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ONE-MATRIX MODEL

The partition function is chosen to be:

Z = lim
N→∞

ZN = lim
N→∞

∫
dN

2
M e−NtrV(M), V(x) = 1

2µx
2 +

1
4gx

4, (1)

The integration is over Hermitian matrix.

The basis of operators are:

Wk = ⟨TrMk⟩ = lim
N→∞

∫ dN2M
ZN

1
N trMke−NtrV(M). (2)

And the Schwinger-Dyson equations:

µWk+1 + gWk+3 =
k−1∑
l=0

Wl Wk−l+1, k = 1, 2, 3, ... (3)
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POSITIVITY BY INNER PRODUCT

Generalization: Any inner products defined on the vector space of
operators or its subspace could leads to positivity condition:

⟨O|O⟩ = ⟨O†O⟩ = α∗TMα ≥ 0, ∀α⇔ M ⪰ 0. (4)

Here we do the expansion O =
∑
αiOi, Mij = ⟨O†

i Oj⟩.

In the above case of Hermitian matrix integration, we were taking
adjoint to be Hermitian conjugation:

O† = O∗T = O (5)
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POSITIVITY

Considering the expectations of square of polynomials are always
positive semi-definite:

1
Z

∫ ∞

−∞
dMTr(

∑
αiMi)2 exp(−NtrV(M)) ≥ 0, ∀α (6)

This is a quadratic form in α, its positivity is equivalent to:

W =


W0 W1 W2 . . .

W1 W2 W3 . . .

W2 W3 W4 . . .
...

...
... . . .

 ⪰ 0 (7)
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BOOTSTRAPPING LARGE N ONE-MATRIX MODEL

This is the result of bootstrapping µ = 1 and Z2 symmetry preserving
solutionW1 = 0. From the loop equation and symmetry assumption,
all moments are polynomial functions ofW2.
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MULTI-MATRIX BOOTSTRAP: AN EXAMPLE

Here we propose to study the following two-matrix model:

Z = lim
N→∞

∫
dN

2
AdN

2
B e−Ntr(−h[A,B]2/2+A2/2+gA4/4+B2/2+gB4/4) (8)

The integration is over Hermitian matrix. To the best of our
knowledge, this model with general g and h value, is not solvable!

TrA2, TrA4, TrA2B2, TrABAB, TrA6, TrA4B2, TrA3BAB, TrA2BA2B, TrA8,
TrA6B2, TrA5BAB, TrA4BA2B, TrA4B4, TrA3BA3B, TrA3BAB3, TrA3B2AB2,
TrA2BABAB2, TrA2BAB2AB, TrA2B2A2B2, TrABABABAB . . .

(9)
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CUTOFF=4: LOOP EQUATIONS

β = (TrA2)2:

1 = TrA2 + gTrA4 − h(−2TrA2B2 + 2TrABAB)
0 = −2TrA2 + TrA4 − h(2TrA3BAB− 2TrA4B2) + gTrA6
0 = −TrA2 + TrA2B2 − h(−TrA2BA2B+ 2TrA3BAB− TrA4B2) + gTrA4B2
0 = −h(2TrA2BA2B− 2TrA3BAB) + gTrA3BAB+ TrABAB
β = −2TrA4 + TrA6 − h(2TrA5BAB− 2TrA6B2) + gTrA8
β = −TrA2B2 + TrA4B2 − h(−TrA3B2AB2 + 2TrA3BAB3 − TrA4B4) + gTrA6B2
0 = −2TrA2B2 − h(−TrA2B2A2B2 + 2TrA2BABAB2 − TrA3B2AB2) + TrA4B2 + gTrA6B2
0 = −TrA4 + TrA4B2 + gTrA4B4 − h(−TrA4BA2B+ 2TrA5BAB− TrA6B2)
0 = TrA3BAB− h(2TrA2BAB2AB− TrA2BABAB2 − TrA3BAB3) + gTrA5BAB− TrABAB
0 = TrA3BAB+ gTrA5BAB− 2TrABAB− h(−2TrA2BABAB2 + 2TrABABABAB)
0 = TrA3BAB+ gTrA3BAB3 − h(−TrA3BA3B+ 2TrA4BA2B− TrA5BAB)
0 = gTrA3BA3B+ TrA3BAB− h(2TrA3B2AB2 − 2TrA3BAB3)
0 = −TrA2B2 + TrA2BA2B− h(−TrA2BAB2AB+ 2TrA2BABAB2 − TrA3B2AB2) + gTrA4BA2B
β = TrA2BA2B+ gTrA3B2AB2 − h(2TrA3BA3B− 2TrA4BA2B).

(10)
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RELAXATION

Our general strategy: we treat the quadratic terms in the loop
equations as independent variable, and replace the algebraic
equality by the convex inequality:

Q = xxT (11)

to:

R =

(
1 xT

x Q

)
⪰ 0. (12)

For the previous situation, we have a simple matrix:

R =

(
1 TrA2

TrA2 β

)
⪰ 0. (13)
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RESULTS



0.4217 0.4218 0.4219 0.4220 0.4221
0.3332

0.3333

0.3334

0.3335

0.3336

+

Λ = 11, g = h = 1 :
{
0.421783612 ≤ ⟨TrA2⟩ ≤ 0.421784687
0.333341358 ≤ ⟨TrA4⟩ ≤ 0.333342131

(14)
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COMPARE WITH MC

Compared to the MC study of the same model 2111.02410 (Jha), we are
convinced that for this model bootstrap is at least two order of
magnitude more efficient than MC.

∙ MC: 80-85 hours for N=800 simulation to get 4.5 digits.
∙ Bootstrap: less than 1 hour to get 6 digits.
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ONE-MATRIX QUANTUM MECHANICS

The Hamiltonian is chosen to be:

H = tr(P2 + X2 + gX4) (15)

Here X is a large N Hermitian matrix:

[Xij,Pkl] = iδilδjk (16)

The ground state is known to be solvable.
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LOOP EQUATIONS

The corresponding loop equations are:

⟨[H,O]⟩ = 0, ∀O (17)

⟨tr(GO)⟩ = 0, ∀O (18)

together with the cyclicity of trO. G = i[X,P] + I is the generator of
the SU(N) gauge symmetry.

Result: general words in P and X can be reduced to polynomials of
trXm.

trP2X2P2X4 = 12
77g

2trX14 − 2
3gtrX2trX6 − 1

5gtrX8 + 40
231gtrX12

+
trX2
24 − 1

3 trX2trX4 − trX6
10 +

trX10
21

(19)

12



POSITIVITY

For the ground state, or more generally, any stationary state, the
corresponding loop equations are:

⟨O†O⟩ ≥ 0, ∀O (20)

⟨O†[H,O]⟩ ≥ 0, ∀O (21)

The later positivity is specialized for the ground state. For more
general thermal state with inverse temperature β,

⟨O†O⟩ log ⟨O†O⟩
⟨OO†⟩

≤ β⟨O†[H,O]⟩, ∀O (22)

Mathematically, these positivities together with the loop equations is
necessary and sufficient.

13



CONVERGENCE

The illustration of convergence, the left one is Λ = 2, whereas the
right one corresponds to Λ = 3. The size of the SDP matrix is 2, 2, 2
and 3, 3, 2, 3, respectively,
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CONVERGENCE

The size of the SDP matrices are 5, 4, 4, 4.
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ABOVE GROUND STATE

The dashed line is the thermal state with the corresponding energy
expectation. Different colors correspond to Λ = 8, 18, 26.
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BFSS MODEL

The Hamiltonian is chosen to be:

H =
1
2 Tr

(
g2P2I −

1
2g2 [XI, XJ]

2 − ψαγ
I
αβ [XI, ψβ ]

)
(23)

Here:
[Xij,Pkl] = iδilδjk, {ψα,ij, ψβ,kl} = δαβδilδkj (24)

Dual to the dynamics of the D0-brane.

The matrices are in multiples of the SO(9) symmetry.
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NUMERICAL RESULT
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NUMERICAL RESULT Λ = 2

〈V
〉

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

〈tr X2〉

Please take the MC result with a pinch of salt.
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NUMERICAL RESULT Λ = 2

〈V
〉

0.0 0.2 0.4 0.6 0.8 1.0
0
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〈tr X2〉

Please take the MC result with a pinch of salt. 19



NUMERICAL RESULT Λ = 3

In progress.
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NUMERICAL RESULT Λ = 3

In progress.
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FINITE N

General 2× 2 matrix as an example:

ϵα1α2α3ϵβ1β2β3M
α1β1
1 Mα2β2

2 Mα3β3
3 = 0 (25)

ϵα1α2α3ϵβ1β2β3 = δα1β1δα2β2δα3β3 + (−1)P
∑
P
(...) (26)

trM1trM2trM3 = trM1M2trM3 + trM1trM2M3 + trM1M3trM2

− trM1M2M3 − trM1M3M2
(27)

So the loop equation of N× N matrix model must truncate at N-trace
loop variables.
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UNIT MODULARITY CONDITION

General SU(2) matrix as an example:

trUmtrUn = trUm+n + trUm−n (28)

This is obvious since we can diagonolize U as diag{λ, λ−}. Less
non-trivially, this is true for any U and V:

trUtrV = trUV+ trU†V (29)

General result: The loop equation of SU(N) matrix model must
truncate at (N-1)-trace loop variables.
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PLAQUETTE MODEL

To illustrate the method, we consider the following model, in the
ensemble of SU(2),U(2) and U(∞):

Z =

∫
dU exp(−S), S = −βN

(
TrU+ TrU†) (30)
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BOOTSTRAPPING THE PLAQUETTE MODEL

U(∞):

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Analytic

Here λ = 1
β , Λ is the highest moment in the Toeplitz matrix. 24



U(2) & SU(2)

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Analytic

(a) U(2)

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Analytic

(b) SU(2)

Figure: Left is U(2), right one is SU(2). Λ is the sum of abs of the power of
double trace operator.
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LATTICE GAUGE THEORY

We are going to bootstrap the SU(2) lattice gauge theory:

Z =

∫ ∏
x, µ

dUµ(x) exp(−S) (31)

S = −Nc2λ
∑
P

Re trUP (32)

where UP is the product of four unitary link variables around the
plaquette P and we sum up over all plaquettes P, including both
orientations. In our last work we bootstrap the one plaquette
average:

uP =
1
Nc

⟨trUP⟩ (33)
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MAKEENKO-MIGDAL LOOP EQUATIONS

Doing the following infinitesimal transformation
Uµ(x) → Uµ(x)(1+ iϵ) to the Wilson loopW[C], we can get the
following loop equations schematically:

(linear) + 2λW[C] = 2λ(nonlinear) (34)

-
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MAKEENKO-MIGDAL LOOP EQUATIONS

(linear) + 2λW[C] = 2λ(nonlinear) (35)

− 1+ − + 2λ = 0
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MAKEENKO-MIGDAL LOOP EQUATIONS

(linear) + 2λW[C] = 2λ(nonlinear) (36)

− − + = 0
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MAKEENKO-MIGDAL LOOP EQUATIONS

(linear) + 2λW[C] = 2λ(nonlinear) (37)

-
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POSITIVITY BY HERMITIAN CONJUGATION

In parallel to the bootstrap for Hermitian matrix model, we have:

Path∗T = Reverse ◦ Path (38)

For a simplest example:

Path1 = , Path2 = (39)

( Path1 Path2

Path†
1 1 uP

Path†
2 uP 1

)
⪰ 0. (40)

31



POSITIVITY BY HERMITIAN CONJUGATION



I

I 1

1

1

1

1

1

1

1

1



⪰ 0.
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BOOTSTRAP

There are actually 6 Wilson loops in the matrix:

(41)

− − + = 0

− 1+ − + 2λ = 0
After the optimization, we get (λ = 1):

0 ≤ ≤ 0.69300
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REFLECTION POSITIVITY

We can also define the inner product by reflection positivity:

O† = ΘO (42)

Figure: Three reflection symmetries on the lattice allowing new positivity
conditions on Wilson loops combining the original and reflected Wilson
lines. 34



FINAL SCHEME

min /max ,

subject to MM loop equations
HerMirrep ⪰ 0,

RefMirrep ⪰ 0

(43)
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2D
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3D
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4D

Going to Lmax = 24 is numerically challenging.

*******************************
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**
**
**
**
**
**
***

***
***

***
****

****
****

*****
*****

*****
******

******
*******

*******
********

*********
**********

***********
************

**************
***************

******************
********************

***********************
***************************

********************************
***************************************

************************************************
*************************************************************

*****************
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LARGE N COMPARISON: 2D

(a) U(∞) (b) SU(2)
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LARGE N COMPARISON: 3D

(a) U(∞) (b) SU(2)
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LARGE N COMPARISON: 4D

(a) U(∞)
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*****************

(b) SU(2)
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STRING TENSION

Here we use the following formula for the string tension:

a
√
σ =

√
− log

W23W12
W22W13

(44)
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PROSPECT

∙ Corse graining.
∙ Sign problem.
∙ Bootstrap Yang-Mills theory in the continuum directly.
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QUESTIONS?
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