
Improving the Five-Point Bootstrap

David Poland

Yale

Feb 20, 2024

50 + ϵ Years of Conformal Bootstrap

David Poland Improving the Five-Point Bootstrap



Motivation

Monte Carlo

Bootstrap

0.51808 0.51810 0.51812 0.51814 0.51816 0.51818
Δσ

1.4125

1.4126

1.4127

1.4128

1.4129

1.4130

Δϵ

0.518146 0.518148 0.518150 0.518152
1.41260

1.41261

1.41262

1.41263

1.41264

1.41265

10 20 30 40
h

1.00

1.01

1.02

1.03

1.04
τ

τ[σσ]0(h)

[Kos, DP, Simmons-Duffin, Vichi ’16; Simmons-Duffin ’16]

▶ The conformal bootstrap has had some surprising successes in
computing low-lying CFT data in some theories

▶ This comes from applying crossing to 4-point functions involving
scalars, and more recently fermions, currents, and stress tensors
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▶ However, some basic data is not so easy to access using this approach,
e.g. 3-point couplings like ⟨Cℓ=4Cℓ=4ϵ⟩ and ⟨Cℓ=4Cℓ=4T ℓ=2⟩

▶ In principle this data can be computed using 4-point functions like
⟨Cℓ=4Cℓ=4Cℓ=4Cℓ=4⟩, but it has 881 tensor structures!
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The five-point bootstrap

▶ Recently we started exploring what can be extracted from CFT 5-point
functions like ⟨ϕ1ϕ2ϕ3ϕ4ϕ5⟩ [DP, Prilepina, Tadic, May ’23; Dec ’23]

▶ It gives a convenient probe of 3-point functions w/ 2 spinning operators:

⟨O∆,ℓ ϕO′
∆′,ℓ′⟩(nIJ ) ∝ V ℓ−nIJ

1 V ℓ′−nIJ
3 HnIJ

13 (nIJ = 0, . . . ,min(ℓ, ℓ′))
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Five-point blocks

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)ϕ5(x5)⟩ =∑
(O∆,ℓ,O′

∆′,ℓ′ )

min(ℓ,ℓ′)∑
nIJ=0

(λϕ1ϕ2O∆,ℓ
)(λϕ4ϕ5O′

∆′,ℓ′
)(λnIJ

O∆,ℓϕ3O′
∆′,ℓ′

)

× P (xi)G
(nIJ )
(∆,ℓ,∆′,ℓ′)(u1, v1, u2, v2, w)

u1 =
x212x

2
34

x213x
2
24

, v1 =
x214x

2
23

x213x
2
24

, u2 =
x223x

2
45

x224x
2
35

, v2 =
x225x

2
34

x224x
2
35

, w =
x215x

2
23x

2
34

x224x
2
13x

2
35

▶ Blocks with scalars exchanged can be computed as a series expansion
[Rosenhaus ’18; Parikh ’19; Fortin, Ma, Skiba ’19]

▶ Blocks with spins exchanged can be computed via a couple methods:
▶ Recursion relations relating ℓ → ℓ− 1 [DP, Prilepina ’21]

▶ Solving two quadratic Casimir equations order by order
[Goncalves, Pereira, Zhou ’19; DP, Prilepina, Tadic, May ’23; Dec ’23]
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Cross ratios

[Buric, Lacroix, Mann, Quintavalle, Schomerus ’21]

▶ One can go to a conformal frame which puts {x2, x3, x4} at {0,∞, 1}
▶ The position of x1 on a plane is specified by {z1, z1}, x5 on a different

plane by {z2, z2}, and the angle between the planes w1 = sin(ϕ/2)2

u1 = z1z1 , v1 = (1− z1)(1− z1) ,

u2 = z2z2 , v2 = (1− z2)(1− z2) ,

w = w1(z1 − z1)(z2 − z2) + (1− z1 − z2)(1− z1 − z2)
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Cross ratios

We’ve found it useful to define a set of “radial coordinates” on each plane:
(4pt radial coords: [Pappadopulo, Rychkov, Espin, Rattazzi ’12; Hogervorst, Rychkov’ 13])

zi =
4ρi

(1 + ρi)2
, ρi = rie

iθi , ηi = cos θi , i = 1, 2 ,

R =
√
r1r2 , r =

√
r1
r2

, ŵ =

(
1

2
− w1

)√
(1− η21)(1− η22)
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Five-point blocks

In these coordinates the blocks have a nice expansion:

G
(nIJ )
(∆,ℓ,∆′,ℓ′)(R, r, η1, η2, ŵ) =

∞∑
n=0

R∆+∆′+n
∑
m

∑
j1,j2

min(j1,j2)∑
k=0

c

(
n+m

2
,
n−m

2
, j1, j2, k

)
r∆−∆′+mηj1−k

1 ηj2−k
2 ŵk

m ∈ [−n,−n+ 2, . . . , n− 2, n]

j1 ∈
[
n+m

2
+ ℓ,

n+m

2
+ ℓ− 2, . . . ,Mod

(
n+m

2
+ ℓ, 2

)]
j2 ∈

[
n−m

2
+ ℓ′,

n−m

2
+ ℓ′ − 2, . . . ,Mod

(
n−m

2
+ ℓ′, 2

)]
The power of R gives total exchanged dimension and there is a single ∞-sum
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Five-point blocks

The blocks satisfy two quadratic Casimir equations D2
12G = D2

45G = 0,
giving two recursion relations for the c-coefficients:∑
{m̂1,m̂2,ĵ1,ĵ2,k̂}∈Sj

qj(m̂1, m̂2, ĵ1, ĵ2, k̂)

c

(
n+m

2
+ m̂1,

n−m

2
+ m̂2, j1 + ĵ1, j2 + ĵ2, k + k̂

)
= 0

▶ They have 499 terms but can be easily solved in e.g. Mathematica

▶ To relate to structure nIJ labeling block have boundary conditions:

c(0, 0, ℓ, ℓ′, k) = (−1)ℓ+ℓ′+k+nIJ2k+2(∆+∆′)

(
nIJ

k

)
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Mean-field theory

▶ One application is to expand a known 5-point function in blocks and
read off OPE coefficients

▶ E.g., we can expand the MFT correlator ⟨ϕϕϕ2ϕϕ⟩:

⟨ϕ(x1)ϕ(x2)ϕ2(x3)ϕ(x4)ϕ(x5)⟩ =
(

x24
x12x23x34x45

)2∆

×

√
2

(
(u1)

∆ + (u2)
∆ + (u1u2)

∆ +

(
u1u2
v1

)∆

+

(
u1u2
v2

)∆

+
(u1u2

w

)∆)

and read off the product of OPE coefficients

PnIJ
n,ℓ,n′,ℓ′ ≡ λϕϕ[ϕ,ϕ]n,ℓ

λϕϕ[ϕ,ϕ]n′,ℓ′
λnIJ

[ϕ,ϕ]n,ℓ[ϕ,ϕ]0,0[ϕ,ϕ]n′,ℓ′

(Here [ϕ, ϕ]n,ℓ ∼ ϕ∂µ1...µℓ∂2nϕ) are double-twist operators)
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Mean-field theory

▶ The coefficients with leading twists (n = n′ = 0) were computed in
[Antunes, Costa, Goncalves, Vilas Boas ’22]

▶ We were able to extract the general formula [DP, Prilepina, Tadic, May ’23]:

PnIJ
n,ℓ,n′,ℓ′ =

(−1)nIJ2
5
2
−nIJ (ℓ− nIJ + 1)nIJ (ℓ

′ − nIJ + 1)nIJ (∆) ℓ
2
+n(∆) ℓ′

2
+n′

ℓ!ℓ′!n!n′!nIJ !(ℓ+ ν + 1)(ℓ′ + ν + 1)(ℓ+ ν + 2)n−1(ℓ′ + ν + 2)n′−1

(∆− ν)n(∆− ν)n′(∆− ν)n+n′(
ℓ−1
2 + n+∆

)
ℓ
2

(
ℓ′−1
2 + n′ +∆

)
ℓ′
2

(n+ 2∆− 2ν − 1)n(n′ + 2∆− 2ν − 1)n′

(∆)ℓ+n+n′(∆)ℓ′+n+n′

(ℓ+ n+ 2∆− ν − 1)n(ℓ′ + n′ + 2∆− ν − 1)n′(∆)n+n′+nIJ
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Five-point numerical bootstrap

We can also try the numerical bootstrap [DP, Prilepina, Tadic, May ’23]:

▶ We expand ⟨σσϵσσ⟩ in the (12)(45) and (14)(25) OPEs

▶ After separating the (1, ϵ) + (ϵ,1) contributions, we get a sum rule:

∑
O,O′ ̸=1

λσσOλ
nIJ
OϵO′λσσO′

(
PGO,O′ − P̃ G̃O,O′

)
λσσϵ

(
P̃ G̃1,ϵ + P̃ G̃ϵ,1 − PG1,ϵ − PGϵ,1

) = 1

▶ We truncate to include operators with ∆ ≤ ∆cutoff, and fix exchanged
dimensions and λσσO coefficients to their known values

▶ Then we choose a set of derivatives of the sum rule and search for the
λnIJ
OϵO′ coefficients that make these equations closest to being satisfied

(by minimizing a cost function)
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Five-point configuration

▶ Expand around configuration: ϕ = π/2 and x212 = x214 = x252 = x254 = 1

▶ In radial coordinates it is: R = 2−
√
3, r = 1, ηi = ŵ = 0
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Five-point block convergence
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▶ The radius of convergence in R is controlled by the singularity x215 = 0

▶ In general it is a complicated function of {r, η1, η2, ŵ}
(determined by the smallest root of an 8th order polynomial)

▶ Above shows R̃ = Rmax/(2−
√
3) vs. ŵ at r = 1, ηi = 0
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Five-point block convergence
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▶ Blocks/derivatives eventually converge but first show big oscillations

▶ It is very helpful to accelerate the convergence of the series using a
Padé approximant: GPadé ≡

[
Nmax

2 /Nmax
2

]
G
(R)
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3d free scalar with hard truncation

▶ We studied ⟨ϕϕϕ2ϕϕ⟩ and included the exchanged operators:

{1, ϕ2, Tµν ∼ ϕ∂µ∂νϕ, Cµνρσ ∼ ϕ∂µ∂ν∂ρ∂σϕ}

▶ Treat {∆ϕ, λTϕ2T , λTϕ2C , λCϕ2C} as unknowns, input other data

▶ Pick a set of derivatives of the sum rule Di(∆ϕ, λ), minimize cost

function
∑

wi

(
Di(∆ϕ,λ)
Di(∆ϕ,0)

)2
with randomly chosen weights wi ∈ [0, 1]

▶ Take Di which gives ∆ϕ ∼ 0.5 with smallest deviation as wi varied
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3d free scalar with hard truncation

Results:

truncation exact

∆ϕ 0.5000(3) 0.500000

λ0
Tϕ2T 0.52(1) 0.530330

λ0
Tϕ2C 0.21(2) 0.226428

λ4
Cϕ2C 0.03(2) 0.022097

λ3
Cϕ2C -1.0(3) -0.618718

λ2
Cϕ2C 5.1(9) 2.320194

λ1
Cϕ2C 2(2) -1.546796

λ0
Cϕ2C 1.2(5) 0.096675

(Inputs: ∆ϕ2 ,∆T ,∆C , λϕϕϕ2 , λϕϕT , λϕϕC , λϕ2ϕ2ϕ2 , λϕ2ϕ2T , λϕ2ϕ2C)
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3d free scalar with hard truncation
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3d Ising with hard truncation

▶ We studied ⟨σσϵσσ⟩ and included the exchanged operators:

{1, ϵ, ϵ′, Tµν , Cµνρσ}

▶ Treat {∆σ, λTϵT , λTϵC , λCϵC , λϵ′ϵϵ′ , λϵ′ϵC} as unknowns, input other
data using best 4-point bootstrap results

▶ Pick a set of derivatives of the sum rule Di(∆σ, λ), minimize cost

function
∑

wi

(
Di(∆σ ,λ)
Di(∆σ ,0)

)2
with randomly chosen weights wi ∈ [0, 1]

▶ Take Di which gives ∆σ ∼ 0.51815 with smallest deviation as wi varied
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3d Ising with hard truncation

Results:

truncation

∆σ 0.518(2)

λ0
TϵT 0.81(5)

λ0
TϵC 0.30(6)

λ4
CϵC -0.3(1)

λ3
CϵC -2(2)

λ2
CϵC 2(5)

λ1
CϵC -5(11)

λ0
CϵC -3(11)

λϵ′ϵϵ′ 1(3)
λϵ′ϵC 0(2)

(Inputs: ∆ϵ,∆ϵ′ ,∆T ,∆C , λσσϵ, λϵϵϵ, λσσϵ′ , λϵϵϵ′ , λσσT , λϵϵT , λσσC , λϵϵC)
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3d Ising with hard truncation
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Disconnnected-correlator improvement

▶ These results can be improved further by introducing an approximation
to the truncated contributions [Li, Dec ’23; DP, Prilepina, Tadic, Dec ’23]

▶ E.g. for the 4-point function, we can write:

⟨σσσσ⟩ = ⟨σσσσ⟩MFT +
1

x2∆σ
12 x2∆σ

34

∆max∑
O

(POg∆,ℓ − PMFT
O g∆MFT ,ℓ)

where we use ⟨σσσσ⟩MFT = ⟨σσ⟩⟨σσ⟩+ (perm.) and subtract and
replace a finite number of MFT contributions

▶ Crossing symmetry then gives a sum rule

0 =

∆max∑
O

(POF∆,ℓ − PMFT
O F∆MFT ,ℓ)
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Disconnnected-correlator improvement for 4pt bootstrap

noMFT withMFT Numerical Bootstrap

∆σ 0.514(5) 0.5182(4) 0.5181489(10)

P[ϵ] 1.15(4) 1.106(5) 1.106396(9)
P[ϵ′] -0.010(8) 0.003(2) 0.002810(6)
P[Tµν ] 0.33(5) 0.422(2) 0.425463(1)
P[Cµνρσ] 0.115(9) 0.0768(5) 0.0763(1)

▶ Here we fixed scaling dimensions of {ϵ, ϵ′, Tµν , Cµνρσ} to their known
values and computed OPE coefficients using the improved truncation

▶ As before, minimized cost function after selecting “optimal” derivative
set and estimated errors by varying random weights of each constraint
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Disconnnected correlator for 5pt function

σ

ϵ

σ

σ

▶ For a 5-point function like ⟨σσϵσσ⟩ it is not a good idea to use a MFT
correlator like ⟨σσσ2σσ⟩MFT , since σ2 is very different from ϵ.

▶ Instead, one can use ⟨σσϵσσ⟩d = ⟨σσ⟩⟨ϵσσ⟩+ (perm.), which in an
AdS dual is the leading contribution of a bulk 3-point interaction
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Disconnnected correlator for 5pt function

σ

ϵ

σ

σ

⟨σ(x1)σ(x2)ϵ(x3)σ(x4)σ(x5)⟩d =
λσσϵ

x2∆σ
12 x2∆σ

45 x∆ϵ
34

(
x24
x23

)∆ϵ

×(
u1

∆ϵ
2 + u2

∆ϵ
2 +

(
u1u2
v1v2

)∆σ (
v1

∆ϵ
2 + v2

∆ϵ
2

)
+
(u1u2

w

)∆σ
(
w

∆ϵ
2 + 1

))
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Disconnnected correlator for 5pt function

▶ Decomposing in terms of conformal blocks, one finds (1, ϵ) exchange as
well as all the expected [σ, σ]n,ℓ ∼ σ∂2n∂ℓσ double-twist contributions

⟨σσϵσσ⟩d =P (xi)
(
λσσϵG

(0)
(0,0,∆ϵ,0)

+ λσσϵG
(0)
(∆ϵ,0,0,0)

+
∑

n,ℓ,n′,ℓ′,nIJ

P(n, ℓ, n′, ℓ′, nIJ)G
(nIJ )
(2∆σ+2n+ℓ,ℓ,2∆σ+2n′+ℓ′,ℓ′)

)
,

with

P(0, 2, 0, 2, 0) =
∆2

σ∆
2
ϵ (∆ϵ + 2)2 λσσϵ

4 (2∆σ + 1)2
,

P(0, 2, 0, 4, 0) =
∆2

σ (∆σ + 1)∆2
ϵ (∆ϵ + 2)2 (∆ϵ + 4) (∆ϵ + 6)λσσϵ

96 (2∆σ + 1) (2∆σ + 3) (2∆σ + 5)
,

etc.
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Disconnnected correlator for 5pt function

⟨σσϵσσ⟩d
λ2
[σ,σ]0,2ϵ[σ,σ]0,2

-0.353885

λ1
[σ,σ]0,2ϵ[σ,σ]0,2

-2.892385

λ0
[σ,σ]0,2ϵ[σ,σ]0,2

0.988418

λ2
[σ,σ]0,2ϵ[σ,σ]0,4

0.580279

λ1
[σ,σ]0,2ϵ[σ,σ]0,4

-3.100420

λ0
[σ,σ]0,2ϵ[σ,σ]0,4

0.484382

λ4
[σ,σ]0,4ϵ[σ,σ]0,4

-0.439644

λ3
[σ,σ]0,4ϵ[σ,σ]0,4

-0.231194

λ2
[σ,σ]0,4ϵ[σ,σ]0,4

3.849048

λ1
[σ,σ]0,4ϵ[σ,σ]0,4

-3.276278

λ0
[σ,σ]0,4ϵ[σ,σ]0,4

0.237375

⟨σσϵσσ⟩d
λ2
[σ,σ]0,2ϵ[σ,σ]0,6

1.034441

λ1
[σ,σ]0,2ϵ[σ,σ]0,6

-2.351395

λ0
[σ,σ]0,2ϵ[σ,σ]0,6

0.238792

λ4
[σ,σ]0,4ϵ[σ,σ]0,6

-0.426110

λ3
[σ,σ]0,4ϵ[σ,σ]0,6

-1.729458

λ2
[σ,σ]0,4ϵ[σ,σ]0,6

5.210505

λ1
[σ,σ]0,4ϵ[σ,σ]0,6

-2.475238

λ0
[σ,σ]0,4ϵ[σ,σ]0,6

0.117022

λ6
[σ,σ]0,6ϵ[σ,σ]0,6

-0.318259

λ5
[σ,σ]0,6ϵ[σ,σ]0,6

0.419036

λ4
[σ,σ]0,6ϵ[σ,σ]0,6

0.882017

▶ Plugging in {∆σ,∆ϵ, λσσϵ}, we can get an approximation to the
unknown 3d Ising data (inversion of (1, ϵ) + (ϵ,1) exchange)
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5pt bootstrap for 3d Ising with disc. improvement (DI)

▶ Now we can use it as the starting point for an improved 5pt truncation:

0 =
∑

(O∆,ℓ,O′
∆′,ℓ′ )∈S

min(ℓ,ℓ′)∑
nIJ=0

λσσO∆,ℓ
λσσO′

∆′,ℓ′
λnIJ
O∆,ℓϵO′

∆′,ℓ′
FnIJ
∆,ℓ,∆′,ℓ′−

∑
([σ,σ]n,ℓ,[σ,σ]n′,ℓ′ )∈Sd

min(ℓ,ℓ′)∑
nIJ=0

P(n, ℓ, n′, ℓ′, nIJ)FnIJ

2∆d
σ+2n+ℓ,ℓ,2∆d

σ+2n′+ℓ′,ℓ′

▶ S contains all pairs from {ϵ, ϵ′, Tµν , Cµνρσ}
▶ Sd contains all pairs from {[σ, σ]0,0, [σ, σ]1,0, [σ, σ]0,2, [σ, σ]0,4}
▶ All data except {∆σ, λ

0
TϵT , λ

0
TϵC , λ

nIJ=0...4
CϵC , λϵ′ϵC} fixed to known values
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5pt bootstrap for 3d Ising with disc. improvement (DI)

S,noDI S,withDI

∆σ 0.518(2) 0.5181(6)

λ0
TϵT 0.81(5) 0.96(1)

λ0
TϵC 0.30(6) 0.48(3)

λ4
CϵC -0.3(1) -0.27(2)

λ3
CϵC -2(2) -0.5(4)

λ2
CϵC 2(5) 0.1(9)

λ1
CϵC -5(11) -10(1)

λ0
CϵC -3(11) -4(1)

λϵ′ϵC 0(2) 0.9(4)

▶ Results significantly more constrained

▶ See noticable upward shift in λ0
TϵT and λ0

TϵC
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5pt bootstrap for 3d Ising with disc. improvement (DI)

S,noDI S,withDI +(ϵ, Sµνρσαδ) +(ϵ, Eµ1...µ8)

∆σ 0.518(2) 0.5181(6) 0.5181(6) 0.5181(7)

λ0
TϵT 0.81(5) 0.96(1) 0.959(8) 0.958(7)

λ0
TϵC 0.30(6) 0.48(3) 0.48(2) 0.48(2)

λ4
CϵC -0.3(1) -0.27(2) -0.28(2) -0.28(2)

λ3
CϵC -2(2) -0.5(4) -0.4(2) -0.4(2)

λ2
CϵC 2(5) 0.1(9) 0.3(6) 0.6(9)

λ1
CϵC -5(11) -10(1) -10.3(7) -10(2)

λ0
CϵC -3(11) -4(1) -4.9(6) -4(2)

λϵ′ϵC 0(2) 0.9(4) 1.0(3) 1.1(3)

▶ Results appear stable against adding spin-6 and spin-8 contributions
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5pt bootstrap for 3d Ising with DI
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3d Ising

▶ Let us focus on our determination λ0
TϵT ≃ 0.958(7)

▶ This coefficient was bounded by [Cordova, Maldacena, Turiaci ’17] to satisfy:

|λ0
TϵT | ≤ 0.981(2)

▶ Also recently computed using the ”fuzzy sphere” method [He, He, Zhu ’23]:

λ0
TϵT ≃ 0.8057(65)

▶ This coefficient can also be probed from the stress tensor bootstrap...
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⟨TTTT ⟩ bootstrap in 3d

[Dymarsky, Kos, Kravchuk, Poland, Simmons-Duffin ’17]

[Chang, Dommes, Erramilli, Homrich, Kravchuk, Liu, Mitchell, Poland, Simmons-Duffin]

▶ From stress-tensor 4-point functions one can get general bounds on
parity-even and parity-odd scalar gaps, producing map of CFT landscape
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⟨TTTT ⟩ bootstrap in 3d
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▶ We have computed bounds on the ⟨TTϵ⟩ coefficient after assuming
gaps compatible with 3d Ising
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▶ We have computed bounds on the ⟨TTϵ⟩ coefficient after assuming
gaps compatible with 3d Ising
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⟨TTTT ⟩ bootstrap in 3d
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▶ We have computed bounds on the ⟨TTϵ⟩ coefficient after assuming
gaps compatible with 3d Ising
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⟨TTTT ⟩ bootstrap in 3d
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[Chang, Dommes, Erramilli, Homrich, Kravchuk, Liu, Mitchell, Poland, Simmons-Duffin]

▶ Expect definitive results from {T, σ, ϵ} mixed system (stay tuned...)
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Lessons and Outlook

▶ The 5-point bootstrap works!

▶ We should explore other channels/correlators and extend to 6-points

▶ Blocks are under control, main bottleneck to adding more operators is
handling the many unknown OPE coefficients

▶ Some low-lying observables (e.g. λTTϵ) are sensitive to hard truncations
and greatly benefit from introducing a disconnected approximation

▶ Approximating the truncated spectrum may be useful more generally in
other bootstrap problems where truncation methods are used

David Poland Improving the Five-Point Bootstrap


	Lessons and Outlook

