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Carving out the space of large N confining gauge theories

A confining gauge theory at N = oo has an infinite tower of stable hadrons. Meromorphic S-matrix.
Consistency of 2-2 scattering imposes constraints on masses, spins and on-shell 3pt couplings.

Carve out this set of data: {my, J;; 4}

Large N S-matrix Bootstrap: Conformal Bootstrap:
Carve out large N hadronic data from LSA_ ¢
_ 3d Ising?
* Crossing symmetry 16l
*  Unitarity
1.4}
* Regge boundedness

1.2}

Does large N QCD sit at a special place?
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Large N QCD

D =4 SU(N) Yang-Mills with N, = 2 massless quarks in the "t Hooft limit of fixed Aqcp -

A theory of glueballs, mesons and (heavy) baryons. Infinite tower of stable hadrons.

We focus on the meson sector: more constrained, and lots of data.

Pions 7 = Goldstone bosons of SU(2); X SU(2), — SUQ)y;,,
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N 7 ~1 ~1/N

Reminiscent of string theory [t Hooft], but we won’t make any such dynamical assumption.

A new stab at this classic problem.

Modern theory space perspective & new EFT bootstrap methods ideally suited for this problem.



Pion Scattering at large N

N 4 29 C’V"’d Tr(aaabacad) M(s, 1)

+ Tr(a“abadac) M(s,u)

~ Tr<000b000d> + Tr(a"acabad) M(t,u)
; TN 7 Crossing symmetry:  M(s,u) = M(u, )
T
Analytic structure: M(s,u) = Zmesons poles = meromorphic function
L 4.
1
(fixed u < 0) L5
Isospin gr: I=1x1=0+4+1+2
qq: 1=1/2%x1/2=0+1
Isospin-two channel MO (s|1,u) = 2M(t,u) p
OZI rule:




Effective Field Theory

- o%7%(x)

At low energies (E < M = m,), we can use EFT, the standard chiral Lagrangian for U(x) = e/
f2
Lop=— ) ( U Ta U > + higher derivatives

Atlarge N, £ arises integrating out the heavy exchanged mesons at tree-level

X
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MlOW(S’ u) — gl’O(S + u) + g2’0<S2 + u2) + 2g2,lsu -|— cee
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All 8ne ™ ﬁ , EFT is weakly-coupled 8lo~ —
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Parametrize theory space by {g, ,}
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Three Assumptions

Crossing symmetry: M(s,u) = M(u, s)

. ‘e s 2u
Unitarity — Positivity: Im M(s,u) = Z p;(s)P; <1 + —>
s
J
22 pis) 20 (s>0)

Regge behavior:  M(s, u) ~ s%®  for |s| — oo and fixed u < 0

* At finite N: Leading trajectory is the pomeron, with ap(0) ~ 1.08

 Atlarge N: Leading trajectory is the rho meson trajectory, with a,(0) ~ 0.5

M M(s, — s —
lim M&® _ lim M =s=w _

|s| >0 N |s|—>o0 N

0 (fixed u < 0)




Positivity Bounds

Arkani-Hamed T-C Huang Y-t Huang Tolley, Wang & Zhou Bellazzini Miro Rattazzi Riembau Riva ~ Caron-Huot & Van Duong

N o % s
Strategy: use dispersion relations to relate IR to UV. \S\

| ds' M(s',u) 0

* /
2mi J s ¢k

k=12,...

We get sum rules expressing the IR couplings g, , in terms of the (unknown) UV spectral density p,(s) > 0.

There are also “null constraints” for UV density that encode crossing symmetry.

Semidefinite programming can be used to derive two-sided bounds for homogeneous ratios of the

couplings, in units of the cutoff M = m,,, such as
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Exclusion plot

[Albert, LR, arXiv:2203.11950]
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Allowed region in the space of two-derivative couplings.

Healthy theories must lie in the colored region.
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Comparison of the region allowed by unitarity to experiment.



Including the rho meson

New EFT: We account for the pfj an isospin triplet of spin J = 1 and mass m,, .

w \\XX

2 2 o 2]
1 m:-+2u  m:+2s
( >(s u) = —g,%,w( n:Z — + P > + Z an(s”—fuf




New exclusion plot
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Allowed region in the space of two-derivative couplings, as a function of

the gap above the rho meson. For reference, m,/m, = 1.64
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Analytically ruling in

[Caron-Huot & Van Duong] [Albert, LR] [Fernandez et al]

Funny “— “amplitude

Single scalar exchange su

\ 5

M

above ?

— UV completion of single p exchange
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Simple solutions to crossing turn out to saturate (some of) the bounds.
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The kink is perhaps explained by a change of dominance between two unphysical Ms.



Regge behavior and UV completion

Recall our Regge-limit assumption:

. M(s,u)
Iim =

|s|—>o0 S

0 (fixed u < 0)

A spin-J exchange contributes ~ s’ in the Regge limit.

Intuitively, the possibility of a cheap UV completion of the single p exchange by states

at very large mass is due to J = 1 being “marginally allowed”.

We expect no such simple UV completion for states with J > 1. In fact we expect an infinite
tower of higher-spins to be needed. [See the causality thought experiments of CEMZ]

We can make this precise with a graphical bootstrap.



Spin two (f; meson) cannot UV completed at m , — oo

A slice in the space of null constraints:

J=1
]
J— 00,5 &> ©
with b = 2J/4/s fixed
-2 -1 1 2

No solution with just states at m_

[Albert Henriksson LR Vichi]



Spin two (f, meson) cannot UV completed at m , — oo

Need states with odd spin at finite mass

[Albert Henriksson LR Vichi]



New strategy

[Albert Henriksson LR Vichi, arXiv:2312.15013]

Spectral assumptions:

1st exchanged state: J = 1, mass m,. Agnostic about g, .
- 2nd exchanged state: J = 2, mass m;, > m,. Fixed coupling g,,.

« New cut-off M > .

2

m
For definiteness we pick the physical value —];2 = (1.65)%
m
D

We know from the graphical bootstrap that for any g,,. # 0 we cannot push M - .



A new intriguing kink

[Albert Henriksson LR Vichi]

2
g fo

m2l fP

0.15 0.20 0.25 0.30

Numerically stable kinlk at a special value of M. Novel extremal solution.

nmax = 11
nmax = 13

Nmax = 15

- nmax=17



A new intriguing kink

%
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m,2| fif°
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In QCD, —Z ~ 0.2107 (the first state above the f, is the p; meson with J = 3)
m
P3

Not bad!!!



Exclusion plot for the normalized p and f, couplings
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QCD is a bit away from the , but sits precisely on the dotted line.

Because of subtractions, our extremal solutions have no exchanged J = O states.

Removing J = 0 states from the QCD amplitude would push the normalized couplings
towards the , but the ratio gr]%z / gﬁ would not change.



Extremal spectrum

The naive extremal spectrum from SDPB is messy, polluted by spurious numerical artifacts
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Extremal spectrum

The naive extremal spectrum from SDPB is messy, polluted by spurious numerical artifacts

Dominant state Other states
J | m? 7% m? 7% m? 7% m? 7%
3 | 4.747774 0.33527
4 |6.902792 0.28933
5 | 9.181336 0.25334 | 5.278811 1.515x10~*
6 | 11.54579 0.22174 | 4.747774 3.297x107% 6.582414 1.773x10*
7 | 14.01378 0.19857 | 4.835758 7.862x10~7 7.581251 1.237x107*
8 | 16.67318 0.18599 | 4.747774 8.771x10~% 6.235041 1.265x107% 9.207674 1.352x10~*
9 |19.28674 0.16358 | 4.808180 1.895x10~% 6.571938 4.367x10~7 11.31167 2.537x10~*
10 | 21.93016 0.14912 | 5.019793 7.308x107° 7.879411 3.754x10~7 13.61458 4.242x10~*
11 | 24.82063 0.11649 | 4.825621 6.643x10~10 9.289181 1.875x10~6 15.69828 1.554x10~*
12 | 27.53345 0.10811 | 4.747774 8.380x10~'! 5.390215 7.235x10~! 11.48907 7.067x10~6

Various assumptions remove the spurious states while preserving the extremal solution

When the dust settles: one beautiful, curved Regge trajectory, and probably no other states



b.

Low-lying states

fe

[Albert Henriksson LR Vichi]

S



Discussion

Have we cornered large N QCD? Tantalizing close:

* A Regge trajectory, at last!

* Astonishing numerical agreement for the first few states.

* But, the spectrum is too sparse. No evidence of daughter trajectories.

Perhaps daughters would appear if we could dramatically increase the number of constraints.

Or perhaps we have stumbled upon a curious solution to crossing.
Maximizing the normalized f, might lead to a solution with as sparse a spectrum as possible.

The main lesson seems to be the power of Regge assumptions.

Speculation: with higher-spin states on the external legs, a much more powerful bootstrap.



EFT couplings
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Mixed Pion/Photon System

[Albert, LR, arXiv:2307.01246]

Photons only external, i.e. we’re computing form factors of the U(1) electromagnetic current

Much more involved system! Payoffs:

*  Much more sensitive to large N selection rules for mesons that generalize OJI
*  Sum rules that encode Goldstone boson nature of the pions
*  Knows about coefficient of WZW, which can be treated as any other EFT coupling

or matched with the chiral anomaly of large N QCD



[Albert, LR, arXiv:2307.01246]
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Mixed Pion/Rho System

[in progress: Albert, Henriksson, LR, Vichi]

External rho mesons: There are three independent processes involving pions and rho mesons.

a c a A M A
T 7[ T pc 3 pa pc 3
\ . P N N
N N 7 7 N N
s N e Ay A 4
zbe’ ‘! xb < Py Py’ Py
Unitarity: Positivity of the spectral density is now given in terms of a matrix.

( A
pﬂ'ﬂ'—>ﬂ'7[ 0 pmr—>pp
0 pnp—wp O > O
[Caron-Huot, Li, Parra-Martinez,
| Pop—rr 0 Poo—p Simmons-Duffin 2022]




We will be able to access the full set of on-shell 3pt couplings of the pion/rho system.

Compare with various phenomenological models, e.g. with

“Hidden local symmetry”: Rho meson is introduced as the gauge boson of a “hidden” symmetry.

UGx) = & (x)Ep(0)T z p

Local [ &(x) = & ()h(x) P> p
symmetry Er(x) = ER(x)h(x) I 7 Exnnp p>}

. ppp




Outlook

Summary:

* Anew stab at a very old problem

 Exclusion plots must be interpreted with care. Analytic ruling-in.
 Forcing higher-spin exchanged mesons leads to Regge trajectories!
* Almost-too-good agreement with the real world.

 Perhaps not yet large N QCD, but tantalizing close.

In progress:

* Mixed amplitudes with external rhos and pions

* Off-shell external photons

Future:

«  Which assumptions are needed to corner large N QCD or other theories of interest?
* Relation with worldsheet bootstrap?

« D =3, susy, ...



Bonus Shlides



EFT couplings
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Dispersion Relations: UV = IR

By the ,
L L S S
i S/k+1

Deforming the contour,

1 M. (s u) 1 T Im M, n(s’, u)
ds’ =— | ds’

S/k+1 T S/k+1

Pl1+= Pl1l1+—
_ 1 (D) dm®> | 7 m>) ! m?
= 2 n; m pJ(m )

m2
M2

2

Expanding around u ~ 0,

P,(1 P,/(1 P,/ '(1
k=1: g1o+2gzlu+g31u2+...=< "(2)+2 J(4)u+2 Jé)u2+...>
’ ’ ’ m m m

Py(1 P,'(1
k=2 gz,o+g3,1u+...=< J(4)+2 J(6)u+...>
m m



Sum Rules and Null Constraints

1 1 JJ+1)
Sum rules: g0=\"2/) 807\ 3/ 28,, = )
P;(1) P, (1)
g3’1 = <2 J 6 > = <2 J c
m m

P/(1) P,/(1
X31(m? J) = ;6) - ng) <5[3,1(m2"’)>=0

Null constraints:

(Due to crossing symmetry)

[Caron-Huot & Van Duong 2021,
Tolley, Wang & Zhou 2021]

Additional set of L ds’ M(s',—s"—u) —0 <?n,k<m2’ J)> =0

g . at 2ri
1spersion relations 0 New set of null constraints




Sum Rules and Null Constraints

1 1 JUJ+1)
Sumrales: 810\ 5 ) &=\ 7 ) 8=\ 1)

(Due to low-energy g, = <2 PJ’(1)> _ <2PJ’/(1)>

) mo mo

P;/(1) _ P, (1)

. il L~ (m? J) = 2 _

Null constraints: 3,1< ) m6 m6 <Sl"3’1 (m : J)> =0

Additional set of L » M(s', — 5" — u) 0 New set of null constraints

; rk+1 -

dispersion relations 27 o s <?n,k(m27 J ) > =0

Two-sided bounds: By (200> ()20 g, >0
2 M 2
g oM <_4> 2 M
0<g = = " <1 0§g2§ ’ < ?

2 81,0 <£2> B g0



Mixed Pion/Photon System

[Albert, LR, arXiv:2307.01246]

Photons only external, i.e. we’re computing form factors of the U(1) electromagnetic current

Much more involved system! Payoffs:

*  Much more sensitive to large N selection rules for mesons that generalize OJI
*  Sum rules that encode Goldstone boson nature of the pions
*  Knows about coefficient of WZW, which can be treated as any other EFT coupling

or matched with the chiral anomaly of large N QCD



[Albert, LR, arXiv:2307.01246]
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Skyrme model

Used to describe as solitons of the chiral Lagrangian.
2
Loy = — —”Tr<a UTa”U> Ty [UTa U, UTavU] [UTa“U, UTaVU]
4 g 32e2 H
| . oy | .1 M
Particular choice: —¢| =¥ = E, 8y = 4 8y = Zf_,%
1.0 -
0.8 L
0.6 L
92
0.4]
- Ode\ Fitting the nucleon and A mass:
o
02l %\ﬁw@ e f, ~ 352 MeV
IO!5I - I'I!OI - I1!5I - IZ!OI - I2!5I - I3!OI -



3HLS =

Hidden local symmetry and rho dominance

Hidden local symmetry: [/(x) = gL(x)gR(x)T £r.¢r € SUQ)

Global symmetry Er(x) — g6 (x) Er(x) = grér(x)
Local (hidden) symmetry Er(x) = & (x)h(x) Er(x) = Er(x)n(x)
Rho meson = of this local symmetry.
1 2 2 2 2
-5 Tr( £ b +f—T ((a{fa - &10,8) > - fTTr<<2pﬂ i(el0,6, + o, )> )+
1
Erxrnp = Ega mp2 = ang,%

Rho dominance: g =2
. 2 _ A2 2
KSRF: mp — 2g7mpf”

Integrating out the rho, g2 t

\ HLS at rho dominance
gHLS 3Skyr

z,=4%,=2




