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A confining gauge theory at  has an infinite tower of stable hadrons. Meromorphic S-matrix. 
 
Consistency of 2-2 scattering imposes constraints on masses, spins and on-shell 3pt couplings. 
 
Carve out this set of data:   
 

N = ∞

{mk, Jk; λijk}

   

Carving out the space of large  confining gauge theoriesN

Conformal Bootstrap:Large   S-matrix Bootstrap:N
[El-Showk et al. 2012]

• Crossing symmetry

• Unitarity

• Regge boundedness

Carve out large  hadronic data fromN

Does large  QCD sit at a special place?N



  Yang-Mills with  massless quarks in the `t Hooft limit of fixed  .D = 4 𝑆𝑈(𝑁 ) 𝑁𝑓 = 2 ΛQCD

Pions Goldstone bosons of 𝜋𝑎  =    𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅 → 𝑆𝑈(2)diag

𝒯𝑐𝑑
𝑎𝑏 = + + +⋯

𝜋𝑎

𝜋𝑏 𝜋𝑐

𝜋𝑑

∼ 𝑁 ∼ 1 ∼ 1/𝑁

 Large  QCDN

A theory of glueballs, mesons and (heavy) baryons. Infinite tower of stable hadrons.

We focus on the meson sector: more constrained, and lots of data.

Reminiscent of string theory [`t Hooft], but we won’t make any such dynamical assumption.

A new stab at this classic problem. 

Modern theory space perspective & new EFT bootstrap methods ideally suited for this problem.



Crossing symmetry:

2 𝒯𝑐𝑑
𝑎𝑏 = Tr(𝜎𝑎𝜎𝑏𝜎𝑐𝜎𝑑) 𝑀(𝑠, 𝑡)

            + Tr(𝜎𝑎𝜎𝑏𝜎𝑑𝜎𝑐) 𝑀(𝑠, 𝑢)
            + Tr(𝜎𝑎𝜎𝑐𝜎𝑏𝜎𝑑) 𝑀(𝑡, 𝑢)

𝜋𝑎

𝜋𝑏 𝜋𝑐

𝜋𝑑

∼ Tr(𝜎𝑎𝜎𝑏𝜎𝑐𝜎𝑑)
𝑀(𝑠, 𝑢) = 𝑀(𝑢, 𝑠)

Basic amplitude

=
𝜌 𝑓2

+ +⋯

Analytic structure: mesons poles𝑀(𝑠, 𝑢) = ∑    meromorphic function=

No channel poles𝑡 −  OZI rule:

𝑚2
𝜌

(fixed )𝑢 < 0

 Pion Scattering at large N

Isospin 

𝑀 (2)(𝑠 | 𝑡, 𝑢) = 2𝑀(𝑡, 𝑢)

𝑞𝑞̄ :   𝐼 = 1/2 × 1/2 = 0 + 1
𝜋𝜋 :   𝐼 = 1 × 1 = 0 + 1 + 2

Isospin-two channel



At low energies ( ), we can use EFT, the standard chiral Lagrangian for E < M = mρ 𝑈(𝑥) = 𝑒
𝑖

𝑓𝜋
𝜎𝑎𝜋𝑎(𝑥)

ℒCh = −
𝑓2

𝜋

4
Tr(𝜕𝜇𝑈†𝜕𝜇𝑈) +

ℓ1

4 [Tr(𝜕𝜇𝑈†𝜕𝜇𝑈)]
2

+
ℓ2

4
Tr(𝜕𝜇𝑈†𝜕𝜈𝑈)Tr(𝜕𝜇𝑈†𝜕𝜈𝑈) + ⋯ Effective  Field Theory 

𝑀low(𝑠, 𝑢) =
∞

∑
𝑛=1

[𝑛/2]
∑
ℓ=0

𝑔𝑛,ℓ(𝑠𝑛−ℓ𝑢ℓ + 𝑢𝑛−ℓ𝑠ℓ)

Goal: derive bounds for these low-energy coefficients 

g1,0 ∼
1
f 2

π

g2,0, g2,1 ∼
ℓ1

f4
π

,
ℓ2

f4
π

∼
1
N

cutoff

All  , EFT is weakly-coupledgn,ℓ ∼
1
N

= 𝑔1,0(𝑠 + 𝑢) + 𝑔2,0(𝑠2 + 𝑢2) + 2𝑔2,1𝑠𝑢 + ⋯Mlow(s, u)

At large ,   arises integrating out the heavy exchanged mesons at tree-levelN ℒch

ℒCh = −
f 2

π

4 (∂μU†∂μU) + higher derivatives

Parametrize theory space by {gn,ℓ}



Crossing symmetry: 𝑀(𝑠, 𝑢) = 𝑀(𝑢, 𝑠)

Im 𝑀(𝑠, 𝑢) = 𝑠
4 − 𝐷

2 ∑
𝐽

𝑛(𝐷)
𝐽 𝜌𝐽(𝑠)𝑃𝐽(1 +

2𝑢
𝑠 )

2 ≥ 𝜌𝐽(𝑠) ≥ 0

lim
𝑠 →∞

𝑀(𝑠, 𝑢)
𝑠

= 0 lim
𝑠 →∞

𝑀(𝑠, − 𝑠 − 𝑢)
𝑠

= 0 (fixed )𝑢 < 0

• At finite N:  Leading trajectory is the pomeron, with αP(0) ∼ 1.08

• At large N:   Leading trajectory is the rho meson trajectory, with αρ(0) ∼ 0.5

 Three Assumptions

Unitarity  Positivity:→
𝑆 = 𝟏 + 𝑖𝑀

SS† = 1

Im M(s, u) = ∑
J

ρJ(s) PJ (1 +
2u
s )

spectral density

Legendre polynomials

(𝑠 > 0)ρJ(s) ≥ 02 ≥

Regge behavior:     M(s, u) ∼ sα0(u) for |s | → ∞ and fixed u < 0



1
2𝜋𝑖 ∮

∞

𝑑𝑠′￼
𝑀(𝑠′￼, 𝑢)

𝑠′￼𝑘+1 = 0

𝑘 = 1,2, …

Strategy: use dispersion relations to relate IR to UV.  

Positivity Bounds

There are also “null constraints” for UV density that encode crossing symmetry.

Arkani-Hamed T-C Huang Y-t Huang Bellazzini Mirò Rattazzi Riembau RivaTolley, Wang & Zhou 

Semidefinite programming can be used to derive two-sided bounds for homogeneous ratios of the 
couplings, in units of the cutoff  , such asM = mρ

g̃2 =
g2,0M2

g1,0
g̃′￼2 =

2g2,1M2

g1,0

Caron-Huot & Van Duong

We get sum rules expressing the IR couplings  in terms of the (unknown) UV spectral density .gn,ℓ ρJ(s) ≥ 0

IR UV

1
2𝜋𝑖 ∮

∞

𝑑𝑠′￼
𝑀(𝑠′￼, 𝑢)

𝑠′￼𝑘+1 = 0

1
2πi ∮∞

ds′￼

s′￼

M(s′￼, u)
s′￼k

= 0



Allowed region in the space of two-derivative couplings.  

Healthy theories must lie in the colored region.

Large  QCD?𝑁

 Exclusion plot
[Albert, LR, arXiv:2203.11950]



Comparison of the region allowed by unitarity to experiment.

Large  QCD?𝑁

[Gasser & Leutwyler 1984, Bijnens et al. 1994, 
Girlanda et al. 1997, Amoros et al. 2000]



New EFT:

𝑀(𝜌)
low(𝑠, 𝑢) =

1
2

𝑔2
𝜋𝜋𝜌(

𝑚2
𝜌 + 2𝑢

𝑚2
𝜌 − 𝑠

+
𝑚2

𝜌 + 2𝑠
𝑚2

𝜌 − 𝑢 ) +
∞

∑
𝑛=0

[𝑛/2]
∑
ℓ=0

𝑔̂𝑛,ℓ(𝑠𝑛−ℓ𝑢ℓ + 𝑢𝑛−ℓ𝑠ℓ)

We account for the , an isospin triplet of spin  and mass 𝜌𝑎
𝜇 𝐽 = 1 𝑚𝜌 .

1
2𝜋𝑖 ∮

0

𝑑𝑠′￼
𝑀low(𝑠′￼, 𝑢)

𝑠′￼𝑘+1 =
=

1
2

𝑔2
𝜋𝜋𝜌

𝑚2
𝜌 + 2𝑢
𝑚2𝑘+2

𝜌
+ ⟨ 

𝑃𝐽(1 + 2𝑢
𝑚2 )

𝑚2𝑘
 ⟩

′￼

new cutoff

⟨𝐹(𝑚2, 𝐽)⟩

1
2

𝑔2
𝜋𝜋𝜌𝐹(𝑚2

𝜌 , 𝐽 = 1) + ⟨𝐹(𝑚2, 𝐽)⟩
′￼

 Including the rho meson



Allowed region in the space of two-derivative couplings, as a function of 

the gap above the rho meson.  For reference, mf2 /mρ ≅ 1.64

 New exclusion plot 



𝑀spin−0 =
𝑚2

𝑚2 − 𝑠
+

𝑚2

𝑚2 − 𝑢

𝑀𝑠𝑢−pole =
𝑚4

(𝑚2 − 𝑠)(𝑚2 − 𝑢)
− 𝛼0𝑀spin−0

Simple solutions to crossing turn out to saturate (some of) the bounds.

[Caron-Huot & Van Duong]

 Analytically ruling in

𝑀(UV)
spin−1 =

𝑚2
𝜌 + 2𝑢

𝑚2
𝜌 − 𝑠 ( 𝑚2

∞

𝑚2
∞ − 𝑢 ) +

𝑚2
𝜌 + 2𝑠

𝑚2
𝜌 − 𝑢 ( 𝑚2

∞

𝑚2
∞ − 𝑠 )

𝑀above ?

𝑀 (UV)
spin−1 =

𝑚2
𝜌 + 2𝑢

𝑚2
𝜌 − 𝑠 ( 𝑚2

∞

𝑚2
∞ − 𝑢 ) +

𝑚2
𝜌 + 2𝑠

𝑚2
𝜌 − 𝑢 ( 𝑚2

∞

𝑚2
∞ − 𝑠 )

[Albert, LR]

 UV completion of single  exchangeρ

Single scalar exchange
 Funny “  “amplitude 

1
su

[Fernandez et al]



𝑀spin−0 =
𝑚2

𝑚2 − 𝑠
+

𝑚2

𝑚2 − 𝑢

𝑀𝑠𝑢−pole =
𝑚4

(𝑚2 − 𝑠)(𝑚2 − 𝑢)
− 𝛼0𝑀spin−0

The kink is perhaps explained by a change of dominance between two unphysical s.M

 Analytically ruling in

𝑀(UV)
spin−1 =

𝑚2
𝜌 + 2𝑢

𝑚2
𝜌 − 𝑠 ( 𝑚2

∞

𝑚2
∞ − 𝑢 ) +

𝑚2
𝜌 + 2𝑠

𝑚2
𝜌 − 𝑢 ( 𝑚2

∞

𝑚2
∞ − 𝑠 )

𝑀above ?

𝑀 (UV)
spin−1 =

𝑚2
𝜌 + 2𝑢

𝑚2
𝜌 − 𝑠 ( 𝑚2

∞

𝑚2
∞ − 𝑢 ) +

𝑚2
𝜌 + 2𝑠

𝑚2
𝜌 − 𝑢 ( 𝑚2

∞

𝑚2
∞ − 𝑠 )

M(UV)
spin−1 =

m2 + 2u
m2 − s ( m2

∞

m2
∞ − u ) +

m2 + 2s
m2 − u ( m2

∞

m2
∞ − s )

Msu−pole =
M4

(M2 − s)(M2 − u)
− α0Mspin−0

Mspin−0 =
m2

m2 − s
+

m2

m2 − u

 [UV completion of single  exchange]ρ



Intuitively, the possibility of a cheap UV completion of the single  exchange by states 

at very large mass is due to  being “marginally allowed”. 

ρ

J = 1

lim
𝑠 →∞

𝑀(𝑠, 𝑢)
𝑠

= 0 (fixed )𝑢 < 0

Recall our Regge-limit assumption:

A spin-  exchange contributes  in the Regge limit.J ∼ sJ

We expect no such simple UV completion for states with . In fact we expect an infinite 

tower of higher-spins to be needed. [See the causality thought experiments of CEMZ]

We can make this precise with a graphical bootstrap.

J > 1

Regge behavior and UV completion 



[Albert Henriksson LR Vichi] 

Spin two (  meson) cannot UV completed at   f2 m∞ → ∞

A slice in the space of null constraints:

J = 1

J = 2

,  
with  fixed
J → ∞ s → ∞

b = 2J/ s

No solution with just states at m∞



[Albert Henriksson LR Vichi] 

Spin two (  meson) cannot UV completed at   f2 m∞ → ∞

Need states with odd spin at finite mass



[Albert Henriksson LR Vichi, arXiv:2312.15013] 

New strategy

• 1st exchanged state: , mass . Agnostic about .

• 2nd exchanged state: , mass . Fixed coupling .

• New cut-off .

J = 1 mρ gππρ

J = 2 mf2 > mρ gππf2

M̃ ≥ mf2

For definiteness we pick the physical value .
m2

f2

m2
ρ

= (1.65)2

Spectral assumptions:

We know from the graphical bootstrap that for any  we cannot push .  gππf2 ≠ 0 M̃ → ∞



[Albert Henriksson LR Vichi] 

A new intriguing kink

Numerically stable kink at a special value of . Novel extremal solution.M̃



A new intriguing kink

At the kink,

In QCD,            (the first state above the  is the  meson with ) 

Not bad!!!

m2
ρ

m2
ρ3

≈ 0.2107 f2 ρ3 J = 3
(J = 3)

m2
ρ

M̃2
≈ 0.2106



 kinkf2

g̃2
f2

g̃2
ρ

In light of this, one may hope that the kink corresponds to large N QCD with scalars
(and perhaps more) subtracted. A more meaningful observable is then the ratio

g̃
2
f2

g̃2⇢
=

g
2
⇡⇡f2

g2⇡⇡⇢
, (4.5)

which cancels out the g1,0 dependence, susceptible to subtractions. Fixing the cutoff fM
to the horizontal position of the kink, and scanning over g̃

2
f2

, allows one to carve out the
allowed region in the space of normalized couplings g̃

2
⇢, g̃

2
f2

. This is shown in figure 7. Here,
the stable kink of figure 5 corresponds to the top-right corner, and real-world QCD is again
marked on this plot with a black dot (with uncertainty).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
g̃�
20.0

0.1

0.2

0.3

0.4

0.5

g̃f2
2

QCD

LS-like

f2 kink

Figure 7: Allowed value in the space of the first two on-shell couplings. The black rectangle
denotes the values of real-world QCD (4.4). The gray dot denotes the linear amplitude with
scalars removed, (C.8). The dotted line is chosen to go though the corner of the allowed
region, which coincides with values at the kink. The plot was made at nmax = 15.

While real-world QCD is not too close to the kink, it lies (within uncertainty) just on
top of the dashed line representing the ratio g̃

2
f2

/g̃
2
⇢ for the kink. The ratio of the rho and f2

on-shell couplings at the f2 kink is thus compatible with experimental QCD! This supports
the idea that the f2 kink might correspond to large N QCD but with a sparser spectrum
(such as subtracting scalars), which would decrease g1,0 pushing the normalized couplings
out all the way to the top-right corner. We will discuss this possibility further when we
investigate the spectrum.

– 18 –

=
g2

ππf2

g1,0m2
ρ

=
g2

ππρ

g1,0m2
ρ

Because of subtractions, our extremal solutions have no exchanged  states.J = 0

Removing  states from the QCD amplitude would push the normalized couplings 
towards the  kink, but the ratio  would not change. 
 

J = 0
f2 g̃2

f2
/g̃2

ρ

Exclusion plot for the normalized  and  couplings  ρ f2

QCD is a bit away from the  kink,  but sits precisely on the dotted line.f2



Extremal spectrum

The naive extremal spectrum from SDPB is messy, polluted by spurious numerical artifacts 



Extremal spectrum

When the dust settles: one beautiful, curved Regge trajectory, and probably no other states

The naive extremal spectrum from SDPB is messy, polluted by spurious numerical artifacts 

Various assumptions remove the spurious states while preserving the extremal solution



[Albert Henriksson LR Vichi] 

Low-lying states 



Discussion

Have we cornered large N QCD? Tantalizing close:

• A Regge trajectory, at last!

• Astonishing numerical agreement for the first few states.

• But, the spectrum is too sparse. No evidence of daughter trajectories.

Perhaps daughters would appear if we could dramatically increase the number of constraints.

Or perhaps we have stumbled upon a curious solution to crossing. 
Maximizing the normalized  might lead to a solution with as sparse a spectrum as possible.f2

The main lesson seems to be the power  of Regge assumptions. 

Speculation: with higher-spin states on the external legs, a much more powerful bootstrap.



EFT couplings



EFT couplings



 

Photons only external, i.e. we’re computing form factors of the U(1) electromagnetic current

𝜋𝑎

𝜋𝑏

𝜋𝑐

𝜋𝑑

𝜋𝑎

𝜋𝑏

𝛾𝜆3

𝛾𝜆4

𝛾𝜆1

𝛾𝜆2

𝛾𝜆3

𝛾𝜆4

𝜋𝑎

𝜋𝑏

𝜋𝑐

𝛾𝜆4

[Albert, LR, arXiv:2307.01246]

• Much more sensitive to large  selection rules for mesons that generalize OJI

• Sum rules that encode Goldstone boson nature of the pions

• Knows about coefficient of WZW, which can be treated as any other EFT coupling     

or matched with the chiral anomaly of large  QCD

N

N

 

     Much more involved system! Payoffs:

Mixed Pion/Photon System



0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1
2
3
4
5
6
7
8
9
10

Upper bound on chiral anomaly,  normalized by  and by an (unknown)  EFT couplingfπ ππ → γγ

[Albert, LR, arXiv:2307.01246]

|B_ch|/ sqrt{ g_1 g_2^{(A4)}}

    Inhomogeneous bounds involving ,   e.g. N

    Goal: a lower bound on  .
f 2
π

m2
ρ N



External rho mesons: There are three independent processes involving pions and rho mesons.

𝜋𝑎

𝜋𝑏

𝜋𝑐

𝜋𝑑

𝜋𝑎

𝜋𝑏

𝜌𝜆3
𝑐

𝜌𝜆4
𝑑

𝜌𝜆1
𝑎

𝜌𝜆2
𝑏

𝜌𝜆3
𝑐

𝜌𝜆4
𝑑

Positivity of the spectral density is now given in terms of a matrix.Unitarity:

𝜌𝜋𝜋→𝜋𝜋 0 𝜌𝜋𝜋→𝜌𝜌

0 𝜌𝜋𝜌→𝜋𝜌 0
𝜌𝜌𝜌→𝜋𝜋 0 𝜌𝜌𝜌→𝜌𝜌

≽ 0

[in progress: Albert, Henriksson, LR, Vichi]

[Caron-Huot, Li, Parra-Martinez,

Simmons-Duffin 2022]

𝑎 = 1,2, …, 𝑁𝑓

𝜆 = + , − , 0
Matrices for

Hidden local symmetry:

 Mixed Pion/Rho System



“Hidden local symmetry”: Rho meson is introduced as the gauge boson of a “hidden” symmetry.

𝑈(𝑥) = 𝜉𝐿(𝑥)𝜉𝑅(𝑥)†

𝜉𝐿(𝑥) → 𝜉𝐿(𝑥)h(𝑥)
𝜉𝑅(𝑥) → 𝜉𝑅(𝑥)h(𝑥)

Local 

symmetry

[Bando, Kugo, Uehara, Yamawaki & Yanagida 1985]

Related to the gauge 

coupling .𝑔
𝜋

𝜋

𝜌
𝑔𝜋𝜋𝜌

𝜌

𝜌

𝜌
𝑔𝜌𝜌𝜌

We will be able to access the full set of on-shell 3pt couplings of the pion/rho system.  

Compare with various phenomenological models, e.g. with



 Outlook

• A new stab at a very old problem

• Exclusion plots must be interpreted with care. Analytic ruling-in.

• Forcing higher-spin exchanged mesons leads to Regge trajectories!

• Almost-too-good agreement with the real world.  

• Perhaps not yet large N QCD, but tantalizing close. 

In progress:

• Mixed amplitudes with external rhos and pions 

• Off-shell external photons

Summary:

Future:

• Which assumptions are needed to corner large  QCD or other theories of interest?

• Relation with worldsheet bootstrap?

• , susy, …

N

D = 3



Bonus Slides



EFT couplings



EFT couplings



By the Regge behavior, 

𝑘 = 1,2, …

1
2𝜋𝑖 ∮

0

𝑑𝑠′￼
𝑀low(𝑠′￼, 𝑢)

𝑠′￼𝑘+1 =
1
𝜋

∞

∫
𝑀2

𝑑𝑠′￼
Im 𝑀high(𝑠′￼, 𝑢)

𝑠′￼𝑘+1

=
1
𝜋 ∑

𝐽

𝑛(𝐷)
𝐽

∞

∫
𝑀 2

𝑑𝑚2

𝑚2
 𝑚4−𝐷𝜌𝐽(𝑚2)

𝑃𝐽(1 + 2𝑢
𝑚2 )

𝑚2𝑘
= ⟨ 

𝑃𝐽(1 + 2𝑢
𝑚2 )

𝑚2𝑘
 ⟩

Deforming the contour, 

≥ 0

𝑘 = 1:       𝑔1,0 + 2𝑔2,1𝑢 + 𝑔3,1𝑢2 + … = ⟨ 𝑃𝐽(1)
𝑚2

+ 2
𝑃𝐽′￼(1)

𝑚4
𝑢 + 2

𝑃𝐽′￼′￼(1)
𝑚6

𝑢2 + …⟩
Expanding around , 𝑢 ∼ 0

𝑘 = 2:       𝑔2,0 + 𝑔3,1𝑢 + … = ⟨ 𝑃𝐽(1)
𝑚4

+ 2
𝑃𝐽′￼(1)

𝑚6
𝑢 + …⟩

 Dispersion Relations: UV = IR

1
2𝜋𝑖 ∮

∞

𝑑𝑠′￼
𝑀(𝑠′￼, 𝑢)

𝑠′￼𝑘+1 = 0



Sum rules: 𝑔1,0 = ⟨ 1
𝑚2 ⟩,     𝑔2,0 = ⟨ 1

𝑚4 ⟩,     2𝑔2,1 = ⟨ 𝐽(𝐽 + 1)
𝑚4 ⟩,  …

𝑔3,1 = ⟨2
𝑃𝐽′￼(1)

𝑚6 ⟩ = ⟨2
𝑃𝐽′￼′￼(1)

𝑚6 ⟩

Additional set of 

dispersion relations

1
2𝜋𝑖 ∮

∞

𝑑𝑠′￼
𝑀(𝑠′￼, − 𝑠′￼− 𝑢)

𝑠′￼𝑘+1 = 0
New set of null constraints

⟨𝒴𝑛,𝑘(𝑚2, 𝐽)⟩ = 0

(Due to crossing symmetry)

Null constraints: 𝒳3,1(𝑚2, 𝐽) =
𝑃𝐽′￼(1)

𝑚6
−

𝑃𝐽′￼′￼(1)
𝑚6 ⟨𝒳3,1(𝑚2, 𝐽)⟩ = 0

[Caron-Huot & Van Duong 2021, 
Tolley, Wang & Zhou 2021]

 Sum Rules and Null Constraints



Null constraints: 𝒳3,1(𝑚2, 𝐽) =
𝑃𝐽′￼(1)

𝑚6
−

𝑃𝐽′￼′￼(1)
𝑚6 ⟨𝒳3,1(𝑚2, 𝐽)⟩ = 0

Additional set of 

dispersion relations

1
2𝜋𝑖 ∮

∞

𝑑𝑠′￼
𝑀(𝑠′￼, − 𝑠′￼− 𝑢)

𝑠′￼𝑘+1 = 0
New set of null constraints

⟨𝒴𝑛,𝑘(𝑚2, 𝐽)⟩ = 0

Two-sided bounds: 𝑔𝑖,𝑗 ≥ 0

0 ≤ ~𝑔2 ≡
𝑔2,0𝑀2

𝑔1,0
=

⟨ 𝑀4

𝑚4 ⟩
⟨ 𝑀2

𝑚2 ⟩
≤ 1

𝑚 ≥ 𝑀

0 ≤ ~𝑔′￼
2 ≡

2𝑔2,1𝑀2

𝑔1,0
≤   ?

By unitarity, .⟨… ≥ 0⟩ ⇒ ⟨…⟩ ≥ 0 [Pham & Truong 1985]

Sum rules: 𝑔1,0 = ⟨ 1
𝑚2 ⟩,     𝑔2,0 = ⟨ 1

𝑚4 ⟩,     2𝑔2,1 = ⟨ 𝐽(𝐽 + 1)
𝑚4 ⟩,  …

𝑔3,1 = ⟨2
𝑃𝐽′￼(1)

𝑚6 ⟩ = ⟨2
𝑃𝐽′￼′￼(1)

𝑚6 ⟩(Due to low-energy 

crossing symmetry)

[Caron-Huot & Van Duong 2021, 
Tolley, Wang & Zhou 2021]

 Sum Rules and Null Constraints



 

Photons only external, i.e. we’re computing form factors of the U(1) electromagnetic current

𝜋𝑎

𝜋𝑏

𝜋𝑐

𝜋𝑑

𝜋𝑎

𝜋𝑏

𝛾𝜆3

𝛾𝜆4

𝛾𝜆1

𝛾𝜆2

𝛾𝜆3

𝛾𝜆4

𝜋𝑎

𝜋𝑏

𝜋𝑐

𝛾𝜆4

[Albert, LR, arXiv:2307.01246]

• Much more sensitive to large  selection rules for mesons that generalize OJI

• Sum rules that encode Goldstone boson nature of the pions

• Knows about coefficient of WZW, which can be treated as any other EFT coupling     

or matched with the chiral anomaly of large  QCD

N

N

 

     Much more involved system! Payoffs:

Mixed Pion/Photon System
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Upper bound on chiral anomaly,  normalized by  and by an (unknown)  EFT couplingfπ ππ → γγ

[Albert, LR, arXiv:2307.01246]

|B_ch|/ sqrt{ g_1 g_2^{(A4)}}

    Inhomogeneous bounds involving ,   e.g. N

    Goal: a lower bound on  .
f 2
π

m2
ρ N



ℒSkyr = −
𝑓2

𝜋

4
Tr(𝜕𝜇𝑈†𝜕𝜇𝑈) +

1
32𝑒2

Tr([𝑈†𝜕𝜇𝑈, 𝑈†𝜕𝜈𝑈][𝑈†𝜕𝜇𝑈, 𝑈†𝜕𝜈𝑈])
−ℓ1 = ℓ2 =

1
4𝑒2

, ~𝑔′￼
2 = 4 ~𝑔2 =

1
𝑒2

𝑀2

𝑓2
𝜋

𝑒 𝑓𝜋 ≥
𝑀2

4 ~𝑔(kink)
2

≃ 551 MeV

Lower bound on the coupling:

Used to describe baryons as solitons of the chiral Lagrangian.

Particular choice:

[Adkins, Nappi & Witten 1983]

𝑒 𝑓𝜋 ≃ 352 MeV
Fitting the nucleon and mass:Δ 

 Skyrme model



Hidden local symmetry: 𝑈(𝑥) = 𝜉𝐿(𝑥)𝜉𝑅(𝑥)† 𝜉𝐿, 𝜉𝑅 ∈ 𝑆𝑈(2)

𝜉𝐿(𝑥) → 𝑔𝐿𝜉𝐿(𝑥) 𝜉𝑅(𝑥) → 𝑔𝑅𝜉𝑅(𝑥)Global symmetry

Local (hidden) symmetry 𝜉𝐿(𝑥) → 𝜉𝐿(𝑥)h(𝑥) 𝜉𝑅(𝑥) → 𝜉𝑅(𝑥)h(𝑥)

Rho meson  gauge field of this local symmetry. =   [Bando, Kugo, Uehara, Yamawaki & Yanagida 1985]

ℒHLS = −
1

2𝑔2
Tr(𝐹𝜇𝜈𝐹𝜇𝜈) +

𝑓2
𝜋

4
Tr((𝜉†

𝐿 𝜕𝜇𝜉𝐿 − 𝜉†
𝑅𝜕𝜇𝜉𝑅)

2) − 𝑎
𝑓2

𝜋

4
Tr((2𝜌𝑎

𝜇𝑇𝑎 − 𝑖(𝜉†
𝐿 𝜕𝜇𝜉𝐿 + 𝜉†

𝑅𝜕𝜇𝜉𝑅))
2

) + ⋯

𝑔𝜋𝜋𝜌 =
1
2

𝑔𝑎 𝑚2
𝜌 = 𝑎𝑔2𝑓2

𝜋

Rho dominance: 𝑎 = 2

𝑚2
𝜌 = 2𝑔2

𝜋𝜋𝜌𝑓2
𝜋KSRF:

HLS at rho dominance
Integrating out the rho, 

ℒHLS ℒSkyr

~𝑔′￼
2 = 4~𝑔2 = 2

 Hidden local symmetry and rho dominance


