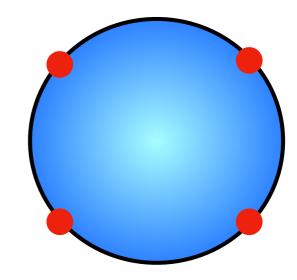
Taming Mass Gap with Anti-de Sitter Space

Lorenzo Di Pietro (Università di Trieste)

18/02/2024, Pisa

50+ ε Years of Conformal Bootstrap

QFT in AdS



IR regulator with symmetries

• Radius L: probe of the theory at different scales

 Infinite volume: symmetry breaking, phase transitions possible (unlike on sphere)

 Asymptotic observables: correlation functions in nonlocal CFT

Setup: **Dimensional Transmutation in AdS**

- UV classical theory: massless degrees of freedom, weakly interacting $g \ll 1$;
- •IR: mass gap $\Lambda \sim \mu e^{-\frac{1}{\beta_0 g^2(\mu)}}$;

Setup: **Dimensional Transmutation in AdS**

- UV classical theory: massless degrees of freedom, weakly interacting $g \ll 1$;
- •IR: mass gap $\Lambda \sim \mu e^{-\frac{1}{\beta_0 g^2(\mu)}}$;
- Varying the AdS radius L we can interpolate;
- In some cases, a sharp transition between the two regimes must occur, detectable from the bCFT.

Opportunity: studying the bCFT as a way to detect/prove the mass gap in the bulk

Outline:

- Brief review of the example of Yang-Mills in AdS₄ [Aharony, Berkooz, Tong, Yankielowicz]
- [Copetti, DP, Ji, Komatsu]: we study 2d examples
 - O(N) sigma model
 - O(N) Gross-Neveu model

Additional computational handle: Large N

Outline:

- Brief review of the example of Yang-Mills in AdS₄
 [Aharony, Berkooz, Tong, Yankielowicz]
- [Copetti, DP, Ji, Komatsu]: we study 2d examples
 - O(N) sigma model
 - O(N) Gross-Neveu model

Additional computational handle: Large N

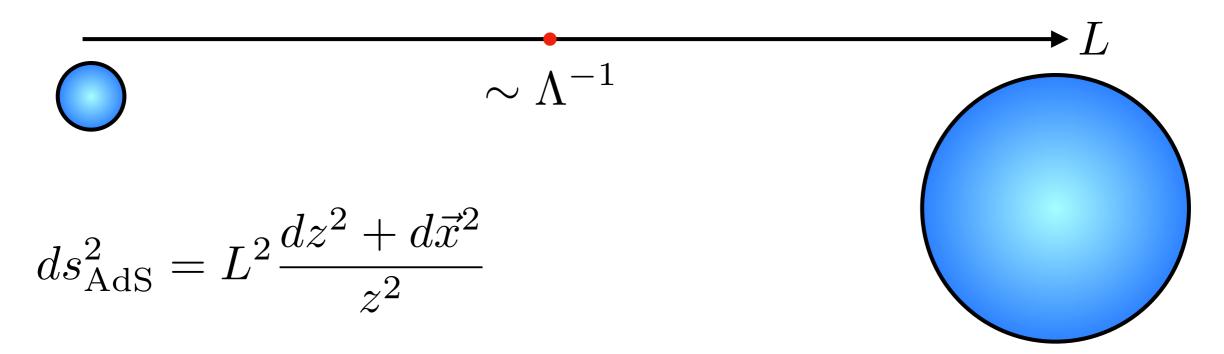
One more 50th birthday to celebrate:

- 't Hooft: large N gauge theory and mesons in QCD₂
- Coleman, Jackiw, Politzer: O(N) model at large N
- Gross, Neveu

all came out in 1974

Yang-Mills in AdS₄

[Aharony, Berkooz, Tong, Yankielowicz]



• $L \ll \Lambda^{-1}$: with **Dirichlet** boundary condition

$$A^a_{\mu} \underset{z \to 0}{\sim} zJ^a_{\mu} + \dots$$

- bulk gauge symmetry = boundary global symmetry
 - $L \gg \Lambda^{-1}$: no coloured asymptotic states, mass gap

Why a sharp transition?

 $L \ll \Lambda^{-1}$: small perturbation of the free limit.

bCFT: Mean-field theory of J_{μ}^{a} + small corrections

No candidate scalar operator that can continuously recombine:

$$\partial^{\mu}J^{a}_{\mu}=\mathcal{O}^{a}$$
 scalar, adjoint, $\Delta=3$

 J_{μ}^{a} must exist for a finite range of L Natural expectation: $L_{\rm crit} \sim \Lambda^{-1}$

(1) Higgs: a bulk charged scalar condenses

bCFT: an <u>adjoint</u> scalar operator hits $\Delta=3$ and recombines $\partial^\mu J_\mu^a=\mathcal{O}^a$

(1) Higgs: a bulk charged scalar condenses

bCFT: an <u>adjoint</u> scalar operator hits $\Delta=3$ and recombines $\partial^\mu J_\mu^a=\mathcal{O}^a$

(2) **Decoupling:** gluon states become null and are removed from the spectrum

bCFT:
$$\langle J_{\mu}(x)J_{\nu}(0)\rangle = C_{J} \frac{\delta_{\mu\nu} - 2\frac{x_{\mu}x_{\nu}}{x^{2}}}{(x^{2})^{2}}$$
, $C_{J} \xrightarrow[L \to L_{\text{crit}}]{} 0$

(1) Higgs: a bulk charged scalar condenses

bCFT: an <u>adjoint</u> scalar operator hits $\Delta=3$ and recombines $\partial^\mu J_\mu^a=\mathcal{O}^a$

(2) **Decoupling:** gluon states become null and are removed from the spectrum

bCFT:
$$\langle J_{\mu}(x)J_{\nu}(0)\rangle = C_{J}\frac{\delta_{\mu\nu} - 2\frac{x_{\mu}x_{\nu}}{x^{2}}}{(x^{2})^{2}}$$
, $C_{J} \xrightarrow[L \to L_{\text{crit}}]{0}$

(3) <u>Tachyon:</u> instability towards generation of a VEV, a weakly-coupled scalar ϕ with $M^2 < M_{\rm BF}^2$

bCFT: $\Delta(\mathcal{O}_\phi) = \frac{3}{2}$, two bCFTs related by \mathcal{O}_ϕ^2 merge

We propose a generalization of (3), without need of weak coupling, which is realized in 2d toy models:

(4) Marginality:

bCFT: a singlet scalar operator \mathcal{O} hits $\Delta = 3$

The bulk YM coupling induces running of the associated marginal coupling:

$$\int_{\text{AdS}_4} \frac{1}{2g^2} \operatorname{tr}[F^2] + \int_{\partial} y \, \mathcal{O} \, , \, \beta_y \sim A \left(\frac{1}{g^2} - \frac{1}{g_{\text{crit}}^2} \right) - B \, y^2$$

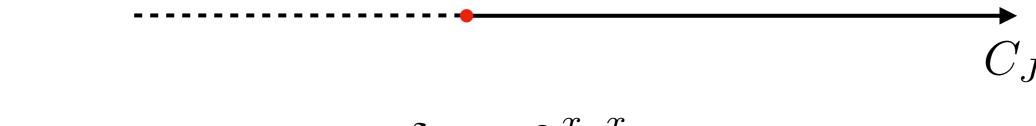
[Antunes, Lauria, van Rees]

Merger and annihilation for $g^2 > g_{\rm crit}^2$

[Gorbenko, Rychkov, Zan]

A bootstrap approach to the mass gap in YM?

Family of (non-local) CFT₃s with $G_{\rm YM}$ global symmetry



$$\langle J_{\mu}(x)J_{\nu}(0)\rangle = C_J \frac{\delta_{\mu\nu} - 2\frac{x_{\mu}x_{\nu}}{x^2}}{(x^2)^2}$$
, $C_J \sim \frac{1}{g^2(L)}$

 $C_J
ightarrow \infty$: approaches mean-field theory of J_μ^a

Known perturbative data: $1/C_J$ corrections to the double-trace data [Caron-Huot, Li]

Can it be found studying $\langle JJJJJ\rangle$?

[He, Rong, Su, Vichi]

AdS₄: deconfinement-confinement transition

Analogous phenomenon in AdS₂?

AdS₄: deconfinement-confinement transition

Analogous phenomenon in AdS₂?

"Goldstone-gapped transition":

- Bulk theory with continuous global symmetry, $\nabla^M J_M^a = 0$
- Small L: bc that breaks the symmetry
 - $J_z^a \underset{z \to 0}{\sim} t^a$, t^a is a marginal operator of the bCFT
- "conformal manifold" of bCFTs related by bulk symmetry, AdS version of Goldstone's theorem.
- Large L: Coleman-Mermin-Wagner this bc must have disappeared

"Goldstone-gapped transition":

- Bulk theory with continuous global symmetry, $\nabla^M J_M^a = 0$
- Small L: bc that breaks the symmetry

$$J_z^a \underset{z \to 0}{\sim} t^a$$
 , t^a is a marginal operator of the bCFT

"conformal manifold" of bCFTs related by bulk symmetry, AdS version of Goldstone's theorem.

Large L: Coleman-Mermin-Wagner
 this bc must have disappeared

Objective: understand this transitions in 2d examples that are under control thanks to large N

O(N) sigma model in AdS₂

$$S=\int rac{1}{2}(\partial\phi^i)^2$$
 , $i=1,\ldots,N$, $(\phi^i)^2=rac{N}{g^2}$

with Hubbard-Stratonovich auxiliary field σ :

$$S = \int \left[\frac{1}{2} (\partial \phi^i)^2 + \sigma \left((\phi^i)^2 - \frac{N}{g^2} \right) \right] + N \operatorname{tr} \log(-\Box + 2\sigma)$$

O(N) sigma model in AdS₂

$$S=\int \frac{1}{2}(\partial \phi^i)^2$$
 , $i=1,\ldots,N$, $(\phi^i)^2=\frac{N}{g^2}$

with Hubbard-Stratonovich auxiliary field σ :

$$S = \int \left[\frac{1}{2} (\partial \phi^i)^2 + \sigma \left((\phi^i)^2 - \frac{N}{g^2} \right) \right] + N \operatorname{tr} \log(-\Box + 2\sigma)$$

$$\sigma = \Sigma + \frac{1}{\sqrt{N}} \delta \sigma ,$$

$$\phi^i = (\sqrt{N} \Phi + \rho) n^i + \pi^i ,$$

$$\phi^{i} = (\sqrt{N}\Phi + \rho)n^{i} + \pi^{i}$$
$$(n^{i})^{2} = 1 , n^{i}\pi^{i} = 0$$

Vacuum equations: $\begin{cases} \Sigma \Phi = 0 \\ \Phi^2 - \frac{1}{g^2} + \operatorname{tr} \left[\frac{1}{-\Box + 2\Sigma} \right] = 0 \end{cases}$

Vacuum equations:
$$\begin{cases} \Sigma \Phi = 0 \\ \Phi^2 \left(-\frac{1}{g^2} + \operatorname{tr} \left[\frac{1}{-\Box + 2\Sigma} \right] \right) = 0 \end{cases}$$

$$-\frac{1}{g_{\text{reg}(\mu)}^2} + \frac{1}{2\pi} \log \mu + f(\Sigma) = \frac{1}{2\pi} \log \Lambda + f(\Sigma)$$

Vacuum equations:
$$\begin{cases} \Sigma \Phi = 0 \\ \Phi^2 \left(-\frac{1}{g^2} + \operatorname{tr} \left[\frac{1}{-\Box + 2\Sigma} \right] \right) = 0 \end{cases}$$

$$-\frac{1}{g_{\text{reg}(\mu)}^2} + \frac{1}{2\pi} \log \mu + f(\Sigma) = \frac{1}{2\pi} \log \Lambda + f(\Sigma)$$

• Flat space: $f(\Sigma) \sim -\frac{1}{2\pi} \log \Sigma$

no SSB solution with $\Sigma=0$, $\Phi\neq0$

Vacuum equations:
$$\begin{cases} \Sigma \Phi = 0 \\ \Phi^2 \left(-\frac{1}{g^2} + \operatorname{tr} \left[\frac{1}{-\Box + 2\Sigma} \right] \right) = 0 \end{cases}$$

$$-\frac{1}{g_{\text{reg}(\mu)}^2} + \frac{1}{2\pi} \log \mu + f(\Sigma) = \frac{1}{2\pi} \log \Lambda + f(\Sigma)$$

Flat space:

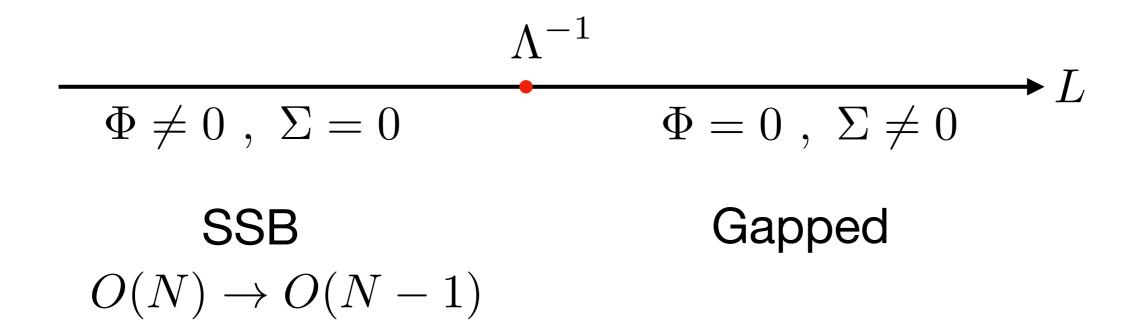
$$f(\Sigma) \underset{\Sigma \to 0}{\sim} -\frac{1}{2\pi} \log \Sigma$$

no SSB solution with $\Sigma=0$, $\Phi\neq 0$

• AdS:

$$f(\Sigma) \underset{\Sigma \to 0}{\sim} -\frac{1}{2\pi} \log L$$

SSB solution for $L<\Lambda^{-1}$: $\Phi^2=-\frac{1}{2\pi}\log(L\Lambda)$



So far: bulk analysis of the effective potential.

How is the transition detected from the bCFT?

We look at the spectrum of O(N-1)-singlet scalars.

We will find: an operator hits marginality at the transition, beyond the SSB bc becomes complex beyond.

Quadratic action for fluctuations:

$$S^{(2)} = \int \frac{1}{2} (\partial \rho)^2 + 2\Phi \delta \sigma \rho + \delta \sigma \left(\frac{1}{-\Box}\right)^2 \delta \sigma$$

Expand in a basis of eigenfunctions of the Laplacian:

$$-\Box_{\mathbf{x}}\Omega_{\nu}(\mathbf{x},\mathbf{y}) = \frac{1}{L^2}(\nu^2 + \frac{1}{4})\Omega_{\nu}(\mathbf{x},\mathbf{y}) , \quad \nu \in \mathbb{R}$$

$$\left(\frac{1}{-\square}\right)^{2}(\mathbf{x},\mathbf{y}) = \int_{-\infty}^{+\infty} d\nu \, B(\nu)\Omega_{\nu}(\mathbf{x},\mathbf{y})$$

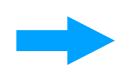
$$B(\nu) = \frac{1}{2\pi} \frac{\psi(i\frac{\nu}{2} + \frac{3}{4}) + \psi(-i\frac{\nu}{2} + \frac{3}{4}) + \log 4 + 2\gamma_E}{\nu^2 + \frac{1}{4}} \quad \begin{array}{c} \text{[Carmi, DP,} \\ \text{Komatsu]} \end{array}$$

$$\langle \begin{pmatrix} \delta \sigma \\ \rho \end{pmatrix} (\delta \sigma \quad \rho) \rangle (\nu) = \begin{pmatrix} -2B(\nu) & -2\Phi \\ -2\Phi & \nu^2 + \frac{1}{4} \end{pmatrix}^{-1}$$

Poles of $\langle \mathcal{O} \mathcal{O} \rangle(\nu)$ give the **bOPE expansion**

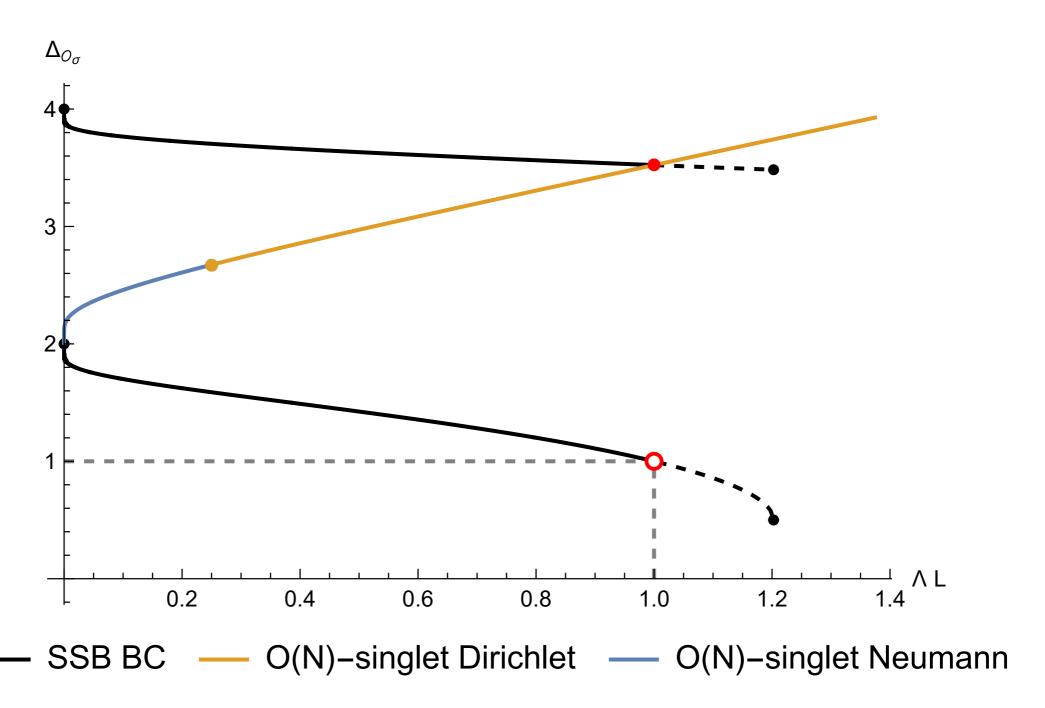
Spectrum of singlet operators = Poles of
$$\langle \begin{pmatrix} \delta \sigma \\ \rho \end{pmatrix} (\delta \sigma \quad \rho) \rangle (\nu)$$

Poles of $\langle \mathcal{O} \mathcal{O} \rangle(\nu)$ give the **bOPE expansion**



Spectrum of singlet operators

= Poles of
$$\langle \begin{pmatrix} \delta \sigma \\ \rho \end{pmatrix} (\delta \sigma \quad \rho) \rangle (\nu)$$

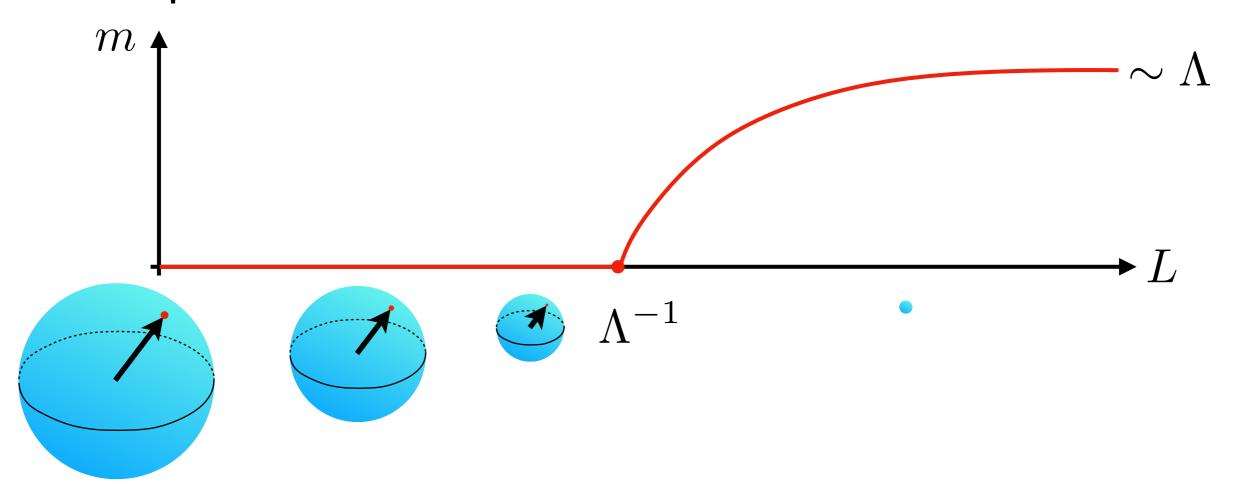


At $L = \Lambda^{-1}$ an operator $\hat{\sigma}$ becomes marginal.

For $L > \Lambda^{-1}$ the SSB Dirichlet bc becomes complex:

$$b_{\delta\sigma\hat{\sigma}}^2 \underset{\Phi\to 0}{\sim} \frac{144}{\pi^2} \Phi^2$$
, $\Phi^2 = -\frac{1}{2\pi} \log(L\Lambda)$

The SSB Dirichlet continuously connects at $L=\Lambda^{-1}$ with the symmetry-preserving Dirichlet condition $\Phi=0$ which persists for $L\to\infty$



Gross-Neveu model in AdS₂

$$S=\int ar{\psi_i}
abla \psi^i - rac{g}{N} (ar{\psi_i} \psi^i)^2$$
 , $\psi^i = \begin{pmatrix} \chi_L^i \\ \chi_R^i \end{pmatrix}$ $i=1,\ldots,N$

with Hubbard-Stratonovich auxiliary field σ :

$$S = \int \bar{\psi}_i \nabla \!\!\!/ \psi^i + \sigma \bar{\psi}_i \psi^i - \frac{N^2}{2g} \sigma^2 - N \operatorname{tr} \log \left(\nabla \!\!\!/ + 2\sigma \right)$$

Gross-Neveu model in AdS₂

$$S = \int \bar{\psi}_i \nabla \!\!\!/ \psi^i - rac{g}{N} (\bar{\psi}_i \psi^i)^2$$
 , $\psi^i = \begin{pmatrix} \chi_L^i \\ \chi_R^i \end{pmatrix}$ $i = 1, \dots, N$

with Hubbard-Stratonovich auxiliary field σ :

$$S = \int \bar{\psi}_i \nabla \!\!\!/ \psi^i + \sigma \bar{\psi}_i \psi^i - \frac{N^2}{2g} \sigma^2 - N \operatorname{tr} \log \left(\nabla \!\!\!/ + 2\sigma \right)$$

$$\sigma = \Sigma + \frac{1}{\sqrt{N}} \delta \sigma$$

Vacuum equation: $\frac{\Sigma}{g} + \operatorname{tr} \left| \frac{1}{\nabla \!\!\!\!/ + 2\Sigma} \right| = 0$

Symmetry: $O(2N)_V \times (\mathbb{Z}_2)_A \xrightarrow{\Sigma \neq 0} O(2N)_V$

$$\chi_L^i \ , \ \chi_R^i \ \rightarrow \varphi_{L,R}^a \ , \ a=1,\dots,2N$$

$$\bar{\psi}_i\psi^i = \chi_{R\,i}^* \ \chi_L^i + c.c. = \varphi_R^a\varphi_L^a$$

$$O(2N)_V$$
 : $\varphi_{R,L}^a \to M^a_{\ b} \varphi_{R,L}^b$

$$(\mathbb{Z}_2)_A$$
 : χ_L^i , $\chi_R^i \to \chi_L^i$, $-\chi_R^i$

$$\chi_L^i$$
, χ_R^i $\varphi_{L,R}^a$, $a=1,\ldots,2N$
$$\bar{\psi}_i\psi^i=\chi_{R\,i}^*\,\chi_L^i+c.c.=\varphi_R^a\varphi_L^a$$

$$O(2N)_V$$
 : $\varphi_{R,L}^a \to M^a_b \varphi_{R,L}^b$

$$(\mathbb{Z}_2)_A$$
 : χ_L^i , $\chi_R^i \to \chi_L^i$, $-\chi_R^i$

B.c. with "Goldstones": A-preserving, V-breaking

$$(\chi_L)_i^*|_{\partial} = \chi_R^i|_{\partial}$$

Preserves \mathbb{Z}_4 combination of $(\mathbb{Z}_2)_A$ and $O(2N)_V$:

$$\chi_L^i \ , \ \chi_R^i \to i \chi_L^i \ , -i \chi_R^i$$

Protects massless phase $\Sigma = 0$ and $O(2N)_V \to O(N)_V$

//

A-preserving

$$O(2N)_V \to O(N)_V$$

 $O(2N)_V$ -preserving Gapped

1,

A-preserving

$$O(2N)_V \to O(N)_V$$

 $O(2N)_V$ -preserving

Gapped

To detect the transition from bCFT:

$$\langle \delta \sigma \delta \sigma \rangle (\nu) = -\frac{1}{g^{-1} - B_A(\nu)}$$

A-preserving

 $O(2N)_V \to O(N)_V$

 $O(2N)_V$ -preserving

Gapped

To detect the transition from bCFT:

$$\langle \delta \sigma \delta \sigma \rangle (\nu) = -\frac{1}{g^{-1} - B_A(\nu)}$$

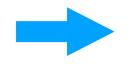
$$B_A(\nu)$$
 has a UV divergence: $-\frac{1}{\pi}\left(\frac{1}{\epsilon} - \log(L\mu)\right) + B_A^{\mathrm{finite}}(\nu)$

g replaced by $\Lambda = \mu e^{-\frac{\pi}{g_{\text{reg}}}}$

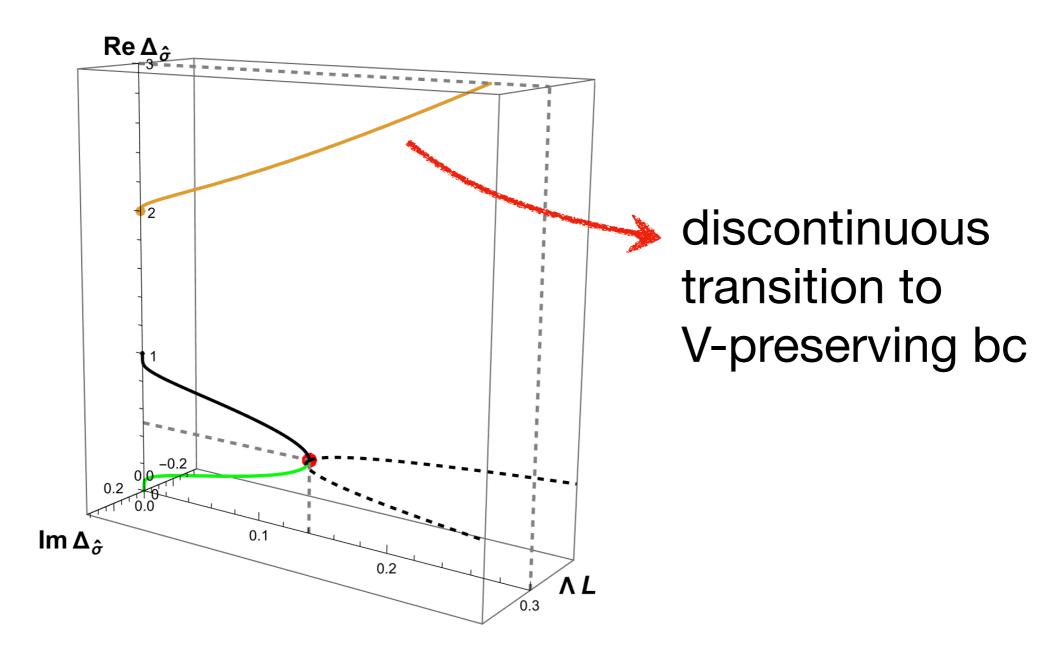
The lightest operator $\hat{\sigma}$ in the $\delta\sigma$ bOPE hits $\Delta=1/2$ at $L=\Lambda^{-1}\frac{e^{-\gamma_E}}{4}$

$$\hat{\sigma}^2$$
 singlet marginal operator (large N)

The lightest operator $\hat{\sigma}$ in the $\delta\sigma$ bOPE hits $\Delta=1/2$ at $L=\Lambda^{-1}\frac{e^{-\gamma_E}}{4}$



 $\hat{\sigma}^2$ singlet marginal operator (large N)



Summary

- Transitions from gapless to gapped phases in AdS
- Solvable examples in 2d point towards merger and annihilation as mechanism for disappearance of gapless b.c.

Future directions

- Can one prove mass gap in O(N) sigma model / Gross-Neveu at small N using 1d bootstrap?
- Other solvable example: $\mathcal{N}=2$ SYM in AdS $_4$
- What could be the (Dirichlet)' that merges with Dirichlet in YM?
- More $1/C_J$ perturbative data

Thank You