S_{\ell}^{I}(s) & \mathcal{F}_{\ell}^{I} \\ S_{\ell}^{I*}(s) & 1 & \mathcal{F}_{\ell}^{I*} \\ \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I} & \rho_{\ell}^{I}(s) \end{pmatrix} \succeq 0 \qquad s > 4 \quad \forall \ell, I$$

 $\rho_{\ell}^{I}(s) = 2 \operatorname{Im} \Pi_{\ell}^{I}(x + i\epsilon)$

S

 $|0\rangle$

10

. . .

e.g.

Current correlators from the UV gauge theory

to connect with UV gauge theory

. . .

construct operators from gauge theory with desired quantum numbers

$$\begin{array}{c} |\mathrm{in}\rangle_{P,I,\ell} & |\mathrm{out}\rangle_{P,I,\ell} & \mathcal{O}_{P,I,\ell}|0\rangle \\ \langle \mathrm{out}|_{P',I,\ell} & \left(\begin{array}{cc} 1 & S_{\ell}^{I}(s) & \mathcal{F}_{\ell}^{I} \\ S_{\ell}^{I*}(s) & 1 & \mathcal{F}_{\ell}^{I*} \\ \mathcal{F}_{\ell}^{I*} & \mathcal{F}_{\ell}^{I} & \rho_{\ell}^{I}(s) \end{array}\right) \succeq 0 \qquad s > 4 \quad \forall \ell, I \\ \end{array}$$

0 1/

 $\rho_{\ell}^{I}(s) = 2 \operatorname{Im} \Pi_{\ell}^{I}(x + i\epsilon)$

S

 $\Pi(s)$

$$e.g. \qquad S0 : \quad j_S(x) = m_q(\bar{u}u + \bar{d}d) \qquad \Pi_0^0(s) = i \int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0|\hat{T}\{j_S(x)j_S(0)\}|0\rangle \\ P1 : \quad j_V^\mu(x) = \frac{1}{2}(\bar{u}\gamma^\mu u - \bar{d}\gamma^\mu d) \qquad \Pi_1^1(s) = i \int \frac{d^4x}{(2\pi)^4} e^{iPx} \langle 0|\hat{T}\{j_\sigma^\dagger(x)j_\sigma(0)\}|0\rangle$$

large spacelike momenta — asymptotic free region with pQCD computation

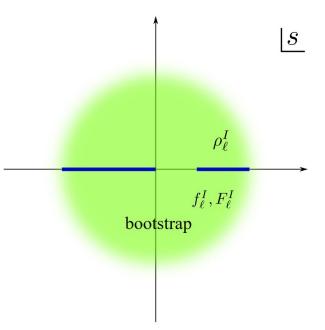
Positive semidefinite matrix – saturation

positive semidefinite

$$\begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & \rho \end{pmatrix} \succeq 0 \qquad \quad \forall I, \ \ell, \ s$$

iff all its principal minors are non-negative

$$\rho + S^* \mathcal{F}^2 + S(\mathcal{F}^*)^2 - 2|\mathcal{F}|^2 - \rho|S|^2 \ge 0$$
$$\rho \ge 0 \qquad |\mathcal{F}|^2 \le \rho \qquad |S|^2 \le 1$$



Positive semidefinite matrix – saturation

 $(1 \quad \alpha \quad \tau)$

positive semidefinite

$$\begin{pmatrix} 1 & S & \mathcal{F} \\ S^* & 1 & \mathcal{F}^* \\ \mathcal{F}^* & \mathcal{F} & \rho \end{pmatrix} \succeq 0 \qquad \forall I, \ \ell, \ s$$

iff all its principal minors are non-negative $\rho + S^* \mathcal{F}^2 + S(\mathcal{F}^*)^2 - 2|\mathcal{F}|^2 - \rho|S|^2 \ge 0$ $\rho \ge 0 \qquad |\mathcal{F}|^2 \le \rho \qquad |S|^2 \le 1$

saturation:

$$|S| = 1 \quad S = \frac{\mathcal{F}}{\mathcal{F}^*}$$

 $\rho = |\mathcal{F}|^2$

Watson / Muskhelishvili-Omnes

S ρ_{ℓ}^{l} f^I_{ℓ}, F^I_{ℓ} bootstrap

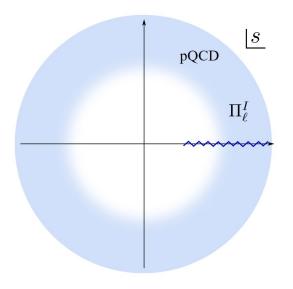
saturation connects quantities controlled by pQCD and chiSB

SVZ expansion

[Shifman, Vainshtein, Zakharov, 1979]

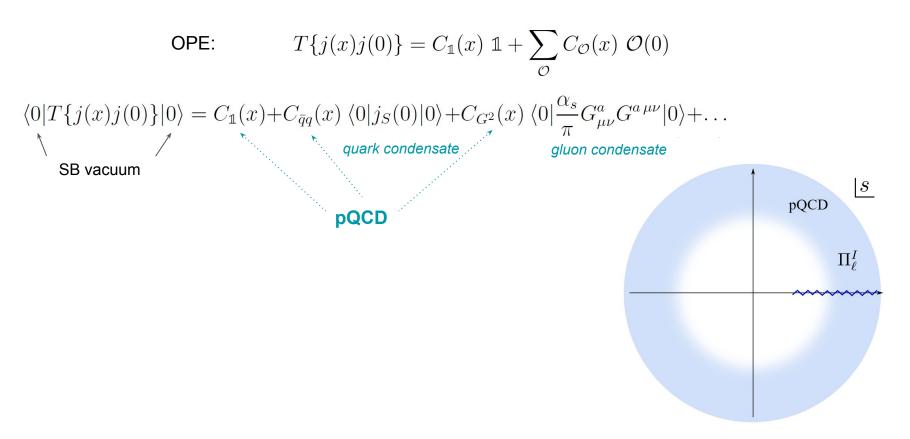
OPE:
$$T\{j(x)j(0)\} = C_{\mathbb{1}}(x) \ \mathbb{1} + \sum_{\mathcal{O}} C_{\mathcal{O}}(x) \ \mathcal{O}(0)$$

$$\langle 0|T\{j(x)j(0)\}|0\rangle = C_{\mathbb{1}}(x) + C_{\bar{q}q}(x) \langle 0|j_{S}(0)|0\rangle + C_{G^{2}}(x) \langle 0|\frac{\alpha_{s}}{\pi}G^{a}_{\mu\nu}G^{a\,\mu\nu}|0\rangle + \dots$$



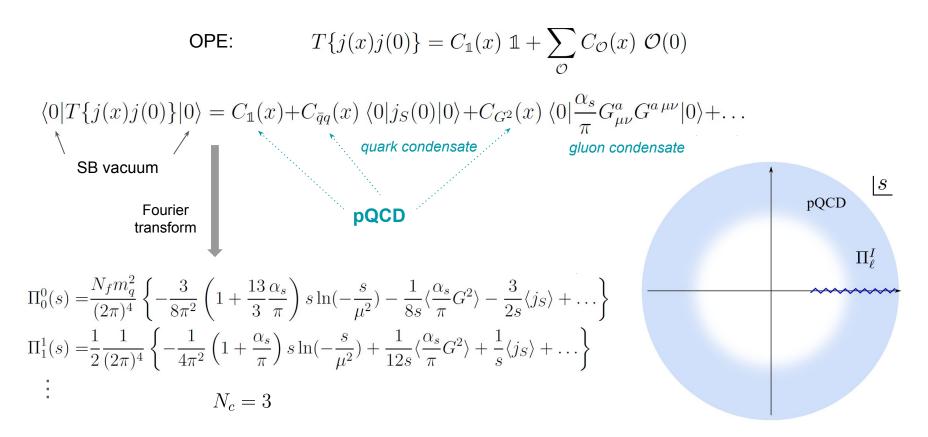
SVZ expansion

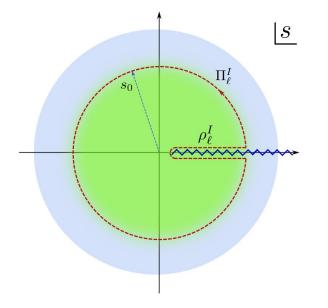
[Shifman, Vainshtein, Zakharov, 1979]



SVZ expansion

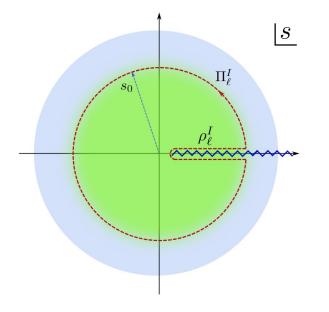
[Shifman, Vainshtein, Zakharov, 1979]





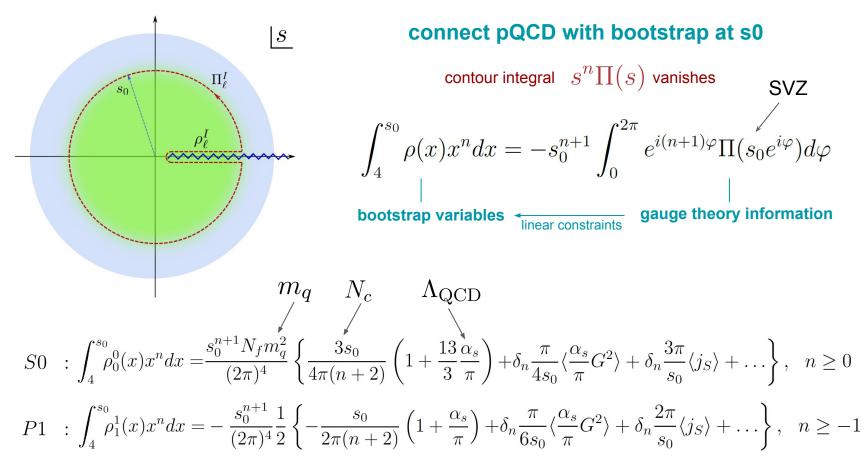
connect pQCD with bootstrap at s0

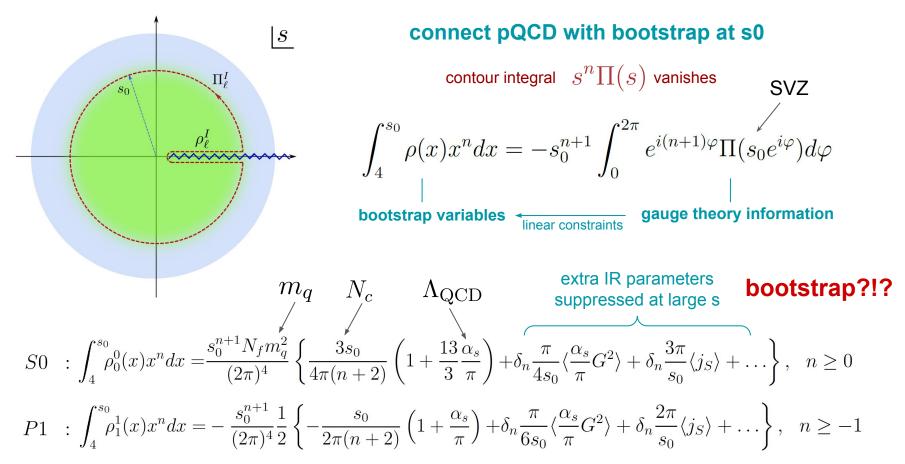
contour integral $s^{n}\Pi(s)$ vanishes SVZ $\int_{4}^{s_{0}} \rho(x)x^{n}dx = -s_{0}^{n+1}\int_{0}^{2\pi} e^{i(n+1)\varphi}\Pi(s_{0}e^{i\varphi})d\varphi$



connect pQCD with bootstrap at s0

contour integral $s^{n}\Pi(s)$ vanishes SVZ $\int_{4}^{s_{0}} \rho(x)x^{n}dx = -s_{0}^{n+1}\int_{0}^{2\pi} e^{i(n+1)\varphi}\Pi(s_{0}e^{i\varphi})d\varphi$ bootstrap variables integration gauge theory information

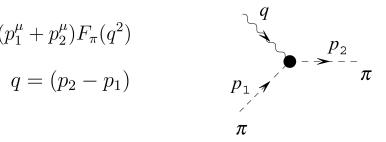




Asymptotic behavior of form factor from pQCD

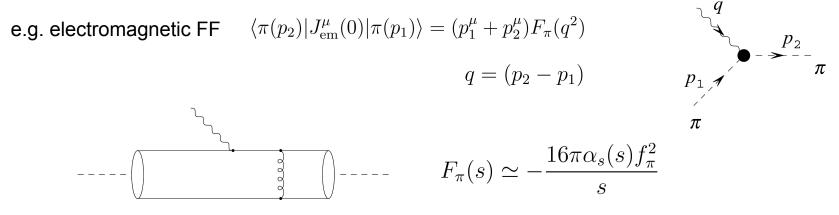
perturbative QCD also controls asymptotic behavior of form factors

e.g. electromagnetic FF $\langle \pi(p_2) | J_{em}^{\mu}(0) | \pi(p_1) \rangle = (p_1^{\mu} + p_2^{\mu}) F_{\pi}(q^2)$



Asymptotic behavior of form factor from pQCD

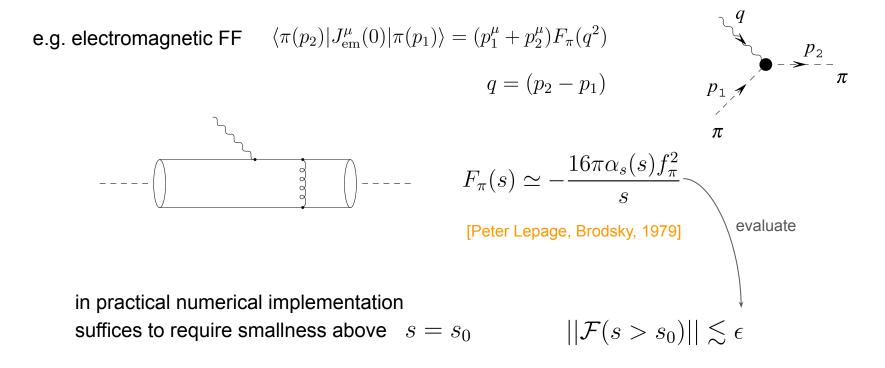
perturbative QCD also controls asymptotic behavior of form factors



[Peter Lepage, Brodsky, 1979]

Asymptotic behavior of form factor from pQCD

perturbative QCD also controls asymptotic behavior of form factors



Gauge theory parameters: numerical input

 $N_f = 2$ $N_c = 3$ for comparison with experiments $s_0 = (1.2 \,\text{GeV})^2, \quad \alpha_s \simeq 0.41, \quad m_u \simeq 4 \,\text{MeV} \quad m_d \simeq 7.3 \,\text{MeV}$

more recently (to appear):

 $s_0 = (2 \,\mathrm{GeV})^2, \ \alpha_s \simeq 0.31, \ m_u \simeq 3.6 \,\mathrm{MeV} \ m_d \simeq 6.5 \,\mathrm{MeV}$

Gauge theory parameters: numerical input

 $N_f = 2$ $N_c = 3$ for comparison with experiments $s_0 = (1.2 \,\text{GeV})^2, \quad \alpha_s \simeq 0.41, \quad m_u \simeq 4 \,\text{MeV} \quad m_d \simeq 7.3 \,\text{MeV}$

more recently (to appear):

 $s_0 = (2 \,\mathrm{GeV})^2, \quad \alpha_s \simeq 0.31, \quad m_u \simeq 3.6 \,\mathrm{MeV} \quad m_d \simeq 6.5 \,\mathrm{MeV}$

. . .

FESR

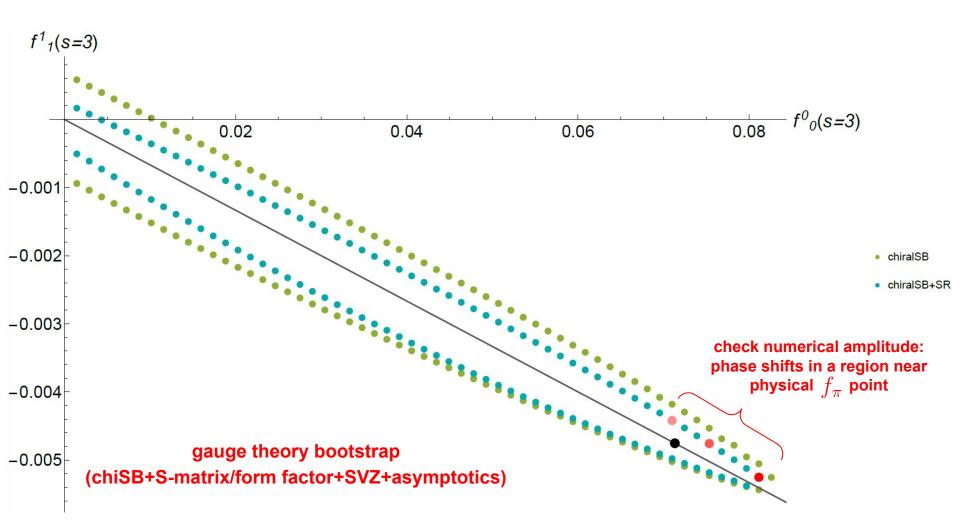
$$\frac{1}{s_0^{n+2}} \int_4^{s_0} \rho_0^0(x) x^n dx \simeq \frac{6.23 \times 10^{-7}}{n+2}$$
$$\frac{1}{s_0^{n+2}} \int_4^{s_0} \rho_1^1(x) x^n dx \simeq \frac{5.62 \times 10^{-5}}{n+2}$$
$$\frac{1}{s_0^{n+3}} \int_4^{s_0} \rho_2^0(x) x^n dx \simeq \frac{5.13 \times 10^{-5}}{n+3}$$

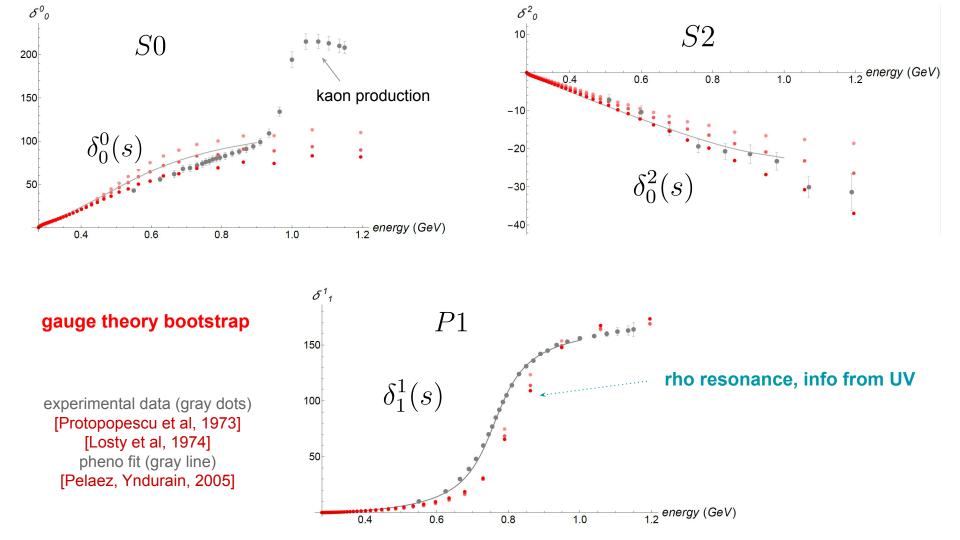
FF asymptotics

 $||\mathcal{F}_0^0(s > s_0)|| \lesssim 1.7 \times 10^{-8}$

 $||\mathcal{F}_1^1(s > s_0)|| \lesssim 1.7 \times 10^{-6}$

 $||\mathcal{F}_2^0(s > s_0)|| \lesssim 0.03$

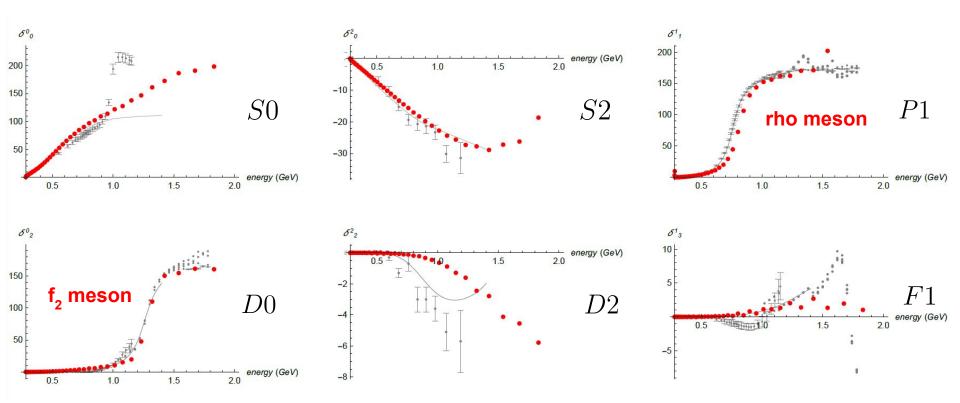




gauge theory bootstrap

phase shifts up to 2GeV

[YH, Kruczenski, to appear]



experiments (gray dots) [Protopopescu et al, 1973][Losty et al, 1974][Hyams et al, 1975]

scattering lengths and effective range parameters

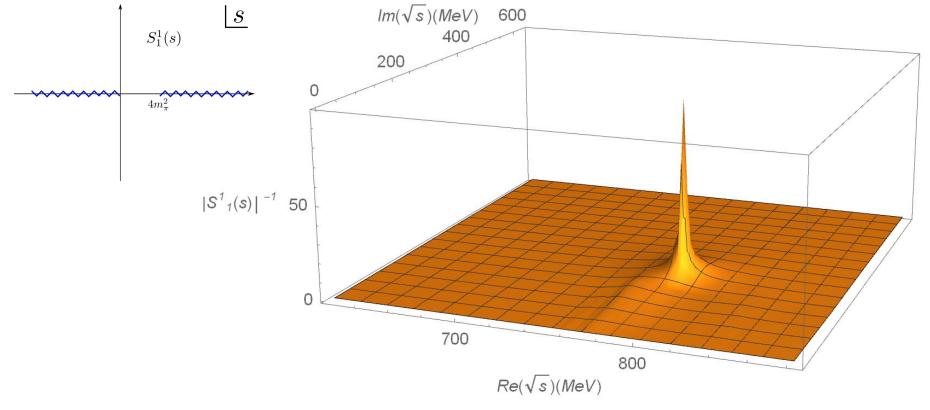
$$\operatorname{Re} f_{\ell}^{I}(s) \stackrel{k \to 0}{\simeq} \frac{2m_{\pi}}{\pi} k^{2\ell} \left(a_{\ell}^{I} + b_{\ell}^{I} \tilde{k}^{2} + \dots \right) \qquad \qquad k = \frac{\sqrt{s - 4m_{\pi}^{2}}}{2}$$

	DFGS		ACGL	CGL		РҮ	gauge theory bootstrap		
$a_0^{(0)}$	0.228 ± 0.012		0.240 ± 0.060	0.220 ± 0.005		0.230 ± 0.010	0.178	0.188	0.201
$a_0^{(2)}$	-0.0382 ± 0.0038		-0.036 ± 0.013	-0.0444 ± 0.0010		-0.0422 ± 0.0022	-0.0362	-0.0388	-0.0425
$b_0^{(0)}$			0.276 ± 0.006	0.280 ± 0.001		0.268 ± 0.010	0.31	0.307	0.297
$b_0^{(2)}$			-0.076 ± 0.002	-0.080 ± 0.001		-0.071 ± 0.004	-0.0629	-0.0681	-0.075
	Nagel PSGY		C	CGL		PY			
a_1	38 ± 2	38.5 ± 0.5	.6 37.0 ± 0.13	$37.0 \pm 0.13 [37.9 \pm 0.5]^{\text{a}}$		$\begin{array}{c} 38.1 \pm 1.4 \\ 6 \pm 1.2 \end{array} \\ ^{\mathrm{b}} \times 10^{-3} \end{array}$	0.0281	0.0304	0.0343

[Nagel et al, 1979][Descotes et al, 2002][Ananthanarayan et al, 2001] [Colangelo, Gasser, Leutwyler, 2001][Pelaez, Yndurain, 2003]

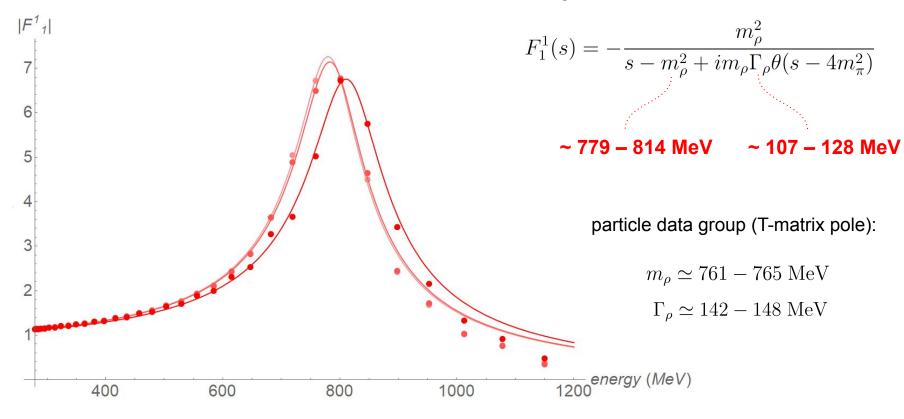
[YH, Kruczenski, to appear]

rho meson as pole on the second sheet of $S_1^1(s)$

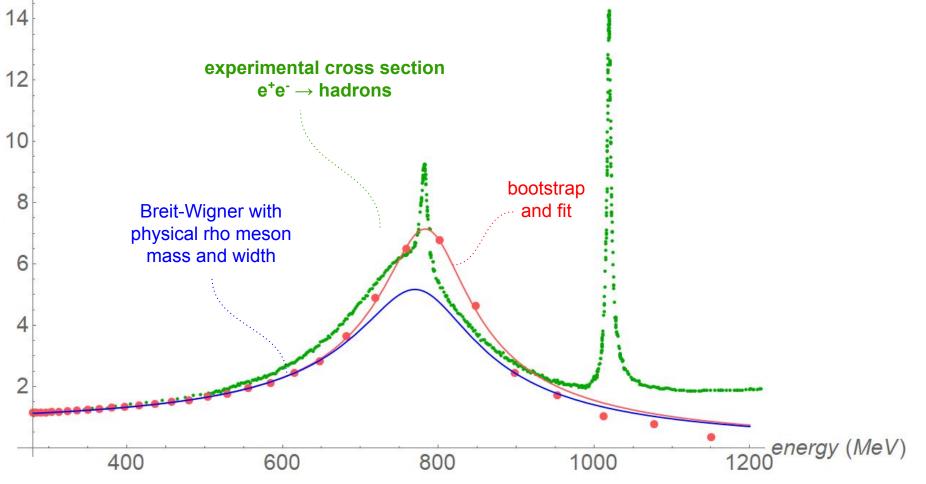


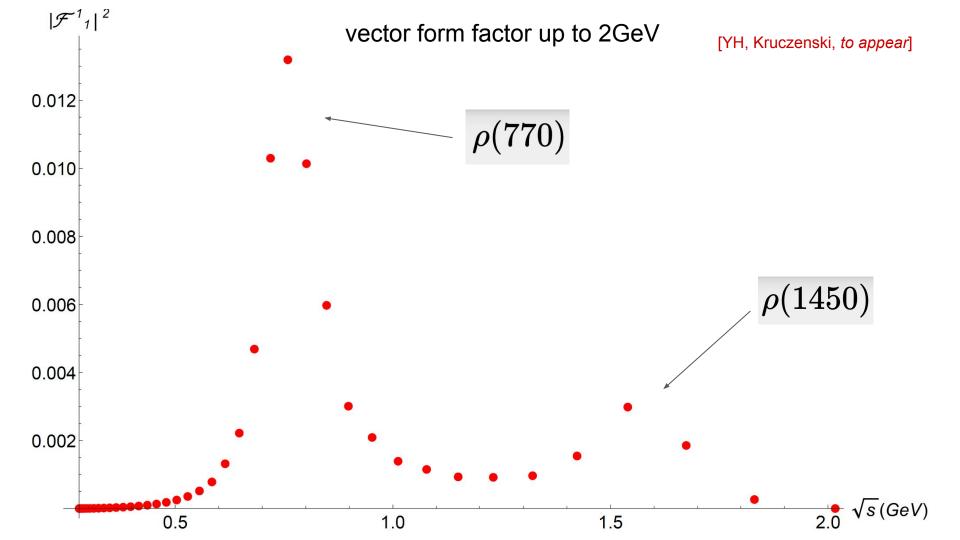
[YH, Kruczenski, to appear]

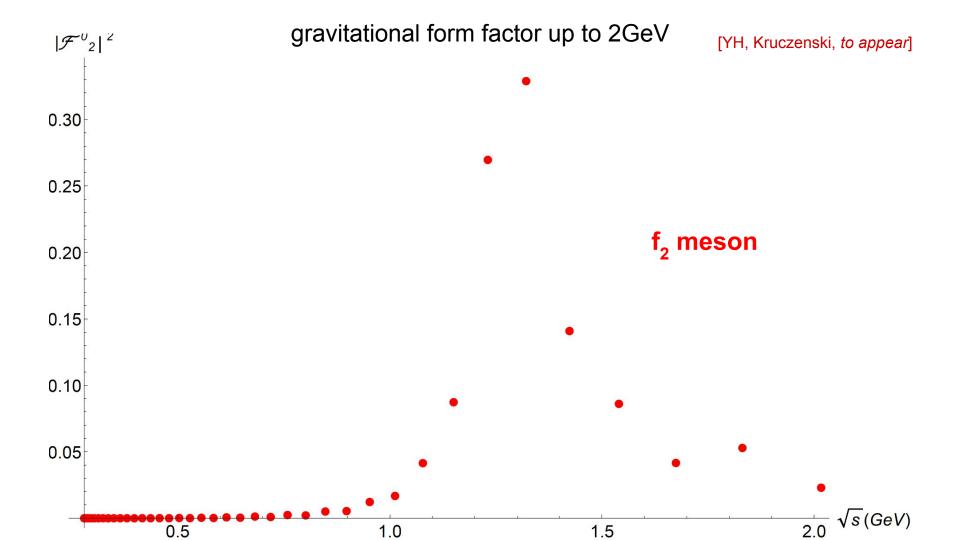
fit P1 form factor with Breit-Wigner form



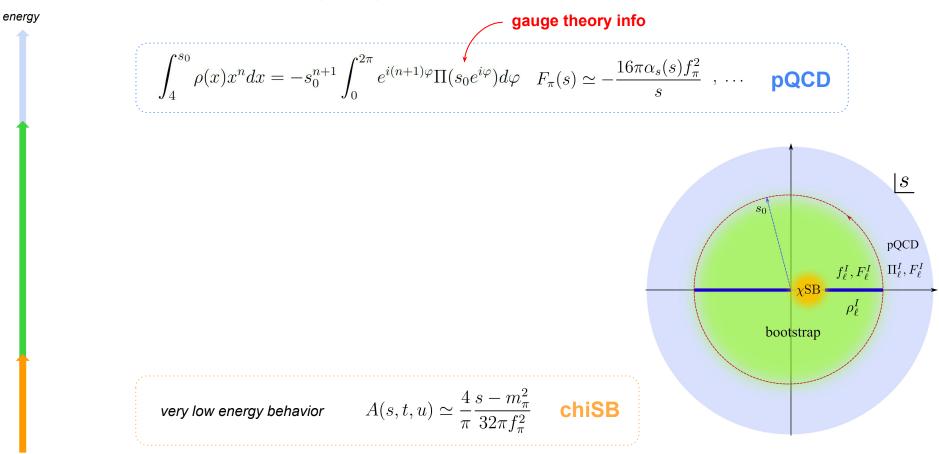
[YH, Kruczenski, to appear]



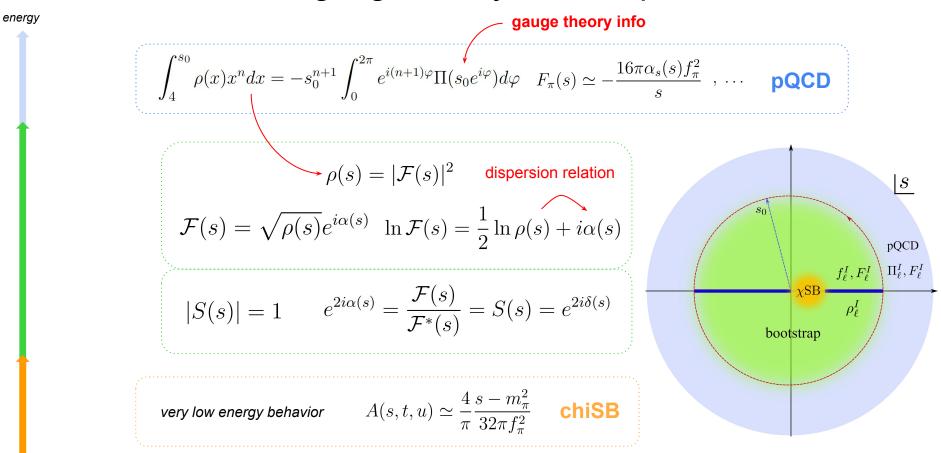




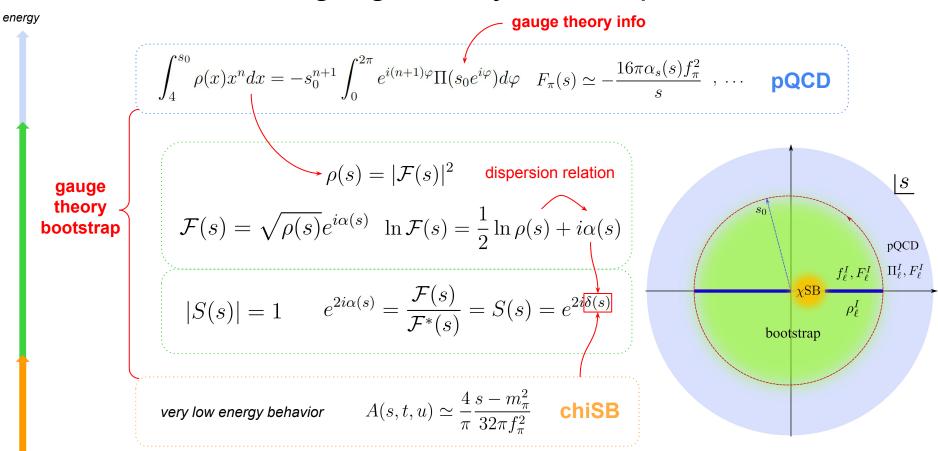
How the gauge theory bootstrap works



How the gauge theory bootstrap works



How the gauge theory bootstrap works



Conclusions

• Gauge theory bootstrap:

using only
$$N_c N_f m_q \Lambda_{\text{QCD}}$$

$$f_{\pi} m_{\pi}$$

universal low energy parameters

strongly coupled low energy physics of asymptotically free gauge theories

Conclusions

• Gauge theory bootstrap:

using only
$$N_c N_f m_q \Lambda_{\rm QCD}$$
 $f_{\pi} m_{\pi}$
gauge theory parameters universal low energy parameters

strongly coupled low energy physics of asymptotically free gauge theories

• Numerical test with $N_f = 2$ $N_c = 3$ find good agreement with experiments

Conclusions

• Gauge theory bootstrap:

using only
$$N_c N_f m_q \Lambda_{QCD} f_{\pi} m_{\pi}$$

gauge theory parameters universal low energy parameters

strongly coupled low energy physics of asymptotically free gauge theories

- Numerical test with $N_f = 2$ $N_c = 3$ find good agreement with experiments
- Results suggest: we are on the right track for solving QCD (gauge theories)

Further developments of the framework

Thank you!