Bounds on QCD Observables: Hadronic strings, glueball scattering, and meson spectrum

February 21, 2024

Andrea Guerrieri

1) The Hadronic String

Bounds on the $q\bar{q}$ potential from Wilson coefficients Worldsheet QCD axion Gaikwad, Gorbenko, ALG 2310.20698

2) Glueballs

Rigorous bounds on SU(3) YM Glueball Scattering

Hebbar, ALG, van Rees 2312.00127

3) Mesons

The other side of Ning's story

ALG, Haring, Su work in progress

4) Baryons (for the future)

Bounds on the static $q\bar{q}$ potential

Distance between quarks $R/\ell_s \to \infty$

Bounds on the static $q\bar{q}$ potential

Universal, consequence of non-linearly realized Lorentz

Dubovsky, Flauger, Gorbenko,...

Bounds on the static $q\bar{q}$ potential

Effective String Theory

Physical Degrees of freedom: X^i with i=2,...,D massless Goldstones ($SO(1,D-1) \rightarrow SO(1,1) \times O(D-2)$)

Effective String Theory

2d gravity theory

$$X^{D} \qquad \mathscr{A}_{EFF} = \int d^{2}\sigma \sqrt{-h} \left(\frac{1}{\ell_{s}^{2}} + \gamma_{2}\ell_{s}^{2}R + \frac{\gamma_{3}}{\ell_{s}}\ell_{s}^{4}R^{2} + \dots \right)$$

In $D \neq 26$, infinite corr

rections

Physical Degrees of freedom:

 X^i with i=2,...,D massless Goldstones ($SO(1,D-1) \rightarrow SO(1,1) \times O(D-2)$)

We have an action, we can compute the S-matrix, but how do we get the energy levels?

Effective String Theory

2d gravity theory

$$X^{D} \qquad \mathscr{A}_{EFF} = \int d^{2}\sigma \sqrt{-h} \left(\frac{1}{\ell_{s}^{2}} + \gamma_{2}\ell_{s}^{2}R + \frac{\gamma_{3}}{\ell_{s}}\ell_{s}^{4}R^{2} + \dots \right)$$

In $D \neq 26$, infinite correction

ections

Physical Degrees of freedom:

 X^i with i=2,...,D massless Goldstones ($SO(1,D-1) \rightarrow SO(1,1) \times O(D-2)$)

We have an action, we can compute the S-matrix, but how do we get the energy levels?

Thermodynamic Bethe Ansatz (similar to Lüscher method)

Effective String Theory

2d gravity theory

$$X^{D} \qquad \mathscr{A}_{EFF} = \int d^{2}\sigma \sqrt{-h} \left(\frac{1}{\ell_{s}^{2}} + \gamma_{2}\ell_{s}^{2}R + \frac{\gamma_{3}}{\ell_{s}}\ell_{s}^{4}R^{2} + \dots \right)$$

In $D \neq 26$, infinite corrections

Elias-Miró, ALG, Hebbar, Penedones, and Vieira, '21

Physical Degrees of freedom: X^i with i=2,...,D massless Goldstones ($SO(1,D-1) \rightarrow SO(1,1) \times O(D-2)$)

We have an action, we can compute the S-matrix, but how do we get the energy levels?

Thermodynamic Bethe Ansatz (similar to Lüscher method)

$$S_{2\to2}(s) = 1 + i\frac{s}{4}\ell_s^2 - \frac{s^2}{32}\ell_s^4 + i\left(\frac{\gamma_3}{384}\right)s^3\ell_s^6 + \dots$$

Effective String Theory

2d gravity theory

$$X^{D} \qquad \mathscr{A}_{EFF} = \int d^{2}\sigma \sqrt{-h} \left(\frac{1}{\ell_{s}^{2}} + \gamma_{2}\ell_{s}^{2}R + \gamma_{3}\ell_{s}^{4}R^{2} + \dots \right)$$

In $D \neq 26$, infinite corrections

Elias-Miró, ALG, Hebbar, Penedones, and Vieira, '21

Physical Degrees of freedom: X^i with i=2,...,D massless Goldstones ($SO(1,D-1) \rightarrow SO(1,1) \times O(D-2)$)

We have an action, we can compute the S-matrix, but how do we get the energy levels?

Thermodynamic Bethe Ansatz (similar to Lüscher method)

$$S_{2\to2}(s) = 1 + i\frac{s}{4}\ell_s^2 - \frac{s^2}{32}\ell_s^4 + i\left(\gamma_3 - \frac{1}{384}\right)s^3\ell_s^6 + \dots$$

$$E_0(R) = \frac{R}{\ell_s^2} - \frac{\pi}{6R} - \frac{\pi^2 \ell_s^2}{72R^3} - \frac{\pi^3 \ell_s^4}{432R^5} + \frac{\Delta_3 \ell_s^6}{R^7} + \mathcal{O}\left(\frac{\ell_s^8}{R^9}\right)$$

Effective String Theory

2d gravity theory

$$X^{D} \qquad \mathscr{A}_{EFF} = \int d^{2}\sigma \sqrt{-h} \left(\frac{1}{\ell_{s}^{2}} + \gamma_{2}\ell_{s}^{2}R + \frac{\gamma_{3}}{\ell_{s}}\ell_{s}^{4}R^{2} + \dots \right)$$

In $D \neq 26$, infinite corrections

Elias-Miró, ALG, Hebbar, Penedones, and Vieira, '21

$$\Delta_3 = -\frac{32\gamma_3\pi^6}{225} - \frac{5\pi^4}{10368}$$

Bounds on Wilson Coefficients for D=3 flux-tubes

Idea: use the non-perturbative properties of the S-matrix to derive constraints

D=3: 1 Goldstone field, $S_{2\rightarrow 2}(s)$ is an analytic function of the $s = 4E^2$ complex variable

Goal: we bound $\gamma_3 \iff$ we bound Δ_3

Bounds on Wilson Coefficients for D=3 flux-tubes

Idea: use the non-perturbative properties of the S-matrix to derive constraints

D=3: 1 Goldstone field, $S_{2\rightarrow 2}(s)$ is an analytic function of the $s = 4E^2$ complex variable

1) Analytic solution: Schwarz-Pick theorem Elias-Miró, ALG, Hebbar, Penedones, and Vieira, '19

2) Dual functional approach: $\min_{\lambda_2, \lambda_3, \Lambda(s)} d = 2\gamma_3 - \frac{1}{192}$ Elias-Miró ALG 21 Elias-Miró, ALG '21 d[$\lambda 2$, $\lambda 3$, Λ] := $-\frac{\lambda 3}{16} - \frac{\lambda 2}{2} + \int_{0}^{\infty}$

Goal: we bound $\gamma_3 \iff$ we bound Δ_3

$$\int_{-\infty}^{\infty} dz \left(-2 z \Lambda - \frac{2 \left(\left(1 + z^2 \lambda 2 \right)^2 + z^2 \lambda 3^2 \right)}{\pi^2 z^9 \Lambda} + \frac{32 + z^2 \left(-1 + 32 \lambda 2 + 8 \lambda 3 \right)}{8 \pi z^4} \right) \right)$$

Bounds on Wilson Coefficients for D=3 flux-tubes

Idea: use the non-perturbative properties of the S-matrix to derive constraints

D=3: 1 Goldstone field, $S_{2\rightarrow 2}(s)$ is an analytic function of the $s = 4E^2$ complex variable

1) Analytic solution: Schwarz-Pick theorem Elias-Miró, ALG, Hebbar, Penedones, and Vieira, '19

2) Dual functional approach: $\min_{\lambda_2, \lambda_3, \Lambda(s)} d = 2\gamma_3 - \frac{1}{192}$ Elias-Miró ALC (2) Elias-Miró, ALG '21 $d[\lambda 2, \lambda 3, \Lambda] := -\frac{\lambda 3}{16} - \frac{\lambda 2}{2} + \int_{0}^{\infty}$

Our bound satisfied by lattice simulations!

[4] Baffigo, Caselle '23 [5] Caristo, Caselle, Magnoli, Nada, Panero '21

Goal: we bound $\gamma_3 \iff$ we bound Δ_3

$$\frac{1}{2} \int_{-2 \times -1}^{\infty} \frac{2 \left(\left(1 + z^{2} \lambda 2 \right)^{2} + z^{2} \lambda 3^{2} \right)}{\pi^{2} z^{9} \Lambda} + \frac{32 + z^{2} \left(-1 + 32 \lambda 2 + 8 \lambda 3 \right)}{8 \pi z^{4}}$$

$$\frac{1}{2} \int_{-2 \times -1}^{\infty} \frac{1}{2} \int_{-2 \times -1}^{\infty}$$

Elias-Miró, ALG, Hebbar, Penedones, and Vieira, '21 Elias-Miró, ALG '21 Gaikwad, Gorbenko, ALG '23 (axionic strings in 4D)

$$\frac{1}{2i}\log S(s) = \frac{s}{4}\ell_s^2 + \gamma_3 s^3 \ell_s^6 + \gamma_5 s^5 \ell_s^{10} + \gamma_7 s^7 \ell_s^{14} + i\frac{8}{2^{15}}$$

To go beyond we need to include particle production!

Elias-Miró, ALG, Hebbar, Penedones, and Vieira, '21 Elias-Miró, ALG '21 Gaikwad, Gorbenko, ALG '23 (axionic strings in 4D)

$$\frac{1}{2i}\log S(s) = \frac{s}{4}\ell_s^2 + \gamma_3 s^3 \ell_s^6 + \gamma_5 s^5 \ell_s^{10} + \gamma_7 s^7 \ell_s^{14} + i\frac{8}{2^{15}}$$

To go beyond we need to include particle production!

Non-convex! Elastic unitarity is a non-convex constraint

$$\gamma[7] \ge \frac{\gamma t[5]^2}{\gamma t[3]} + \frac{1}{4096} \gamma t[3] + \frac{1}{64} \gamma t[5] - \frac{1}{16} \gamma t[3]^2 - \frac{1}{7340032}$$

Convex Non-convex

D=4: X^1, X^2 Goldstones, deviations from Nambu-Goto

$$\alpha_{3}, \beta_{3} \qquad \qquad \mathscr{A}_{EFF} = \int d^{2}\sigma \sqrt{-h} \left(\frac{1}{\ell_{s}^{2}} + \dots + \frac{\alpha_{3}}{2} \ell_{s}^{6} K^{4} + \frac{\beta_{3}}{2} \ell_{s}^{6} R^{2} + (\gamma_{3} = \alpha_{3} - \beta_{3}) \right)$$

New Effect in the amplitude: universal Polchinski-Strominger term at 1-loop $\propto \alpha_2 = \frac{D-26}{384\pi}$

D=4: X^1, X^2 Goldstones, deviations from Nambu-Goto

PS term induces universal particle production at 1 Loop: no hope for large N_c integrability, unless we add **massless** degrees of freedom to the world-sheet

$$\alpha_3, \beta_3 \qquad \qquad \mathscr{A}_{EFF} = \int d^2 \sigma \sqrt{-h} \left(\frac{1}{\ell_s^2} + \dots + \frac{\alpha_3}{\ell_s^6} \ell_s^6 K^4 + \frac{\beta_3}{\ell_s^6} \ell_s^6 R^2 + \frac{\beta_3}$$

New Effect in the amplitude: universal Polchinski-Strominger term at 1-loop $\propto \alpha_2 = \frac{D-26}{384\pi}$

D=4: X^1, X^2 Goldstones, deviations from Nambu-Goto

PS term induces universal particle production at 1 Loop: no hope for large N_c integrability, unless we add **massless** degrees of freedom to the world-sheet

E.g. we can add an axion
$$S_a = \int d^2 \sigma \left[-\frac{1}{2} \left(\partial_\alpha a \right)^2 - \frac{1}{2} m_a a^2 - \ell_s^2 Q_a a \varepsilon^{ij} \varepsilon^{\alpha\beta} \partial_\alpha \partial_\gamma X^i \partial_\beta \partial^\gamma X^j + \ldots \right].$$

If we tune $Q_a = \frac{1}{4\sqrt{3\pi}} \simeq 0.378$, and $m_a \to 0$, we can restore integrability

$$\alpha_{3}, \beta_{3} \qquad \qquad \mathcal{A}_{EFF} = \int d^{2}\sigma \sqrt{-h} \left(\frac{1}{\ell_{s}^{2}} + \dots + \frac{\alpha_{3}}{\ell_{s}}\ell_{s}^{6}K^{4} + \frac{\beta_{3}}{\ell_{s}}\ell_{s}^{6}R^{2} + (\gamma_{3} = \alpha_{3} - \beta_{3}) \right)$$

New Effect in the amplitude: universal Polchinski-Strominger term at 1-loop $\propto \alpha_2 = \frac{D-26}{384\pi}$

D=4: X^1, X^2 Goldstones, deviations from Nambu-Goto

PS term induces universal particle production at 1 Loop: no hope for large N_c integrability, unless we add **massless** degrees of freedom to the world-sheet

E.g. we can add an axion
$$S_a = \int d^2 \sigma \left[-\frac{1}{2} (\partial_\alpha a)^2 - \frac{1}{2} m_a a^2 - \ell_s^2 Q_a a \varepsilon^{ij} \varepsilon^{\alpha\beta} \partial_\alpha \partial_\gamma X^i \partial_\beta \partial^\gamma X^j + \ldots \right].$$

If we tune $Q_a = \frac{\sqrt{22}}{4\sqrt{3\pi}} \simeq 0.378$, and $m_a \to 0$, we can restore integrability $\frac{SU(3)}{2^{++}} = \frac{SU(3)}{2^{++}}$

Lattice results show the presence of an axion reso correct coupling, but massive at large N_c

$$\alpha_{3}, \beta_{3} \qquad \qquad \mathscr{A}_{EFF} = \int d^{2}\sigma \sqrt{-h} \left(\frac{1}{\ell_{s}^{2}} + \dots + \frac{\alpha_{3}}{\ell_{s}}\ell_{s}^{6}K^{4} + \frac{\beta_{3}}{\ell_{s}}\ell_{s}^{6}R^{2} + \frac{\beta_{3}}{(\gamma_{3} = \alpha_{3} - \beta_{3})} \right)$$

New Effect in the amplitude: universal Polchinski-Strominger term at 1-loop $\propto \alpha_2 = \frac{D-26}{384\pi}$

estore integrability		SU(3)	SU(5)	$SU(\infty)$
	2^{++} $m_a^L \ell_s$ Q_a^L	$\frac{1.85\substack{+0.02\\-0.03}}{0.380\substack{+0.006\\-0.006}}$	$1.64^{+0.04}_{-0.04}$ $0.389^{+0.008}_{-0.008}$	1.5 -
nance with the	2^{+-} $m_a^L \ell_s$ Q_a^L	$\frac{1.85^{+0.02}_{-0.02}}{0.358^{+0.004}_{-0.005}}$	$\begin{array}{c} 1.64\substack{+0.04\\-0.04}\\ 0.358\substack{+0.009\\-0.009}\end{array}$	1 .5 -

Gaikwad, Gorbenko, ALG '23

Flux-Tube S-matrix Bootstrap in 4D

$$\mathscr{A}_{EFF} = \int d^2 \sigma \sqrt{-h} \left(\frac{1}{\ell_s^2} + \dots + \frac{\alpha_3}{2} \ell_s^6 K^4 + \frac{\beta_3}{2} \ell_s^6 R^2 + \frac{\beta_3}{2} \ell_s^6$$

Elias-Miró, ALG, Hebbar, Penedones, Vieira <u>1906.08098</u> Elias-Miró, ALG <u>2106.07957</u>

Flux-Tube S-matrix Bootstrap in 4D

• • •

$$\mathscr{A}_{EFF} = \int d^2 \sigma \sqrt{-h} \left(\frac{1}{\ell_s^2} + \dots + \frac{\alpha_3}{2} \ell_s^6 K^4 + \frac{\beta_3}{2} \ell_s^6 R^2 + \frac{\beta_3}{2} \ell_s^6$$

Elias-Miró, ALG, Hebbar, Penedones, Vieira 1906.08098 Elias-Miró, ALG 2106.07957

Surprise! Extremal Bootstrap amplitudes contain an axion with integrable coupling!

Flux-Tube S-matrix Bootstrap in 4D

• • •

$$\mathscr{A}_{EFF} = \int d^2 \sigma \sqrt{-h} \left(\frac{1}{\ell_s^2} + \dots + \frac{\alpha_3}{2} \ell_s^6 K^4 + \frac{\beta_3}{2} \ell_s^6 R^2 + \frac{\beta_3}{2} \ell_s^6$$

Elias-Miró, ALG, Hebbar, Penedones, Vieira 1906.08098 Elias-Miró, ALG <u>2106.07957</u>

 $Q_a^L \approx Q_a^c \approx Q_a^b$ Can we explain this **triple** coincidence?

Surprise! Extremal Bootstrap amplitudes contain an axion with integrable coupling!

Can we develop an EFT for the Bootstrap amplitudes? Gaikwad, Gorbenko, ALG <u>2310.20698</u>

Can we develop an EFT for the Bootstrap amplitudes? Gaikwad, Gorbenko, ALG 2310.20698

Weakly-coupled EFT of branons interacting through an axion $\mathcal{L}_{a} = -\frac{1}{2} (\partial X^{i})^{2} - \frac{1}{2} (\partial a)^{2} - \frac{1}{2} m_{a}^{2} a^{2} - g_{a} a \varepsilon_{ij} \varepsilon^{\alpha \beta} \partial_{\alpha} \partial_{\gamma} X^{i} \partial_{\beta} \partial^{\gamma} X^{j} + \dots$

$$M_{\text{sing}} = -\frac{g_a^2}{4} \frac{s^4}{(s+m_a^2)},$$

$$M_{\text{anti}} = -\frac{g_a^2}{4} \frac{s^4(s+3m_a^2)}{(s-m_a^2)(s+m_a^2)},$$

$$M_{\text{sym}} = \frac{g_a^2}{4} \frac{s^4}{(s+m_a^2)}.$$

Can we develop an EFT for the Bootstrap amplitudes? Gaikwad, Gorbenko, ALG <u>2310.20698</u>

Weakly-coupled EFT of branons interacting through an axion $\mathcal{L}_a = -\frac{1}{2} (\partial X^i)^2 - \frac{1}{2} (\partial a)^2 - \frac{1}{2} m_a^2 a^2 - g_a a \varepsilon_{ij} \varepsilon^{\alpha\beta} \partial_\alpha \partial_\gamma X^i \partial_\beta \partial^\gamma X^j + \dots$

We match the EFT and the Bootstrap low energy ex for $\beta_3 \to \infty$

$$\mathscr{A}_{EFF} = \int d^2 \sigma \sqrt{-h} \left(\frac{1}{\ell_s^2} + \dots + \frac{\alpha_3}{2} \ell_s^6 K^4 + \frac{\beta_3}{2} \ell_s^6 R^2 + \dots \right)$$

We match the EFT and the Bootstrap low energy expansion and express $\{m_a, g_a\}$ as a function of $\{\ell_s, \beta_3\}$

Can we develop an EFT for the Bootstrap amplitudes? Gaikwad, Gorbenko, ALG <u>2310.20698</u>

Weakly-coupled EFT of branons interacting through an axion $\mathcal{L}_a = -\frac{1}{2} (\partial X^i)^2 - \frac{1}{2} (\partial a)^2 - \frac{1}{2} m_a^2 a^2 - g_a a \varepsilon_{ij} \varepsilon^{\alpha\beta} \partial_\alpha \partial_\gamma X^i \partial_\beta \partial^\gamma X^j + \dots$

We match the EFT and the Bootstrap low energy expansion and express $\{m_a, g_a\}$ as a function of $\{\ell_s, \beta_3\}$ for $\beta_3 \to \infty$

$$\mathcal{A}_{EFF} = \int d^2 \sigma \sqrt{-h} \left(\frac{1}{\ell_s^2} + \dots + \alpha_3 \ell_s^6 K^4 + \beta_3 \ell_s^6 R^2 + \dots \right)$$

$$\boxed{\alpha_3 = \beta_3} \qquad \boxed{m_a \ell_s = \sqrt{\frac{|\alpha_2|}{\beta_3}} + i \frac{|\alpha_2|^{7/2}}{2\beta_3^{5/2}} + \dots} \qquad \boxed{Q_a = \frac{\sqrt{8\Gamma_a}}{m_a^{5/2} \ell_s^2}} = 2\sqrt{2|\alpha_2|} + \dots$$

Bootstrap Results: $\lim_{\beta_3 \to \infty} \frac{\alpha_3}{\beta_3} = const$

Bootstrap Results: $m_a(\beta_3), \Gamma_a(\beta_3)$

The coincidence remains...but...

Axion dominance and approximate integrability

For $m_a^2 \ll \hat{s} \ll \ell_s^{-2}$, analyticity locks the axion coupling to cancel the Weyl anomaly α_2 in the EFT. We expect smaller particle production in the UV (1%) $2\delta_{\text{anti}}(\hat{s}) = \frac{\hat{s}}{4} - \alpha_2 \hat{s}^2 + \frac{1}{4} - \alpha_2 \hat{s}^$

What if $m_a \simeq \ell_s^{-1}$, when the EFT breaks down?

$$\frac{\hat{s} - \frac{3\alpha_2}{\beta_3}}{\left(\hat{s} + \frac{\alpha_2}{\beta_3}\right)\left(\hat{s} - \frac{\alpha_2}{\beta_3}\right)} \leq C\hat{s}$$

Axion dominance and approximate integrability

For $m_a^2 \ll \hat{s} \ll \ell_s^{-2}$, analyticity locks the axion coupling to cancel the Weyl anomaly α_2 in the EFT. We expect smaller particle production in the UV (1%)

What if $m_a \simeq \ell_s^{-1}$, when the EFT breaks down? **Axion Dominance!**

Axion dominance and approximate integrability

For $m_{\alpha}^2 \ll \hat{s} \ll \ell_{s}^{-2}$, analyticity locks the axion coupling to cancel the Weyl anomaly α_2 in the EFT. We expect smaller particle production in the UV (1%)

What if $m_a \simeq \ell_s^{-1}$, when the EFT breaks down? Axion Dominance!

Nonperturbative relation between the charge and the anomaly

$$\frac{\Gamma_a}{m_a^5} = -\alpha_2 - \left(\frac{1}{4\pi r}\right)$$

Flux-Tube Bootstrap: What's next?

Our argument relies on the assumption QCD flux-tube S-matrix "close" to the real-world one

Emission/Absorption of Glueballs

Hebbar, ALG (to appear)

World-sheet particle production: multi-particle Bootstrap

Naively: Stronger constraints!

$$\sum_{n} P_{2 \to n} = 1 \implies P_{2 \to 2} + P_{2 \to 4} + \dots \le 1$$

Homrich, ALG, Penedones, Vieira (to appear this year perhaps)

Glueballs in SU(3) pure YM

Glueballs in SU(3) pure YM

Regime in which the S-matrix Bootstrap shows its power: cutoff $\Lambda = 2m$, no small parameters.

Glueballs in SU(3) pure YM

Stable Glueballs spectrum

	J^{PC}	Mass
G	0++	1
H	2^{++}	1.437 ± 0.006
G^*	0^{++}	1.72 ± 0.01
H^*	2^{++}	1.99 ± 0.01

Athenodorou, Teper 2007.06422, 2106.00364

Regime in which the S-matrix Bootstrap shows its power: cutoff $\Lambda = 2m$, no small parameters.

Pole Structure in GG->GG scattering
Glueballs in SU(3) pure YM

Stable Glueballs spectrum

	J^{PC}	Mass
G	0++	1
H	2^{++}	1.437 ± 0.006
G^*	0^{++}	1.72 ± 0.01
H^*	2^{++}	1.99 ± 0.01

Athenodorou, Teper 2007.06422, 2106.00364

Can we bound these couplings using only general principles?

$$M \supset -g_G^2 \frac{1}{s - m_G^2} - g_{G^*}^2 \frac{1}{s - m_{G^*}^2} - g_H^2 \frac{t^2 + \dots}{s - m_H^2} - g_{H^*}^2 \frac{t^2 + \dots}{s - m_{H^*}^2} + \dots$$

Regime in which the S-matrix Bootstrap shows its power: cutoff $\Lambda = 2m$, no small parameters.

Pole Structure in GG->GG scattering

AG, Hebbar, van Rees 2312.00127

Amplitudes in 3+1 D: general properties

Crossing:

M(s, t, u) symmetric in the three variables $s = (p_1 + p_2)^2, t = (p_1 - p_3)^2, u =$

$$(p_1 - p_4)^2$$

Amplitudes in 3+1 D: general properties

Crossing: M(s, t, u) symmetric in the three variables $s = (p_1 + p_2)^2, t = (p_1 - p_3)^2, u = (p_1 - p_4)^2$

Unitarity:
$$2Imf_{\ell} \ge \sqrt{\frac{s-4m^2}{s}} |f_{\ell}|^2 \qquad f_{\ell} = \frac{1}{32\pi} \int_{-1}^{1}$$

variables $(p_1 - p_4)^2$ $dxP_{\ell}(x)M(s, t(s, x))$ $dxP_{\ell}(x)M(s, t(s, x))$

Amplitudes in 3+1 D: general properties

Unitarity:
$$2Imf_{\ell} \ge \sqrt{\frac{s-4m^2}{s}} |f_{\ell}|^2 \qquad f_{\ell} = \frac{1}{32\pi} \int_{-1}^{1}$$

s-u crossing + analyticity $M(s,t) - M(s_0,t_0) = \int_{Disc} \frac{dv}{\pi} (M_v(v,t)K(v,s,t:t_0) + M_v(v,t_0)K(v,t,t_0,s_0)),$ with $K(v, s, t; t_0) = \frac{1}{v-s} + \frac{1}{v-u} - \frac{1}{v-t_0} - \frac{1}{v-4+t+t_0}$

Doubly-subtracted fixed-t dispersion relations

Froissart bound

s-u crossing + analyticity $M(s,t) - M(s_0,t_0) = \int_{Disc} \frac{dv}{\pi} (M_v(v,t)K(v,s,t:t_0) + M_v(v,t_0)K(v,t,t_0,s_0)),$ with $K(v, s, t; t_0) = \frac{1}{v-s} + \frac{1}{v-u} - \frac{1}{v-t_0} - \frac{1}{v-4+t+t_0}$

Projecting into partial waves w.r.t to t: Roy Equations '73

Unitarity + J Roy Equations \implies Rigorous Bounds

Doubly-subtracted fixed-t dispersion relations

 $\lim_{s \to \infty} \frac{M(s, t < t_0)}{|s|^2} = 0$ Froissart bound

s < 60 according to Martin, but in practice s < 12

s-u crossing + analyticity $M(s,t) - M(s_0,t_0) = \int_{Disc} \frac{dv}{\pi} (M_v(v,t)K(v,s,t:t_0) + M_v(v,t_0)K(v,t,t_0,s_0)),$ with $K(v, s, t; t_0) = \frac{1}{v-s} + \frac{1}{v-u} - \frac{1}{v-t_0} - \frac{1}{v-4+t+t_0}$ Projecting into partial waves w.r.t to t: Roy Equat

Unitarity + J Roy Equations \implies Rigorous Bounds

s-t crossing (Not manifest)

M(s, t) - M(s, 4 - s - t) = 0

Equation that generates the "null constraints" used in the positivity literature

Doubly-subtracted fixed-t dispersion relations

 $\lim_{s \to \infty} \frac{M(s, t < t_0)}{|s|^2} = 0$ Froissart bound

Re
$$f_J(s) = \frac{\delta_{J,0}}{n_0^{(d)}} T(s_0, t_0) + \sum_{p \in \mathcal{P}} g_p^2 R_{\mu_p \ell_p}^{(J)}(s; s_0, t_0) + \sum_{\ell, v} \int_{\ell, v} \operatorname{Im} f_\ell(v) R_{v \ell}^{(J)}(s; s_0, t_0) ds$$

s < 60 according to Martin, but in practice s < 12

$$\left(\frac{\partial}{\partial \tau}\right)^{n} M(4 - 2t_{c}, t_{c} + \tau) \big|_{\tau=0} = 0, \text{ n odd}$$

s-u crossing + analyticity $M(s,t) - M(s_0,t_0) = \int_{Disc} \frac{dv}{\pi} (M_v(v,t)K(v,s,t:t_0) + M_v(v,t_0)K(v,t,t_0,s_0)),$ with $K(v, s, t; t_0) = \frac{1}{v-s} + \frac{1}{v-u} - \frac{1}{v-t_0} - \frac{1}{v-4+t+t_0}$ Projecting into partial waves w.r.t to t: Roy Equat

Unitarity + J Roy Equations \implies Rigorous Bounds

s-t crossing (Not manifest)

M(s, t) - M(s, 4 - s - t) = 0

Equation that generates the "null constraints" used in the positivity literature

$$\begin{array}{ll} \textbf{Unitarity} & \begin{pmatrix} 1 + \operatorname{Re}[S_{\ell}] & \operatorname{Im}[S_{\ell}] \\ \operatorname{Im}[S_{\ell}] & 1 - \operatorname{Re}[S_{\ell}] \end{pmatrix} = \begin{pmatrix} 2 - \tilde{\rho}_s \operatorname{Im}[f_{\ell}] & \tilde{\rho}_s \operatorname{Re}[f_{\ell}] \\ \tilde{\rho}_s \operatorname{Re}[f_{\ell}] & \tilde{\rho}_s \operatorname{Im}[f_{\ell}] \end{pmatrix} \succeq 0 \end{array}$$

Doubly-subtracted fixed-t dispersion relations

 $\lim_{s \to \infty} \frac{M(s, t < t_0)}{|s|^2} = 0$ Froissart bound

Re
$$f_J(s) = \frac{\delta_{J,0}}{n_0^{(d)}} T(s_0, t_0) + \sum_{p \in \mathcal{P}} g_p^2 R_{\mu_p \ell_p}^{(J)}(s; s_0, t_0) + \sum_{\ell,v} \int_{\ell,v} Im f_\ell(v) R_{v \ell}^{(J)}(s; s_0, t_0) ds$$

s < 60 according to Martin, but in practice s < 12

$$\left(\frac{\partial}{\partial \tau}\right)^{n} M(4 - 2t_{c}, t_{c} + \tau) \big|_{\tau=0} = 0, \text{ n odd}$$

We can use SDPB!

The Glue-Hedron

In the $GG \rightarrow GG$ scattering we measure the coupling $g_X XG^2$

$\max g_G $	$\max g_H $	$\max g_{G^*} $	$\max g_{H^*} $
213	158	224	2.15
206	156	217	—

SU(3) YM Lattice $g_G \approx 50 \pm 7$ De Forcrand, Schierloz, Schneider, Teper '85

	J^{PC}	Mass
G	0^{++}	1
H	2^{++}	1.437 ± 0.006
G^*	0^{++}	1.72 ± 0.01
H^*	2^{++}	1.99 ± 0.01

The Glue-Hedron

In the $GG \rightarrow GG$ scattering we measure the coupling $g_X XG^2$

$\max g_G $	$\max g_H $	$\max g_{G^*} $	$\max g $
213	158	224	2.15
206	156	217	—

SU(3) YM Lattice $g_G \approx 50 \pm 7$ De Forcrand, Schie

	J^{PC}	Mass
G	0++	1
H	2^{++}	1.437 ± 0.006
G^*	0^{++}	1.72 ± 0.01
H^*	2^{++}	1.99 ± 0.01

De Forcrand, Schierloz, Schneider, Teper '85

Glueballs: What's next?

Fixed-t dual Bootstrap: amplitude can be reconstructed up to s = 12!

- 1) We need better dispersion relations
- 2) We need to include other processes G*G*->G*G*, GG*->GG*, but anomalous thresholds!

Glueballs: What's next?

Fixed-t dual Bootstrap: amplitude can be reconstructed up to s = 12!

- 1) We need better dispersion relations
- 2) We need to include other processes G*G*->G*G*, GG*->GG*, but anomalous thresholds!

We are on a quest to find which function can get us to $s \to \infty$ Elias-Miro', Gumus, ALG, Zahed (work in progress)

LIGHT UNFLAVORED MESONS

https://pdglive.lbl.gov/ParticleGroup.action?init=0&node=MXXX005

Precision physics from Bootstrap: QCD Spectroscopy?

Unitarized χPT Dispersive Roy Equations analysis

Easy to work with physical pion masses Hard to control systematics

Lattice QCD

Hard to study physical pion masses Clean Systematics

Bootstrap as a rigorous tool to predict the physics and extrapolate the spectrum?

2->2 Amplitude of U(1) Goldstones in 4 dimensions

Non-perturbative properties of amplitudes

2->2 Amplitude of U(1) Goldstones in 4 dimensions

Advancements for Primal I: L_{max} convergence

Primal Bootstrap: at the moment more flexible, powerful, simpler to code

1) Ansatz for M(s,t,u)

2) Numerically project $f_{\ell} = \frac{1}{32\pi} \int_{-1}^{1} dx P_{\ell}(x) M(s, t(s, x))$, for $\ell \leq L_{max}$ 3) Impose $2Imf_{\ell} \ge \sqrt{\frac{s - 4m^2}{s}} |f_{\ell}|^2$, for $\ell \le L_{max}$

Advancements for Primal I: L_{max} convergence

Primal Bootstrap: at the moment more flexible, powerful, simpler to code

1) Ansatz for M(s,t,u)

2) Numerically project $f_{\ell} = \frac{1}{32\pi} \int_{-1}^{1} dx P_{\ell}(x) M(s, t(s, x))$, for $\ell \leq L_{max}$ 3) Impose $2Imf_{\ell} \ge \sqrt{\frac{s - 4m^2}{s}} |f_{\ell}|^2$, for $\ell \le L_{max}$

Improved Positivity constraints

$$Im M(s, 0 \le t < 4) = 16\pi \sum_{\ell} (2\ell + 1)P_{\ell} \left(1 + \frac{2t}{s - 4}\right) Im f_{\ell}(s) \ge 0$$
$$Im M(s, 0 \le t < 4) - \sum_{\ell \le L_{max}} \left(1 + \frac{2t}{s - 4}\right) Im f_{\ell}(s) \ge 0$$

For any t necessary positivity constraints on the tail of higher spins!

Advancements for Primal II: N_{max} convergence

1) Ansatz for M(s,t,u): powerful enough to describe weakly coupled resonances

$$\rho(s, s_0) = \frac{\sqrt{s_0 - 4} - \sqrt{4 - s}}{\sqrt{s_0 - 4} + \sqrt{4 - s}} \qquad \text{Real } s \to 1$$

 $e^{i\phi}$

 $\Delta \phi = Jac \times \Delta s = Jac \times 2m\Gamma$

 $\max Jac$ for $s_0 = m$

We choose different foliations { $s_0 = 6.67, 30, 50, 80, ...$ }

Real world QCD spectroscopy (work in progress)

Goal: Use the Bootstrap to "Fit" Experimental Data

Experimental situation incredibly messy! Pions are unstable, and we don't detect the scattering directly.

AG, Haring, Su (work in progress)

Real world QCD spectroscopy (work in progress)

Goal: Use the Bootstrap to "Fit" Experimental Data

Experimental situation incredibly messy! Pions are unstable, and we don't detect the scattering directly.

In the $\ell = 0, I = 0$ channel data coming from different experiments are incompatible!

Before applying the Bootstrap to phenomenology is important we carefully choose the data to use!

Idea: construct a class of crossing symmetric, analytic and unitary non-perturbative amplitudes depending on few parameters to

- Fit Data 1)
- Extrapolate 2)

three inputs the kink moves

The Pion Kink

How can we construct such an amplitude?

Navigating towards the kink

Chiral zeros $\{f_0^{(0)}(z_0) = 0, f_0^{(2)}(z_2) = 0\},\$

1 scattering length $f_0^{(0)}(4) = 2a_0^{(0)}$

AG, Haring, Su (work in progress)

We navigate in the 11 red parameters to find the best values!

Outputs: Scattering Lengths

Outputs: Spectrum

Different determinations of the σ since 2001

$(410 \pm 20) - i(240 \pm 15)$	SARANTSEV	2021	INVE	$J/\psi(1S) \rightarrow \gamma \{ \pi \pi, K \widetilde{K}, \eta \eta, \omega \phi \}$
$(512 \pm 15) - i(188 \pm 12)$	ABLIKM	2017	8653	$J/\psi \rightarrow \gamma 3 \pi$
$(440 \pm 30) = 4[238 \pm 30]$	CIBOALABLA F	2012	RALE	Compilation
$(445 \pm 25) - i(278^{+31}_{-25})$	3.4 GARCIA-MARTIN	2011	INLE	Compilation
$(437^{+34}_{-13}) - i(279^{+31}_{-7})$	5.3 GARCA MARTIN	2011	BULE.	Compilation
$(442^{+0}_{-6}) = i(274^{+0}_{-5})$	* MOUSSALLAM	2011	RAVE	Compilation
$(452 \pm 13) - i(259 \pm 16)$	" MENNESSER	2010	INVE	Compilation
$\{448 \pm 43\} - i(200 \pm 43)$	* MENONESSER	2010	EVLE	Compilation
$(455 \pm 6^{+20}_{-12}) - 6(278 \pm 6^{+20}_{-42})$	* CARRIE	2008	RAVE	Compilation
$(463 \pm 6^{+10}_{-10}) - i(259 \pm 6^{+10}_{-14})$	III CAPRINE	2008	RALE	Compilation
$(552^{+84}_{-100}) - i(232^{+81}_{-22})$	11 ABLIKIM	2007A	8652	$\psi(2S) \rightarrow \pi^+\pi^- J/\psi$
$(466 \pm 18) - i(223 \pm 28)$	12 BONNON	2007	010	$D^+ \rightarrow \pi^- \pi^+ \pi^+$
$(472 \pm 30) - i(271 \pm 30)$	¹³ BUGG	2007A	INCE	Compilation
$(484 \pm 17) - i(255 \pm 10)$	GARCIA MARTIN	2007	EVLE	Compilation
(430) - ii(325)	14 ANISOVICH	2006	RYUE	Compilation
$(441^{+10}_{-4}) - i(272^{+0}_{-111})$	U CARRINE	2004	INVE	**-***
$(470 \pm 10) - i(285 \pm 25)$	14 ZHOU	2005	INCE	
$(541 \pm 38) - i(252 \pm 42)$	17 ABLIKIM	20044	8652	$J/\psi \rightarrow \omega \pi^+ \pi^-$
$(528 \pm 32) - i(207 \pm 23)$	" GALLEGOS	2004	ENLE	Compilation
(533 ± 25) - 4(249 ± 25)	19 BUGG	2003	INUE	
517 - (240	BLACK	2001	RYUE	$T : T \to T : T$
$(470 \pm 30) - i(285 \pm 20)$	" COLANGELO	2001	RVUE	**-**
$(535^{+11}_{-11}) - i(155^{+11}_{-11})$	31 ISHCA	2001		$T(3S) \rightarrow T\pi\pi$
410 ± 14 - (CID ± EI)	P SUROVISEV	2001	INUE	TT - TT, KK
	$ \begin{array}{l} \left(410 \pm 20 \right) - 4 \left(240 \pm 15 \right) \\ \left(512 \pm 15 \right) - 4 \left(238 \pm 19 \right) \\ \left(440 \pm 10 \right) - 4 \left(238 \pm 19 \right) \\ \left(445 \pm 25 \right) - 4 \left(279^{+71} \right) \\ \left(445 \pm 25 \right) - 4 \left(279^{+71} \right) \\ \left(442^{+7}_{-1} \right) - 4 \left(279^{+71} \right) \\ \left(442^{+7}_{-1} \right) - 4 \left(279 \pm 16 \right) \\ \left(445 \pm 43 \right) - 4 \left(290 \pm 43 \right) \\ \left(455 \pm 6^{+70}_{-10} \right) - 4 \left(278 \pm 6^{+70}_{-10} \right) \\ \left(465 \pm 6^{+70}_{-10} \right) - 4 \left(232^{+71}_{-10} \right) \\ \left(465 \pm 6^{+70}_{-10} \right) - 4 \left(232^{+71}_{-10} \right) \\ \left(465 \pm 6^{+70}_{-10} \right) - 4 \left(232^{+71}_{-10} \right) \\ \left(465 \pm 18 \right) - 4 \left(232^{+71}_{-10} \right) \\ \left(466 \pm 18 \right) - 4 \left(232^{+71}_{-10} \right) \\ \left(441^{+70}_{-1} \right) - 4 \left(255 \pm 28 \right) \\ \left(441^{+70}_{-1} \right) - 4 \left(255 \pm 18 \right) \\ \left(441^{+70}_{-1} \right) - 4 \left(255 \pm 18 \right) \\ \left(470 \pm 10 \right) - 4 \left(255 \pm 12 \right) \\ \left(541 \pm 39 \right) - 4 \left(252 \pm 42 \right) \\ \left(543 \pm 23 \right) - 4 \left(252 \pm 42 \right) \\ \left(533 \pm 25 \right) - 4 \left(249 \pm 25 \right) \\ \left(531 \pm 25 \right) - 4 \left(249 \pm 25 \right) \\ \left(531 \pm 25 \right) - 4 \left(249 \pm 25 \right) \\ \left(535^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(410^{+}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(410^{+}_{-10} \right) - 4 \left(256^{+}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} \right) \\ \left(135^{+70}_{-10} \right) - 4 \left(255^{+70}_{-10} $	$(410 \pm 20) - 4(240 \pm 15)$ SARANTSEV $(512 \pm 15) - 4(188 \pm 12)$ * ALLOM $(440 \pm 16) - 4(228 \pm 18)$ * ALLOM $(445 \pm 29) - 4(279 \pm 17)$ * A GARCA MARTN $(457 \pm 10) - 4(279 \pm 17)$ * A GARCA MARTN $(447 \pm 1) - 4(279 \pm 17)$ * A GARCA MARTN $(447 \pm 1) - 4(279 \pm 18)$ * MCHSSALLAM $(442 \pm 13) - 4(250 \pm 18)$ * MCHSSALLAM $(442 \pm 13) - 4(200 \pm 43)$ * MCHSSALLAM $(445 \pm 6^{+}_{10}) - 4(278 \pm 6^{+}_{10})$ * MCHSSALLAM $(445 \pm 6^{+}_{10}) - 4(278 \pm 6^{+}_{10})$ * CARRN $(455 \pm 6^{+}_{10}) - 4(230 \pm 4^{+}_{10})$ * CARRN $(455 \pm 6^{+}_{10}) - 4(232 \pm 38)$ * CARRN $(456 \pm 18) - 4(232 \pm 38)$ * CARRN $(456 \pm 13) - 4(252 \pm 13)$ * CARRN $(441 \pm 17) - 4(255 \pm 18)$ * GARCA MARTN $(400 - 0,335)$ * ANSONCH $(411 \pm 39) - 4(252 \pm 42)$ * DAU $(411 \pm 39) - 4(252 \pm 42)$ * DAU $(411 \pm 39) - 4(252 \pm 42)$ * GARCA $(411 \pm 39) - 4(252 \pm 42)$ * GARCA $(411 \pm 39) - 4(252 \pm 42)$ * GARCA $(411 \pm 39) - 4(252 \pm 42)$ * GARCA $(411 \pm 43) - 4(260 \pm 25)$ * GARCA $(411 \pm 39) - 4(252 \pm 42)$ * GARCA $(411 \pm 39) - 4(252 \pm 42)$ * GARCA $(411 \pm 39) - 4(252 \pm 42)$ * GARCA $(411 \pm 39) - 4(252 \pm 42)$ * GARCA $(411 \pm 39) - 4(252 \pm 42)$ * GARCA $(411 \pm 39) - 4(252 \pm 42)$ * GARCA $(411 \pm 39) - 4(252 \pm 42)$ * GARCA $(411 \pm 39) - 4(250 \pm 20)$ * GARCA $(411 \pm 39) - 4($	$(40 + 30) - 4(240 \pm 15)$ SARANTSEV2021 $(522 \pm 35) - 4(184 \pm 12)$ 1 ABLIGM2017 $(400 \pm 30) - 4(238 \pm 10)$ 2 ABLIGM2012 $(445 \pm 25) - 4(278 \pm 10)$ 2 ABLIGACHONARTSN2011 $(457 \pm 10) - 4(278 \pm 10)$ 1 CARCA MARTSN2011 $(442 \pm 3) - 4(278 \pm 10)$ 1 CARCA MARTSN2011 $(442 \pm 3) - 4(250 \pm 15)$ 1 MCHSSARLAM2011 $(442 \pm 3) - 4(250 \pm 15)$ 7 MENAESSER2010 $(448 \pm 43) - 4(260 \pm 43)$ 1 MCHSSARR2010 $(445 \pm 6^+_{12}) - 4(278 \pm 6^+_{12})$ 1 CARSN2008 $(455 \pm 6^+_{12}) - 4(278 \pm 6^+_{12})$ 1 CARSN2008 $(455 \pm 6^+_{12}) - 4(276 \pm 6^+_{12})$ 1 CARSN2008 $(455 \pm 6^+_{12}) - 4(276 \pm 6^+_{12})$ 1 CARSN2007 $(455 \pm 6^+_{12}) - 4(222 \pm 3)$ 1 BUSG2007A $(466 \pm 18) - 4(222 \pm 31)$ 1 BUSG2007A $(464 \pm 17) - 4(252 \pm 10)$ 1 BUSG2007A $(444 \pm 17) - 4(252 \pm 10)$ 1 BUSG2007A $(444 \pm 17) - 4(252 \pm 12)$ 1 BUSG2007A $(444 \pm 17) - 4(252 \pm 12)$ 1 BUSG2007A $(444 \pm 17) - 4(252 \pm 12)$ 1 BUSG2007A $(444 \pm 17) - 4(252 \pm 12)$ 1 BUSG2004 $(453 \pm 53) - 6(261 \pm 25)$ 1 BUSG2004 $(533 \pm 25) - 4(260 \pm 25)$ 1 BUSG2004 $(534 \pm 25) - 4(260 \pm 25)$ 1 BUSG2004 $(535 \pm 12) - 4(260 \pm 26)$ 1 BUSG2004 $(534 \pm 25) - 4(260 \pm 26)$ 1 BUSG2004 $(535 \pm 12) - 4(260 \pm 26)$ 1 BUSG <t< td=""><td>(40 + 20) - 4(240 ± 15) SARANTSEV 2021 RVLE (312 ± 15) - 4(286 ± 12) ALLIOM 2017 BE53 (440 ± 10) - 4(238 ± 10) ² ALBALAGEJO 2012 RVLE (445 ± 25) - 4(275 * ²/₂) ² ALBALAGEJO 2011 RVLE (445 ± 25) - 4(275 * ²/₂) ² ALBALAGEJO 2011 RVLE (447 * ²/₂) - 4(275 * ²/₂) ² ALBALAGEJO 2011 RVLE (442 * ²/₂) - 4(275 * ²/₂) ² GARCA AMARTN 2011 RVLE (442 * ²/₂) - 4(276 * ⁴/₂) ⁴ MCNESSALIAM 2011 RVLE (452 * 6 * ¹/₂) - 4(276 * 4 * ¹/₂) ⁴ MCNESSALIAM 2011 RVLE (455 * 6 * ¹/₂) - 4(276 * 4 * ¹/₂) ⁶ CARSN 2008 RVLE (455 * 6 * ¹/₂) - 4(275 * 4 * ¹/₂) ⁶ CARSN 2008 RVLE (455 * 6 * ¹/₂) - 4(275 * 4 * ¹/₂) ⁶ CARSN 2008 RVLE (455 * 6 * ¹/₂) - 4(275 * 4 * ¹/₂) ⁶ CARSN 2008 RVLE (455 * 6 * ¹/₂) - 4(275 * 4 * ¹/₂) ¹⁶ CARSN 2007 RUE</td></t<>	(40 + 20) - 4(240 ± 15) SARANTSEV 2021 RVLE (312 ± 15) - 4(286 ± 12) ALLIOM 2017 BE53 (440 ± 10) - 4(238 ± 10) ² ALBALAGEJO 2012 RVLE (445 ± 25) - 4(275 * ² / ₂) ² ALBALAGEJO 2011 RVLE (445 ± 25) - 4(275 * ² / ₂) ² ALBALAGEJO 2011 RVLE (447 * ² / ₂) - 4(275 * ² / ₂) ² ALBALAGEJO 2011 RVLE (442 * ² / ₂) - 4(275 * ² / ₂) ² GARCA AMARTN 2011 RVLE (442 * ² / ₂) - 4(276 * ⁴ / ₂) ⁴ MCNESSALIAM 2011 RVLE (452 * 6 * ¹ / ₂) - 4(276 * 4 * ¹ / ₂) ⁴ MCNESSALIAM 2011 RVLE (455 * 6 * ¹ / ₂) - 4(276 * 4 * ¹ / ₂) ⁶ CARSN 2008 RVLE (455 * 6 * ¹ / ₂) - 4(275 * 4 * ¹ / ₂) ⁶ CARSN 2008 RVLE (455 * 6 * ¹ / ₂) - 4(275 * 4 * ¹ / ₂) ⁶ CARSN 2008 RVLE (455 * 6 * ¹ / ₂) - 4(275 * 4 * ¹ / ₂) ⁶ CARSN 2008 RVLE (455 * 6 * ¹ / ₂) - 4(275 * 4 * ¹ / ₂) ¹⁶ CARSN 2007 RUE

How we extract the σ

 N_{max} (super stable Bootstrap solution)

Plan to finish the paper (s)

- 1) Not fixing the ρ , but navigate to a better kink (we know it is possible, example in backup slides)
- 2) Propagate errors
- 3) Check different data sets
- 4) Bonus: extract higher spin resonances

Backup Slides

Unitarity: define
$$S(s) = 1 + \frac{i}{2s}T_{2\to 2}(s)$$
 then $|S(s)|^2 \leq \frac{1}{2s}$

- **Goal**: we bound $c_4 \iff$ we bound Δ_3
- What are the non-perturbative properties of the branons scattering amplitude?
 - ≤ 1 for s>0 S-matrix measures probabilities

Unitarity: define $S(s) = 1 + \frac{i}{2s}T_{2\rightarrow 2}(s)$ then $|S(s)|^2 \le 1$ for s>0 **Crossing:** S(s) = S(u) where t=0, u=-s

- **Goal**: we bound $c_4 \iff$ we bound Δ_3
- What are the non-perturbative properties of the branons scattering amplitude?
 - S-matrix measures probabilities

In 2d there is no scattering angle

Unitarity: define
$$S(s) = 1 + \frac{i}{2s}T_{2\to 2}(s)$$
 then $|S(s)|^2 \leq \frac{i}{2s}T_{2\to 2}(s)$

Crossing: S(s) = S(u) where t=0, u=-s

S*

Analyticity

S
Low Energy Constraints:
$$S(s) = 1 + i\frac{s}{4} - \frac{s^2}{32} + i(\gamma_3 - \frac{1}{384})s^3 + \dots$$

- **Goal**: we bound $c_4 \iff$ we bound Δ_3
- What are the non-perturbative properties of the branons scattering amplitude?
 - ≤ 1 for s>0 S-matrix measures probabilities

In 2d there is no scattering angle

- Analytic away from the real axis
 - S(s), s>0 s=0 S*

Unitarity: define $S(s) = 1 + \frac{l}{2s}T_{2\rightarrow 2}(s)$ then $|S(s)|^2 \le 1$ for s>0 **Crossing:** S(s) = S(u) where t=0, u=-s S* Analyticity S Low Energy Constraints: $S(s) = 1 + i\frac{s}{4} - \frac{s^2}{32} + i(\gamma_3 - \frac{1}{384})s^3 + \dots$ Solution (Schwarz-Pick Theorem) $S(s) = \frac{8i - s}{8i + s}$

A numerical bound

What if we were not good enough to find an analytic solution?

A numerical bound

What if we were not good enough to find an analytic solution?

Ansatz manifestly **Analytic** and **crossing symmetric**: $S(s) = \sum a_n \chi(s)^n$ n

We check unitarity numerically:

$$|S(s)|^2 \le 1$$
, $S(s) = 1 + \frac{i}{2s}T(s)$

Unitarity imposed on a grid of **M** points

A numerical bound

What if we were not good enough to find an analytic solution?

Ansatz manifestly **Analytic** and **crossing symmetric**: $S(s) = \sum a_n \chi(s)^n$

We check unitarity numerically:

$$|S(s)|^2 \le 1$$
, $S(s) = 1 + \frac{i}{2s}T(s)$

Unitarity imposed on a grid of **M** points

FindMinimum $\gamma_3(a_n)$ with $T(s) = \sum_{n=1}^{N} a_n \chi(s)^n$ and $|S(s)|^2 \le 1$

Order of limits for convergence: 1) number of constraint large $M \to \infty$

2) number of terms large $N \to \infty$

Flux-Tube Bootstrap: What's next?

Q2: Strings interact with Glueballs, can we inject UV using form factors?

Q3: Can we go beyond 2->2?

Naively: Stronger constraints!

$$\sum_{n} P_{2 \to n} = 1 \implies P_{2 \to 2} + P_{2 \to 4} + \dots \le 1$$

Q1: The world-sheet QCD axion subject to a triple coincidence, why? $Q_{Lattice} \sim Q_{Bootstrap} \sim Q_{integrable}$

Gaikwad, Gorbenko, ALG (to appear)

Hebbar, ALG (working in progress)

Homrich, ALG, Penedones, Vieira (working in progress)

The dream: multi-particle Bootstrap

The majority of the bounds so far are consistent with any amount of particle production, even zero.

Simplest case: massless Goldstones on Strings in 3D

Idea: project multi-particle states into jet states

No collinear divergences in this theory!

2-particle Jet State $|n,P\rangle \equiv \sqrt{2n+1} \int d\alpha \frac{P_n(2\alpha-1)}{\sqrt{8\pi\alpha(1-\alpha)}} |\alpha,(1-\alpha),P\rangle_2$

Problem decomposes into a bunch of 2->2 processes Homrich, ALG, Penedones, Vieira (working in progress)

Toy model: max spin-2 coupling

$$M \supset \frac{-g^2}{s - m_b^2} P_2 \left(1 \right)$$

Without Regge it would violate unitarity!

The maximum residue at the spin-2 pole is a hard problem (\mathbb{Z}_2 symmetry, no $s = m^2$ pole)

They must restore $M(t \to \infty, s \le 0) < t \log^2 t$

Toy model: max spin-2 coupling

$$M \supset \frac{-g^2}{s - m_b^2} P_2 \left(1 + \frac{2t}{m_b^2 - 4m^2} \right) + \dots \sim t^2$$

Without Regge it would violate unitarity!

The maximum residue at the spin-2 pole is a hard problem (\mathbb{Z}_2 symmetry, no $s = m^2$ pole)

Low energy QCD

In QCD dynamical mass generation, non-perturbative RG flow

 α,β can be only computed using lattice QCD today or extracted from data!!!

Non perturbative S-matrices from Bootstrap

Left side of the boundary

What can we add to nail down QCD?

Right side of the boundary

An analytic bound on scattering

Unitarity: define $S(s) = 1 + \frac{l}{2s}T_{2\to 2}(s)$ then $|S(s)|^2 \le 1$ for s>0 **Crossing:** S(s) = S(u) where t=0, u=-s

Analyticity

Low Energy Constraints: $S(s) = 1 + i\frac{s}{\Delta} - \frac{s^2}{32} + i(\gamma_3 - \frac{s}{32})$

Solution (Schwarz-Pick Theorem)

$$\gamma_3 \ge -\frac{1}{768}$$

 $S(s) = \frac{8i-s}{8i+s}$

- **Goal**: we bound $c_4 \iff$ we bound Δ_3
- What are the non-perturbative properties of the branons scattering amplitude?
 - Analytic away from the real axis

$$-\frac{1}{384})s^3 + \dots$$

- [4] Baffigo, Caselle '23
- [5] Caristo, Caselle, Magnoli, Nada, Panero '21
- [1,6] Dubovsky, Gorbenko, et al

Undergoing search in a 4 parameter family of amplitudes AG, Haring, Su (work in progress)

$$T(s, t, u) = -c_0 + c_2(\bar{s}^2 + \bar{t}^2 + \bar{u}^2) + c_3\bar{s}\bar{t}\bar{u} + \dots$$

Space of amplitudes parametrized by $\{c_0, c_2, c_3, \dots\}$

Analyticity tells how to go into the complex plane!

Analytic in the s-plane away from the cuts for all $-28m^2 < t < 4m^2$

Martin, Jin, Froissart, Mandelstam, Lehmann, and many many others

$$T(s, t, u) = -c_0 + c_2(\bar{s}^2 + \bar{t}^2 + \bar{u}^2) + c_3\bar{s}\bar{t}\bar{u} + \dots$$

Space of amplitudes parametrized by $\{c_0, c_2, c_3, ...\}$

Analyticity tells how to go into the complex plane!

Analytic in the s-plane away from the cuts for all $-28m^2 < t < 4m^2$

 $t < -28m^2$: we hit the double discontinuity!

Res

Correia, Sever, Zhiboedov 2111.12100 Tourkine, Zhiboedov 2303.08839

Froissart bound

$$\lim_{s \to \infty} \frac{T(s, t < t_0)}{|s|^2} = 0 \qquad \qquad M(s, t,$$

$$(s, t, u) = -c_0 + c_2(\bar{s}^2 + \bar{t}^2 + \bar{u}^2) + c_3\bar{s}\bar{t}\bar{u} + \dots$$

Dispersive parameters \equiv operators of dimension ≥ 8

Froissart bound
$$\lim_{s \to \infty} \frac{T(s, t < t_0)}{|s|^2} = 0 \qquad \qquad M(s, t, u) = -c_0 + c_2(\bar{s}^2 + \bar{t}^2 + \bar{u}^2) + c_3\bar{s}\bar{t}\bar{u} + \dots$$

Non Dispersive

$$c_2 = \frac{1}{\pi} \int_{4m^2}^{\infty} \frac{T_v(v, t_0)}{\bar{v}^3} \ge 0$$

 $t_0 = s_0 = 4/3m^2$ Subtraction point

 $T_{v}(v)$

Dispersive parameters \equiv operators of dimension ≥ 8

$$v, t_0) \equiv 16\pi \sum_{\ell=0}^{\infty} (2\ell+1) Imf_{\ell}(s) P_{\ell}(1+2t_0/(s-4)) \ge 0$$

Positivity Legendre positivity
 $P_{\ell}(x) > 0, \quad x \ge 1$

Froissart bound
$$\lim_{s \to \infty} \frac{T(s, t < t_0)}{|s|^2} = 0 \qquad \qquad M(s, t, u) = -c_0 + c_2(\bar{s}^2 + \bar{t}^2 + \bar{u}^2) + c_3\bar{s}\bar{t}\bar{u} + \dots$$

Non Dispersive

$$c_2 = \frac{1}{\pi} \int_{4m^2}^{\infty} \frac{T_v(v, t_0)}{\bar{v}^3} \ge 0$$

 $t_0 = s_0 = 4/3m^2$ Subtraction point

$$\frac{c_0}{16\pi} = \operatorname{Re} f_0(s) - \frac{1}{\pi} \int_{\ell=0}^{\infty} 16\pi (2\ell+1) \operatorname{Im} f_{\ell}(v) k_{\ell}(v,s)$$
NOT POSITIVE!

Dispersive parameters \equiv operators of dimension ≥ 8

$$T_{\nu}(\nu, t_0) \equiv 16\pi \sum_{\ell=0}^{\infty} (2\ell+1) Imf_{\ell}(s) P_{\ell}(1+2t_0/(s-4)) \ge 0$$

Positivity Legendre positivity
$$P_{\ell}(x) > 0, \quad x \ge 1$$

)dv

Froissart bound
$$\lim_{s \to \infty} \frac{T(s, t < t_0)}{|s|^2} = 0 \qquad M(s, t, u) = -c_0 + \frac{c_2(\bar{s}^2 + \bar{t}^2 + \bar{u}^2) + c_3\bar{s}\bar{t}\bar{u} + \dots}{\text{Dispersive parameters }\equiv \text{ operators of dimension} \ge 8}$$
Non Dispersive
$$c_2 = \frac{1}{\pi} \int_{4m^2}^{\infty} \frac{T_v(v, t_0)}{\bar{v}^3} \ge 0 \qquad t_0 = s_0 = 4/3m^2 \qquad T_v(v, t_0) \equiv 16\pi \sum_{\ell=0}^{\infty} (2\ell' + 1) Imf_{\ell}(s) P_{\ell}(1 + 2t_0/(s - 4)) \ge 0$$
Positivity Legendre positivity
$$P_{\ell}(x) > 0, \quad x \ge 1$$

$$\lim_{\ell \in 0} \frac{1}{16\pi} = \operatorname{Re} f_0(s) - \frac{1}{\pi} \int_{0}^{\infty} 16\pi (2\ell' + 1) \operatorname{Im} f_{\ell}(v) k_{\ell}(v, s) dv$$

$$c_2 = \frac{1}{\pi} \int_{4m^2}^{\infty} \frac{T_v(v, t_0)}{\bar{v}^3} \ge 0$$

$$\frac{c_0}{16\pi} = \operatorname{Re} f_0(s) - \frac{1}{\pi} \int_{\ell=0}^{\infty} 16\pi (2\ell+1) \operatorname{Im} f_{\ell}(v) k_{\ell}(v,s)$$
NOT POSITIVE!

Unitarity saves the day!

 $\sqrt[2]{s-4m^2}$ $\rightarrow \operatorname{Re} f_{\mathcal{C}}(s)$ **Unitarity:** $2Imf_{\ell} \ge \sqrt{\frac{s-4m^2}{s}} |f_{\ell}|^2$

The Island of 4d scalar amplitudes

We bound c_0, c_2 using dispersion relations and unitarity! It is an exercise in constrained optimization theory. Bonnier, Lopez, Mennessier, '70s AG, Sever 2106.10257

The Island of 4d scalar amplitudes

We bound c_0, c_2 using dispersion relations and unitarity! It is an exercise in constrained optimization theory.

Positivity

$$c_2 = \frac{1}{\pi} \int_{4m^2}^{\infty} \frac{T_v(v, t_0)}{\bar{v}^3} \ge 0$$

Bonnier, Lopez, Mennessier, '70s AG, Sever 2106.10257

The Island of 4d scalar amplitudes

We bound c_0, c_2 using dispersion relations and unitarity! It is an exercise in constrained optimization theory.

Theory that maximizes the cross section in 4d

Work in progress with Correia, Georgoudis

Elias-Miro, AG, Gumus 2210.01502 Elias-Miro, AG, Gumus (work in progress)

Bonnier, Lopez, Mennessier, '70s AG, Sever 2106.10257

Methodology: example max C_0

PRIMAL

MANIFEST CROSSING + MAXIMAL ANALYTICTY

$$\begin{split} S_{\ell} &= 1 + i\sqrt{\frac{s-4}{s}} f_{\ell}(s) \\ &|S_{\ell}|^2 \leq 1 \qquad s_{grid} > 4m^2, \quad \ell = 0, \dots, L_{max} \end{split}$$

Truncated set of semidefinite-positive constraints

$$N_{max} \rightarrow \infty, L_{max} \rightarrow \infty, s_{grid} \rightarrow s$$

Paulos, Penedones, Toledo, van Rees, Vieira '17

FIXED-t DUAL

PRIMAL

MANIFEST CROSSING + MAXIMAL ANALYTICTY

$$\begin{split} S_{\ell} &= 1 + i\sqrt{\frac{s-4}{s}} f_{\ell}(s) \\ &|S_{\ell}|^2 \leq 1 \qquad s_{grid} > 4m^2, \quad \ell = 0, \dots, L_{max} \end{split}$$

Truncated set of semidefinite-positive constraints

$$N_{max} \rightarrow \infty, L_{max} \rightarrow \infty, s_{grid} \rightarrow s$$

Paulos, Penedones, Toledo, van Rees, Vieira '17

Methodology: example max C_0

FIXED-t DUAL

ALGORITHMICALLY AND THEORETICAL RIGOROUS (Bounds follow from Wightman axioms)

BSM Application: Dimension 6 operators

The most enigmatic piece of the Standard Model!

 $m_H \approx 125.35 \, GeV$ $\Gamma_H \approx 4 \, MeV$

ATLAS, CMS 4/7/2012

 $\frac{m_H}{\Gamma_H} \approx 3 \times 10^{-5}$

BSM Application: Dimension 6 operators

The most enigmatic piece of the Standard Model!

Assumptions same as SILH: $g_{SM} \ll g_{BSM}$, custodial symmetry $SO(4) \simeq SU(2)_L \times SU(2)_R$

 $m_H \approx 125.35 \, GeV$ $\Gamma_{--} \approx 4 \, MeV$ $\Gamma_H \approx 4 MeV$ ATLAS, CMS 4/7/2012

 $\frac{m_H}{\Gamma_H} \approx 3 \times 10^{-5}$

Giudice, Grojean, Pomarol, Rattazzi hep-ph/0703164

 $\mathscr{L}_H \supset \frac{g_H}{2f^2} \partial_\mu |H|^2 \partial^\mu |H|^2 + \dots$

$$\frac{M}{(4\pi)^2} = c_\lambda + c_H \bar{s}$$

Let's be rigorous, "Wightman axiom style"

$$c_{H} \frac{\pi}{3}(s-4) = \operatorname{Re} f_{1}^{(3)}(s) - \int_{4}^{\infty} dv \, k_{1,\ell}^{(3,J)}(s,v) \operatorname{Im} f_{\ell}^{(J)}(v)$$
NOT POSITIVE

 $+ c_2 \bar{s}^2 + c_2' (\bar{t}^2 + \bar{u}^2) + \dots$

Dispersive parameters

$$\frac{M}{(4\pi)^2} = c_\lambda + c_H \bar{s}$$

Let's be rigorous, "Wightman axiom style"

$$c_{H} \frac{\pi}{3}(s-4) = \operatorname{Re} f_{1}^{(3)}(s) - \int_{4}^{\infty} dv \, k_{1,\ell}^{(3,J)}(s,v) \operatorname{Im} f_{\ell}^{(J)}(v)$$
NOT POSITIVE

 $+ c_2 \bar{s}^2 + c_2' (\bar{t}^2 + \bar{u}^2) + \dots$

Dispersive parameters

Higgs coupling expected to be deep inside!

Elias-Miro, AG, Gumus 2311.09283

Bounds on Extremal EFT couplings

SILH Assumptions into the Bootstrap: $m_H \rightarrow 0$, $c_{\lambda} \rightarrow 0$ Λ to sets the units

Technical assumption: We consider only UV dragons (more perturbative analyticity)

$$rac{\pi}{3} c_H s = \mathrm{Re} f_1^{(3)}(s) - \int_{\Lambda^2}^\infty dv \, k_{1,\ell}^{(3,J)}(s,v) \mathrm{Im} f_\ell^{(J)}(v)$$

 Λ to sets the units

Technical assumption:

