Fuzzy sphere regularization of 3D CFTs: the recent progress

PERIMETER INSTITUTE

Yin-Chen He (何寅琛) Perimeter Institute

50+epsilon years of bootstrap Pisa, Feb 2024

arXiv:2210.13482 (PRX 13,021009); arXiv:2303.08844 (PRL 131,031601); arXiv:2306.04681 (PRB 108,235123); arXiv:2306.16435 arXiv:2308.01903 arXiv:2401.00039 arXiv:2401.17362

Collaborators

Westlake University

Wei Zhu

Chao Han

Liangdong Hu

Perimeter Institute

Zheng Zhou Emilie Huffman

Yijian Zou

Davide Gaiotto

Johannes Hofmann (Weizmann)

Outline

- Fuzzy sphere regularization
 - Why and how?
 - Radial quantization
 - Correlators, OPE coefficients, F-function
- Conformal defect

A condensed matter approach to CFTs

Study strongly interacting quantum mechanical models that realize CFTs.

Lattice models

A condensed matter approach to CFTs

Study strongly interacting quantum mechanical models that realize CFTs.

Lattice models

Lesson of conformal bootstrap: Leveraging conformal symmetry

Most lattice model studies are on the torus geometry where the consequence of conformal symmetry is poorly understood.

Example: 2-point correlator in d>2 dimensions

$$\mathbb{R}^{d} \qquad \langle O(x=0)O(x)\rangle = x^{-2\Delta}$$

$$\uparrow a \ll x \ll L$$

$$T^{d}, T^{d-1} \times \mathbb{R} \qquad \langle O(x=0)O(x)\rangle = f(x,L) = \int_{\alpha=0}^{\infty} h(\alpha)x^{-2\Delta}(x/L)^{\alpha}$$

We need to study models on a conformally flat manifold \mathbb{R}^d , $S^{d-1} \times \mathbb{R}$, S^d !

State-operator correspondence

Radial quantization

Eigenstates of the quantum Hamiltonian defined on S^{d-1} are in one-to-one correspondence with CFT's scaling operators.

Energy gaps~scaling dimensions: $\delta E_n = E_n - E_0 = \frac{v}{R}\Delta_n$

Radial quantization on a lattice

2D CFT: We can just study a quantum Hamiltonian on a circle.

3D CFT: We need to put a quantum Hamiltonian on a two-sphere. But a regular lattice won't fit since two-sphere has a curvature...

Fuzzy sphere regularization of 3D CFTs

Quantum mechanical model realizations of 2+1D CFTs.

Particles moving on sphere in the presence of a monopole.

Fuzzy sphere model

T

$$H = \frac{1}{2m} \sum_{i=1}^{N_e} (\vec{p_i} + \vec{A}(\vec{x_i}))^2 + \sum_{i,j=1}^{N_e} U(\vec{x_i} - \vec{x_j})$$

Kinetic term Interaction term
he model is local if interactions are local.

2+1D CFTs can be realized by tuning the interaction form.

Landau level and non-commutative geometry

Particles moving in a strong magnetic field leads to non-commutative geometry!

Landau level: single particle states in the presence of magnetic field.

- Quantized energy: $E_n = \frac{B}{M}(n+1/2)$
- Complete flat.
- Massive degeneracy at each level: $\frac{BA}{2\pi}$

Restrict/Project to the lowest Landau level:

$$\mathcal{L}_0 = -\dot{\vec{x}} \cdot \vec{A} = \frac{B}{2} \epsilon_{ij} \dot{x}^i x^j \Rightarrow [x^i, x^j] = \frac{i}{B} \epsilon^{ij}$$

Spherical Landau levels

- Each LL has a level dependent quantized energy $\frac{n(n+1) + (2n+1)s}{2Mr^2}$
- The states (orbitals) in each LL form a spin²(n+s) SO(3) representation.
- The wavefunctions of each LL are monopole Harmonics $Y_{n+s}^{(s)}, m(\theta, \varphi)$.

 $\left(\frac{\theta}{2}\right)\sin^{s-m}\left(\frac{\theta}{2}\right)$

Lowest LL wavefunction $m = -s, -s + 1, \cdots, s$

$$Y_{s,m}^{(s)}(\theta,\varphi) = \mathcal{N}_{s,m} e^{im\varphi} \cos^{s+m}$$

Lowest Landau level (LLL) projection

$$\begin{split} H &= \frac{1}{2Mr^2} \int d\Omega \psi^{\dagger}(\Omega) (\partial_{\mu} + iA_{\mu})^2 \psi(\Omega) + H_{int} \\ \text{E.g.} \ H_{int} &= U \int d\Omega \left(\psi^{\dagger}(\Omega) \partial_{\mu} \psi(\Omega) \right)^2 \qquad \begin{cases} \psi^{\dagger}(\Omega_a), \psi(\Omega_b) \} = \delta(\Omega_{ab}) \\ \{\psi(\Omega_a), \psi(\Omega_b)\} = 0 \end{cases} \end{split}$$

$$\begin{split} \psi^{\dagger}(\Omega) &= \sum_{l=s}^{\infty} \sum_{m=-s}^{s} c_{l,m}^{\dagger} Y_{l,m}^{(s)}(\Omega) \\ \\ \text{LLL projection} \\ \psi^{\dagger}(\Omega) &= \sum_{m=-s}^{s} c_{s,m}^{\dagger} Y_{s,m}^{(s)}(\Omega) \end{split}$$

$$\{c_{l_{a},m_{a}}^{\dagger},c_{l_{b},m_{b}}\} = \delta_{l_{a},l_{b}}\delta_{m_{a},m_{b}}$$
$$\{c_{l_{a},m_{a}},c_{l_{b},m_{b}}\} = 0$$

Landau levels

•

$$n = 1 \ominus \ominus \ominus \ominus \ominus \ominus \Box \\ gap \gg H_{int}$$
$$n = 0 \bullet \ominus \ominus \ominus \ominus \Box$$

LLL projection and fuzzy sphere

On the LLL the sphere coordinates $x_1^2 + x_2^2 + x_3^2 = 1$ become:

$$(X_i)_{m_1,m_2} = \int d\Omega \, x_i(\Omega) \bar{Y}_{s,m_1}^{(s)}(\Omega) Y_{s,m_2}^{(s)}(\Omega)$$

$$[X_i, X_j] = \frac{1}{s+1} i\varepsilon_{ijk} X_k \qquad \sum_{i=1}^3 X_i X_i = \frac{s}{s+1} \mathbf{1}_{2s+1}$$

Fuzzy two-sphere: $[\hat{x}_i, \hat{x}_j] = i\varepsilon_{ijk}\hat{x}_k, \quad \sum_{i=1}^{3} \hat{x}_i\hat{x}_i = \text{const} \cdot \mathbf{1}$ Madore 1992

$$Y_{s,m}^{(s)}(\theta,\varphi) = \mathcal{N}_{s,m}e^{im\varphi}\cos^{s+m}\left(\frac{\theta}{2}\right)\sin^{s-m}\left(\frac{\theta}{2}\right)$$

Fuzzy sphere model for the 2+1D Ising CFT

$$\int \vec{B} \cdot d\vec{r} = 4\pi \cdot s \qquad H = \frac{1}{2Mr^2} \int d\Omega \psi^{\dagger}(\Omega) (\partial_{\mu} + iA_{\mu})^2 \psi(\Omega) + H_{int}$$

$$H_{int} = -\int d\Omega_a d\Omega_b U(\Omega_a, \Omega_b) n^z(\Omega_a) n^z(\Omega_b) - h \int d\Omega n^x(\Omega)$$
Non-relativistic fermions $n^{\alpha}(\Omega) = (\hat{\psi}^{\dagger}_{\uparrow}(\Omega), \hat{\psi}^{\dagger}_{\downarrow}(\Omega)) \sigma^{\alpha} \begin{pmatrix} \hat{\psi}_{\uparrow}(\Omega) \\ \hat{\psi}_{\downarrow}(\Omega) \end{pmatrix}$
with an isospin.
$$U(\Omega_a, \Omega_b) = g_0 \,\delta(\Omega_{ab}) + g_1 \,\nabla^2 \delta(\Omega_{ab})$$

Fuzzy sphere model for the 2+1D Ising CFT

$$\int \vec{B} \cdot d\vec{r} = 4\pi \cdot s \qquad H = \frac{1}{2Mr^2} \int d\Omega \psi^{\dagger}(\Omega) (\partial_{\mu} + iA_{\mu})^2 \psi(\Omega) + H_{int}$$

$$H_{int} = -\int d\Omega_a d\Omega_b U(\Omega_a, \Omega_b) n^z(\Omega_a) n^z(\Omega_b) - h \int d\Omega n^x(\Omega)$$
Non-relativistic fermions $n^{\alpha}(\Omega) = (\hat{\psi}^{\dagger}_{\uparrow}(\Omega), \hat{\psi}^{\dagger}_{\downarrow}(\Omega)) \sigma^{\alpha} \begin{pmatrix} \hat{\psi}_{\uparrow}(\Omega) \\ \hat{\psi}_{\downarrow}(\Omega) \end{pmatrix}$
with an isospin.
$$U(\Omega_a, \Omega_b) = g_0 \,\delta(\Omega_{ab}) + g_1 \,\nabla^2 \delta(\Omega_{ab})$$

$$\text{LLL projection}$$

$$\psi^{\dagger}_{\alpha}(\vec{\Omega}) = \sum_{m=-s}^{s} c^{\dagger}_{m,d} Y^{(s)}_{s,m}(\vec{\Omega}) \qquad 2s + 1 \text{-site fermionic model}$$

$$m = -s, -s + 1, \cdots, s \quad \text{spin-s rep of } SO(3)$$

$$2\text{-body term} \qquad 4\text{-body interaction} \quad \text{Haldane}$$

$$\sum_{m=-s}^{s} c^{\dagger}_{m} c_m \qquad V_l \sum_{m_1,m_2,m_3,m_4} F(m_1, m_2, m_3, m_4, s, l) c^{\dagger}_{m_1} c^{\dagger}_{m_2} c_{m_3} c_{m_4}$$

A closer look at the fuzzy sphere model

$$\begin{array}{lll} 2s+1\text{-site fermionic model} & & & & & & \\ & & & \\$$

Hamiltonian for the 2+1D Ising model $\mathbf{c}_{m}^{\dagger} = (c_{m,\uparrow}^{\dagger}, c_{m,\downarrow}^{\dagger})$ $H = -\sum_{m_{1,2},m=-s}^{s} V_{m_{1},m_{2},m_{2}-m,m_{1}+m} (\mathbf{c}_{m_{1}}^{\dagger}\sigma^{z}\mathbf{c}_{m_{1}+m}) (\mathbf{c}_{m_{2}}^{\dagger}\sigma^{z}\mathbf{c}_{m_{2}-m}) - h \sum_{m=-s}^{s} \mathbf{c}_{m}^{\dagger}\sigma^{x}\mathbf{c}_{m}$ $V_{m_{1},m_{2},m_{3},m_{3}} = \sum_{l} V_{l} (4s - 2l + 1) \begin{pmatrix} s & s & 2s - l \\ m_{1} & m_{2} & -m_{1} - m_{2} \end{pmatrix} \begin{pmatrix} s & s & 2s - l \\ m_{3} & m_{4} & -m_{3} - m_{4} \end{pmatrix}$ Haldane 1983 V_{l} $V_{0} = \frac{1}{2}g_{0} - \frac{1}{4}g_{1}, V_{1} = \frac{1}{4}g_{1}$

$$\begin{aligned} & \mathsf{Phase diagram} \\ H &= \frac{1}{2Mr^2} \int d\Omega \psi^{\dagger}(\Omega) (\partial_{\mu} + iA_{\mu})^2 \psi(\Omega) + H_{int} \\ H_{int} &= -\int d\Omega_a d\Omega_b U(\Omega_a, \Omega_b) n^z(\Omega_a) n^z(\Omega_b) - h \int d\Omega n^x(\Omega), \\ n^{\alpha}(\Omega) &= (\hat{\psi}_{\uparrow}^{\dagger}(\Omega), \hat{\psi}_{\downarrow}^{\dagger}(\Omega)) \sigma^{\alpha} \begin{pmatrix} \hat{\psi}_{\uparrow}(\Omega) \\ \hat{\psi}_{\downarrow}(\Omega) \end{pmatrix} \\ \mathsf{Similar model was studied on the torus. \\ U(\Omega_a, \Omega_b) &= g_0 \,\delta(\Omega_{ab}) + g_1 \,\nabla^2 \delta(\Omega_{ab}) \\ \mathsf{ILL projection} \\ & \downarrow \\ & \sum_{m=-s}^{s} c_m^{\dagger} Y_{s,m}^{(s)}(\Omega) \\ & \downarrow \\ (V_0, V_1, h) \\ \mathsf{Haldane pseudo-potential} \end{aligned} \\ \begin{array}{c} \mathsf{Paramagnet} \\ \mathsf{Paramagnet} \\ \mathsf{Paramagnet} \\ \mathsf{e}_{g}. \mathsf{Sondhi, Karlhede, \\ \mathsf{Kivelson, Rezayi 1993} \\ \mathsf{N}_{I} \\ \mathsf{Haldane pseudo-potential} \end{aligned} \\ \mathcal{P}_{s,m} = \mathsf{Paramagnet} \\ \mathsf$$

$$\begin{aligned} & \mathsf{Phase diagram} \\ H &= \frac{1}{2Mr^2} \int d\Omega \psi^{\dagger}(\Omega) (\partial_{\mu} + iA_{\mu})^2 \psi(\Omega) + H_{int} \\ H_{int} &= -\int d\Omega_a d\Omega_b U(\Omega_a, \Omega_b) n^z(\Omega_a) n^z(\Omega_b) - h \int d\Omega n^x(\Omega), \\ n^\alpha(\Omega) &= (\hat{\psi}^{\dagger}_{\uparrow}(\Omega), \hat{\psi}^{\dagger}_{\downarrow}(\Omega)) \sigma^\alpha \begin{pmatrix} \hat{\psi}_{\uparrow}(\Omega) \\ \hat{\psi}_{\downarrow}(\Omega) \end{pmatrix} \\ \text{Similar model was studied on the torus.} \\ U(\Omega_a, \Omega_b) &= g_0 \, \delta(\Omega_{ab}) + g_1 \, \nabla^2 \delta(\Omega_{ab}) \\ & \mathsf{ILL projection} \\ & \mathsf{Spot} \\ & \mathsf{Spot} \\ & \mathsf{Spot} \\ & \mathsf{Spot} \\ (V_0, V_1, h) \\ \mathsf{Haldane pseudo-potential} \end{aligned}$$

Outline

- Fuzzy sphere regularization
 - Why and how?
 - Radial quantization
 - Correlators, OPE coefficients, F-function
- Conformal defect

State-operator correspondence

Radial quantization

Eigenstates of the quantum Hamiltonian defined on S^{d-1} are in one-to-one correspondence with CFT's scaling operators.

Energy gaps~scaling dimensions: $\delta E_n = E_n - E_0 = \frac{v}{R}\Delta_n$

Even 4 electrons work!!!

Gaps of ALL the excited states of the system with N=4 electrons.

	CD	1			CB	4 spins	Errors
	CB	4 spins	Errors	ϵ	1.413	1.382	2.2%
σ	0.518	0.530	2.3%	2	9 419	9 9 9 7	9 1 07
$\partial_{\mu_1}\sigma$	1.518	1.522	0.3%	$O_{\mu_1}\epsilon$	2.415	2.337	J.1 /0
$\Box \sigma$	2 518	2 127	3.6%	$T_{\mu_1\mu_2}$	3	3	NA
	2.010		0.070	$\partial_{\mu_1}\partial_{\mu_2}\epsilon$	3.413	3.126	8.4%
$\partial_{\mu_1}\partial_{\mu_2}\sigma$	2.518	2.428	3.6%	$\Box \epsilon$	3 413	$3\ 577$	4.8%
$\partial_{\mu_1}\partial_{\mu_2}\partial_{\mu_3}\sigma$	3.518	2.847	20%		4		
$\partial_{\mu_1} \Box \sigma$	3.518	3.291	6.5%	$O_{\mu_3}T_{\mu_1\mu_2}$	4	3.663	8.4%
μ_1	1 1 2 0	4.9.41	1 507	$\varepsilon_{\mu_2\rho\tau}\partial_{\rho}T_{\mu_1\mu_2}$	4	4.054	1.4%
$\sigma_{\mu_1\mu_2}$	4.180	4.241	1.070	ϵ'	3.830	4.019	4.9%
$\sigma_{\mu_1\mu_2\mu_3}$	4.638	4.618	0.4%	a a T	F	1 956	2 007
				$O_{\mu_3}O_{\mu_4}I_{\mu_1\mu_2}$	\mathbf{O}	4.000	Z.9 70

6 primaries are found!!

State-operator correspondence

- We identified 15 primary operators, the numerical errors of all primaries are within 1.6%.
- We looked at 70 lowest lying states with L<5, all of them match theoretical expectations with small errors~3%.

	CB	16 spins	Error		CB	$16 {\rm spins}$	Error
σ	0.518	0.524	1.2%	ϵ	1.413	1.414	0.07%
σ'	5.291	5.303	0.2%	ϵ'	3.830	3.838	0.2%
$\sigma_{\mu_1\mu_2}$	4.180	4.214	0.8%	$\epsilon^{\prime\prime}$	6.896	6.908	0.2%
$\sigma'_{\mu_1\mu_2}$	6.987	7.048	0.9%	$T_{\mu u}$	3	3	—
$\sigma_{\mu_1\mu_2}$	4 638	4 609	0.6%	$T'_{\mu u}$	5.509	5.583	1.3%
$\sigma \mu_1 \mu_2 \mu_3$	6 113	6.060	0.07%	$\epsilon_{\mu_1\mu_2\mu_3\mu_4}$	5.023	5.103	1.6%
$\sigma_{\mu_1\mu_2\mu_3\mu_4}$ - P^{-}	0.113 NA	11 10	0.170	$\epsilon'_{\mu_1\mu_2\mu_3\mu_4}$	6.421	6.347	1.2%
		11.19		ϵ^{P-}	≤ 11.2	10.01	_

Bootstrap data from Simmons-Duffin, 2017

State-operator correspondence

Outline

- Fuzzy sphere regularization
 - Why and how?
 - Radial quantization
 - Correlators, OPE coefficients, F-function
- Conformal defect

Let us continue with fuzzy journey

- We have explored the energy gaps of the states.
- A lot of information ready for exploration:
 - A. Wave-functions of the states. $|\phi\rangle=\phi(\tau=-\infty)|\mathbb{I}
 angle$
 - B. Operators.

$$n^{z}(\tau,\Omega) \sim \alpha_{\sigma} \frac{\sigma(\tau,\Omega)}{R^{\Delta_{\sigma}}} + \alpha_{\partial_{\mu}\sigma} \frac{\partial_{\mu}\sigma(\tau,\Omega)}{R^{\Delta_{\sigma}+1}} + \dots + \alpha_{\sigma_{\mu\nu}} \frac{\sigma_{\mu\nu}(\tau,\Omega)}{R^{\Delta_{\sigma_{\mu\nu}}}} + \dots$$
$$n^{x}(\tau,\Omega) \sim \alpha_{\mathbb{I}} + \alpha_{\epsilon} \frac{\epsilon(\tau,\Omega)}{R^{\Delta_{\epsilon}}} + \dots + \alpha_{\sigma_{\mu\nu}} \frac{T\mu\nu(\tau,\Omega)}{R^{3}} + \dots$$

From orbital space to real space

Real space is continuous (NOT discrete like lattice model)!

$$\psi_a^{\dagger}(\theta,\varphi) = \sum_{m=-s}^{s} c_{m,a}^{\dagger} Y_{s,m}^{(s)}(\theta,\varphi)$$
$$Y_{s,m}^{(s)}(\theta,\varphi) = \mathcal{N}_{s,m} e^{im\varphi} \cos^{s+m}\left(\frac{\theta}{2}\right) \sin^{s-m}\left(\frac{\theta}{2}\right)$$

Any observable can be computed in real space!

Numerical data of 2-point correlator

We get a function defined in the continuum:

 $0.6941 + 0.3724\cos\theta + 0.2840\cos^2\theta + 0.2091\cos^3\theta + \cdots$

Han, Hu, Zhu, YCH, arXiv: 2306.04681

Operators and their correlators are sharp, continuous and conformal!

Four-point correlator

Han, Hu, Zhu, YCH, arXiv: 2306.04681 $1.846 + 0.171 \cos \theta + 0.152 \cos^2 \theta + 0.109 \cos^3 \theta + 0.109 \cos^4 \theta + \cdots$

OPE coefficients

$$\frac{\langle \sigma | n^z(\vec{\Omega}) | \epsilon \rangle}{\langle \sigma | n^z(\vec{\Omega}) | 0 \rangle} = f_{\sigma\sigma\epsilon} + \frac{a}{R^2} + \cdots$$

Hu,YCH, Zhu, arXiv:2303.08844 (PRL)

Operators	Spin	Z_2	$f_{\alpha\beta\gamma}$ (Fuzzy Sphere)	$f_{\alpha\beta\gamma}$ (Bootstrap)
σ	0	_	$f_{\sigma\sigma\epsilon} \approx 1.0539(18)$	$f_{\sigma\sigma\epsilon} \approx 1.0519$
ϵ	0	+	$f_{\epsilon\epsilon\epsilon} \approx 1.5441(23)$	$f_{\epsilon\epsilon\epsilon} \approx 1.5324$
ϵ'	0	+	$f_{\sigma\sigma\epsilon'} \approx 0.0529(16)$	$f_{\sigma\sigma\epsilon'} \approx 0.0530$
			$f_{\epsilon\epsilon\epsilon'} \approx 1.566(68)$	$f_{\epsilon\epsilon\epsilon'} \approx 1.5360$
σ'	0		$f_{\sigma'\sigma\epsilon} \approx 0.0515(42)$	$f_{\sigma'\sigma\epsilon} \approx 0.0572$
			$f_{\sigma'\sigma\epsilon'} \approx 1.294(51)$	NA
			$f_{\sigma'\epsilon\sigma'} \approx 2.98(13)$	NA
$T_{\mu u}$	2	+	$f_{\sigma\sigma T} \approx 0.3248(35)$	$f_{\sigma\sigma T} \approx 0.3261$
			$f_{\sigma'\sigma T} \approx -0.00007(96)$	$f_{\sigma'\sigma T} = 0$
			$f_{\epsilon\epsilon T} \approx 0.8951(35)$	$f_{\epsilon\epsilon T} \approx 0.8892$
			$f_{T\epsilon T} \approx 0.8658(69)$	$f_{T\epsilon T} \approx 0.765(47), 0.907(10)$
$\sigma_{\mu u}$	2		$f_{\sigma\epsilon\sigma_{\mu\nu}} \approx 0.400(33)$	$f_{\sigma\epsilon\sigma_{\mu\nu}} \approx 0.3892$
			$f_{\sigma\epsilon'\sigma_{\mu\nu}} \approx 0.18256(69)$	NA

OPE coefficients

RG monotonic theorem

- RG monotonic theorem states that there exist some measure of degrees of freedom that monotonically decreases under RG flow.
- 2D CFT: c-theorem. Zamolodchikov 1986
- 4D CFT: a-theorem. Cardy 1988; Jack, Osborn 1990; Komargodski & Schwimmer 2011
- 3D CFT: F-theorem. Casini, Huerta 2012, Jafferis 2010; Myers, Sinha 2010; Jafferis, Klebanov, Pufu, Safdi 2011;...

Irreversibility of RG in 3D: F-Theorem

No conformal anomaly in odd space-time dimensions!

• Partition function on 3-sphere $\log Z_{S^3} \sim \alpha_1 r^3 + \alpha_2 r - F$

Jafferis 2010; Jafferis, Klebanov, Pufu, Safdi 2011;...

• Entanglement entropy

 $B\left(\begin{array}{c}A\\r\end{array}\right) S_A = \alpha r - F \quad \begin{array}{c} \text{Myers, Sinha 2010; Casini, Huerta, Myers, 2011;}\\ \text{Liu, Mezei 2012}\end{array}\right)$

F-theorem: $F_{UV} > F_{IR}$

Casini, Huerta 2012

F is a non-local quantity

 In 2D and 4D, c and a are conformal anomalies. So they can be computed by correlation functions.

 $\langle T_{\mu\nu}(x_1)T_{\rho\eta}(x_2)\rangle \qquad \langle T_{\mu\nu}(x_1)T_{\rho\eta}(x_2)T_{\sigma\tau}(x_3)\rangle$

 In odd dimensions (e.g. 3D), there is no conformal anomaly. F is a non-local quantity encoded in either the 3-sphere partition function or entanglement entropy.

Extracting F-function via Entanglement entropy

For a 2+ID CFT defined on $R^2 \times R$ B $S_A = -Tr(\rho_A \ln \rho_A) = \alpha \frac{r}{\delta} - F$

- A smooth entanglement cut (no sharp corners).
- The entanglement cut should be much smaller than the system size if the system is not conformally equivalent to R^3.
- Entanglement entropy NOT Renyi entropy.

F-function from sphere entanglement entropy

 $R^2 \times R$

Myers, Sinha 2010; Casini, Huerta, Myers, 2011; Liu, Mezei 2012

Weyl transformation

 $S^2 \times R$

В

The real-space entanglement entropy can be computed on the fuzzy sphere. Dubail, Read, Rezayi 2012; Sterdyniak, Chandran, Regnault, Bernevig, and Parsa Bonderson 2012

F-function of 3D Ising CFT

Outline

- Fuzzy sphere regularization
 - Why and how?
 - Radial quantization
 - Correlators, OPE coefficients, F-function
- Conformal defect

Conformal defect

- New operators living on the defect.
- Non-trivial interplay between bulk and defect.

Solving conformal defect using fuzzy sphere

State-operator correspondence

 $H = H_{\rm bulk} + H_{\rm defect}$

$$H_{\text{defect}} = -h_N n^z(N) - h_S n^z(S)$$

Defect conformal symmetry: SO(2,1)

Hu,YCH, Zhu, arXiv:2308.01903 Defect operators $h_N = h_S > 0$

Zhou, Gaiotto, YCH, Zou, arXiv:2401.00039 Defect creation $h_N > 0, h_S = 0$

Correlator

Conformal data encoded in the Wavefunction overlap

g-function

g-function: $g = \frac{Z_{dCFT}}{Z_{CFT}}$ Monotonic under RG flow of defect

- 2D bulk: Affleck & Ludwig 1991; Friedan & Konechny 2004
- 3D bulk: Cuomo, Komargodski, Raviv-Moshe 2022
- General dim bulk: Casini, Landea, Torroba 2023

$$g_a = \left(\frac{A_{00}^{a000}}{A_{00}^{a0aa}}\right)^2$$

Our estimates: g = 0.602(2)Zhou, Gaiotto, YCH, Zou,

$$\epsilon$$
 expansion: $g = 0.57 + O(\epsilon^2)$
Cuomo, Komargodski & Mezei 2022

Can we have spontaneous Z2 breaking defect?

A lot to explore in this fuzzy world

- Critical gauge theories: QED3, QCD3, Chern-Simons matter theories, etc.
- 2+1D CFT at finite temperature, Cardy formula
- Conformal defect
- Entanglement
- Non-equilibrium dynamics, quantum chaos
- Complex fixed point, complex CFT
- Landscape of CFTs, new CFTs
- Higher dimensional generalizations

Summary

Thank you!

- We proposed a new scheme called fuzzy sphere regularization to study 3D CFTs by making use of the quantum Hall physics and noncommutative geometry.
- A major surprise is that it miraculously works for a very small system size, i.e. N=4~16 spins.
- A wealth of information (e.g. operator spectrum, OPE coefficients, Ffunction) as well as different CFTs (e.g. Wilson-Fisher, critical gauge theories, defect CFTs) can be computed efficiently in this scheme.
- A lot to explore in the future, e.g. the connection between noncommutative geometry, CFTs and QFTs.

Let's explore the fuzzy world!