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Motivation
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[Kos, DP, Simmons-Duffin, Vichi '16; Simmons-Duffin '16]

» The conformal bootstrap has had some surprising successes in
computing low-lying CFT data in some theories

» This comes from applying crossing to 4-point functions involving
scalars, and more recently fermions, currents, and stress tensors
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» However, some basic data is not so easy to access using this approach,
e.g. 3-point couplings like (C*=1C*%¢) and (C*=4C*=4T=2)

» In principle this data can be computed using 4-point functions like
(CH=ACH=AC =404, but it has 881 tensor structures!
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The five-point bootstrap
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» Recently we started exploring what can be extracted from CFT 5-point
functions like <¢1¢2¢3¢4¢5> [DP, Prilepina, Tadic, May '23; Dec '23]

> It gives a convenient probe of 3-point functions w/ 2 spinning operators:
(Oa ¢ Olps )17 oc VTV T MIHTYT (ngy = 0,...,min(¢, ')
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Five-point blocks
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» Blocks with scalars exchanged can be computed as a series expansion
[Rosenhaus '18; Parikh '19; Fortin, Ma, Skiba '19]
» Blocks with spins exchanged can be computed via a couple methods:
» Recursion relations relating £ — ¢ — 1 [DP, Prilepina '21]

» Solving two quadratic Casimir equations order by order
[Goncalves, Pereira, Zhou '19; DP, Prilepina, Tadic, May '23; Dec '23]
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Cross ratios
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[Buric, Lacroix, Mann, Quintavalle, Schomerus '21]

» One can go to a conformal frame which puts {z2, 3,24} at {0,00,1}
» The position of 1 on a plane is specified by {z1,Z1}, x5 on a different
plane by {z9,%2}, and the angle between the planes w; = sin(¢/2)?

uy = 2121, ’1)1:(1—,21)(1—21),
U9 = 2929, Vo = (1 — ZQ)(I —52),

w = w1(21 —21)(22 —52) + (1 —2z1 — 22)(1 —Z1 —52)
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Cross ratios
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We've found it useful to define a set of “radial coordinates” on each plane:
(4pt radial coords: [Pappadopulo, Rychkov, Espin, Rattazzi '12; Hogervorst, Rychkov’ 13])

4pi i0; -
zZi = (1+pz)27 pi:T’iel ) 771‘:0039% 1= 1727
r . 1
R = \/rirs, r= 7;7 w:<2—w1>\/(1—n%)(1—n§)
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Five-point blocks

In these coordinates the blocks have a nice expansion:

( ) mln(]h]Q
I D A+A+
G(A{zAlll)(RaT) m,n2,w ) = ZR nz Z Z
mj1,j2
c nt m, u?jl,j% k TA—A/—l-mn{lfknngkuA)k
2 2
me[-n,—n+2,...,n—2,n]

jie [”+m+e ”+m+e 2. Mod(n;erE,Q)]
n—m_ 0=

m
0.2
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The power of R gives total exchanged dimension and there is a single co-sum

jge[ m+£’—2,...,Mod<”_
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Five-point blocks

The blocks satisfy two quadratic Casimir equations D3,G = D3,G = 0,
giving two recursion relations for the c-coefficients:

Z qj(1ha, e, J1, J2, k)
{1 im2,J1,52,k}ES;

n+m L~ n—m A A A A
C( 9 +m17 2 +m27]1 +]15]2 +]27k+k> =0

» They have 499 terms but can be easily solved in e.g. Mathematica

» To relate to structure ny; labeling block have boundary conditions:

! L) = (1) R gk2(A+A) (VT
C(0,0,f,f,k) ( ) k
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Mean-field theory

» One application is to expand a known 5-point function in blocks and
read off OPE coefficients

» E.g., we can expand the MFT correlator (¢pp¢p?ge):

X12L23X34T45
A A A ui1uU2 A uiLuU2 A uiLuU A
V2 (u1)= + (u2)= + (uru2)= + + +
(3 () w

and read off the product of OPE coefficients

T 2A
(6(@1)S(2) 82 (23)B4)d(5)) = (24> y

Y13 S n
Py i 00 = A010,81n,eA0810.8) 01,00 N6l o 6,80 0[6:8]0

(Here [¢, @lne ~ ¢pO1-H£5?"$) are double-twist operators)
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Mean-field theory

> The coefficients with leading twists (n = n’ = 0) were computed in

[Antunes, Costa, Goncalves, Vilas Boas '22]

» We were able to extract the general formula [DP, Prilepina, Tadic, May '23]:

nrg o _
ndn' 0
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Five-point numerical bootstrap

We can also try the numerical bootstrap [DP, Prilepina, Tadic, May '23]:

» We expand (ooeoo) in the (12)(45) and (14)(25) OPEs
> After separating the (1,¢) + (e, 1) contributions, we get a sum rule:

AooOAGtr Ao <P Goo — P éo,@)

0,041 Aooe (Pél,e + PGe1— PGy — PGe,l)

=1

» We truncate to include operators with A < Actoff, and fix exchanged
dimensions and \,,» coefficients to their known values

» Then we choose a set of derivatives of the sum rule and search for the
Aot coefficients that make these equations closest to being satisfied
(by minimizing a cost function)
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Five-point configuration

» Expand around configuration: ¢ = 7/2 and 2%, = 23, = 2%, =23, =1
» In radial coordinates it is: R=2-\V3r=1n=1w=0
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Five-point block convergence
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» The radius of convergence in R is controlled by the singularity xir) =0

» In general it is a complicated function of {r,n1,n2, W}
(determined by the smallest root of an 8th order polynomial)

» Above shows R = Rmax/(2—=V3) vs. watr=1,1,=0

David Poland Improving the Five-Point Bootstrap



Five-point block convergence

)

(9.03,8,9.03,8)

8

(

G

. . et .o
R R RO KT L
-0.02[

-0.04

-0.06 -

ol
S,

0 10 20 30 40 50

Nmax

(8)
au& avi aué avé 8“!’G(9.03,s.90378)

50 000}
ua....-u’..:.- B R PR R R
~50 000
0 10 20 2 0 50 %
Nlll&X

EZK/:TL[J:S, A12:A45:0, A3:1.413,A:Al:9.03
R:2—\/§,r:1,n1:n2:w:0.

Blocks/derivatives eventually converge but first show big oscillations

It is very helpful to accelerate the convergence of the series using a

Padé approximant: Gpage = [~ /M2x] . (R)
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3d free scalar with hard truncation

> We studied (¢pp¢p?¢p¢p) and included the exchanged operators:

{la ¢27 T;W ~ ¢8uau¢7 C/u/pa ~ ¢8uayapaa¢}

> Treat {Ag, Apger, Arg2cs Aoz} as unknowns, input other data

» Pick a set of derivatives of the sum rule D;(Ag, A), minimize cost

function > w; Dy (B4.0) with randomly chosen weights w; € [0, 1]

» Take D; which gives Ay ~ 0.5 with smallest deviation as w; varied
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3d free scalar with hard truncation

Results:

truncation | exact
A¢ 0.5000(3) | 0.500000
A%¢2T 0.52(1) 0.530330

N2 | 021(2) | 0.226428
Aogo | 0-03(2) | 0.022097
Moo | -1.0(3) -0.618718
Moo | 5:109) 2.320194
Moo | 2(2) -1.546796
Moo | 1:2(5) 0.096675

(Inputs: A¢2, AT, Ac, )\¢¢¢2, )\¢¢T7 )\¢¢C, )\¢2¢2¢2, )‘¢2¢2Ta >\¢2¢20)
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3d free scalar with hard truncation
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3d Ising with hard truncation

» We studied (coeoo) and included the exchanged operators:
{1, e €, Tuw, Cupt

» Treat {As, A\rer, ATeC, ACeCs Aeeer s Aerec'} @s unknowns, input other
data using best 4-point bootstrap results

> Pick a set of derivatives of the sum rule D;(A,, \), minimize cost
2
function »_ w; (%‘;’8) with randomly chosen weights w; € [0, 1]

» Take D; which gives A, ~ 0.51815 with smallest deviation as w; varied
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3d Ising with hard truncation

Results:

truncation
A, 0.518(2)
)\STET 0.81(5)
e o2
SCEC - ( )
)‘geC ( )
Alcec 2(5)
Acec | -5(11)
)\%EC _3(11)
Aereer | 1(3)
)‘e’eC’ 0(2)

(Inputs: Asa Ae’: ATa Ac, /\0067 )\6667 )\0'0'6’7 )\666’7 >\O'O'T7 >\€ET7 )\006’7 )\esC)
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3d Ising with hard truncation
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Disconnnected-correlator improvement

» These results can be improved further by introducing an approximation
to the truncated contributions [Li, Dec '23; DP, Prilepina, Tadic, Dec '23]

» E.g. for the 4-point function, we can write:

1 Ama)(

(cooo) = (ocooo)pmrr + AL AL Z (Pogae — P(]QVIFTQAMFT,@)
Y12 T34 o

where we use (coo0)ypr = (00){oo) + (perm.) and subtract and
replace a finite number of MFT contributions

» Crossing symmetry then gives a sum rule

Ama><

0= Z (POFA,Z - PgFTFAMFTaz)
o
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Disconnnected-correlator improvement for 4pt bootstrap

noMFT | with MFT | Numerical Bootstrap
A, 0.514(5) | 0.5182(4) | 0.5181489(10)
Ple] 1.15(4) | 1.106(5) | 1.106396(9)
Ple] -0.010(8) | 0.003(2) | 0.002810(6)
P[T,] |0.33(5) | 0.422(2) | 0.425463(1)
P[Cvpo] | 0.115(9) | 0.0768(5) | 0.0763(1)

» Here we fixed scaling dimensions of {¢, €', T},,, Cpo} to their known
values and computed OPE coefficients using the improved truncation

» As before, minimized cost function after selecting “optimal” derivative
set and estimated errors by varying random weights of each constraint
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Disconnnected correlator for 5pt function

» For a 5-point function like (co€eoo) it is not a good idea to use a MFT
correlator like (co0?00) \pr, since o is very different from e.

» Instead, one can use (coeoo)y = (oo){eca) + (perm.), which in an
AdS dual is the leading contribution of a bulk 3-point interaction
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Disconnnected correlator for 5pt function

Asoe «7324) ‘
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Disconnnected correlator for 5pt function

» Decomposing in terms of conformal blocks, one finds (1, €) exchange as
well as all the expected [0, 0,0 ~ 9*"9°c double-twist contributions

+ AO'O'EG(O)

(coeoo)q = P(x;) (AoaeG(O) (A¢,0,0,0)

(0,0,A,0)

1o (n1g)
+ Z P(”v&”vgv"U)G(2A0+2n+z,azA(,+2n/+z/,e'))7

TL,Z,TL’,Z’,TLIJ

with
2 A2 2
P(0,2,0,2,0) = AzA: (B +2) QA"“ ,
4205 +1)
A2 (A, + 1) AZ (A, +2)2 (A, +4) (Ac + 6) Apoe
P(0,2,0,4,0) = 2o l8r LU A B A (At (A 10 dooe
96 (2A, 4+ 1) (2A4 + 3) (2A, +5)
etc.
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Disconnnected correlator for 5pt function

(co€oo)q (coeoa)y
-0.353885 1.034441

[U 0o,2€[0,0]0,2 [o olo.2¢€[o,0]0.6
-2.892385 -2.351395

[ ,0]0,2€[0,0]0,2 [ ,0]o.2€[0,0]0.6
0.988418 0.238792

[U alo,2¢[0,0]0,2 [a alo.2€[o,0]0.6
0.580279 -0.426110

[U alo,2¢[0,0]0,4 [o olo.a€[o,0]0.6
-3.100420 -1.729458

[U alo,2¢€[0,0]0,4 [a alo.a€[o,0]0.6
P\ 0.484382 A2 5.210505

[U 0]o,2€[0,0]0,4 [U alo.a€lo,0]0.6
-0.439644 -2.475238

[U alo,a¢€[0,0]0,4 [o olo.a€[o,0]0.6
-0.231194 0.117022

[U lo.4¢€[0,0]0,4 [cr alo.a€[o,0]0.6
3.849048 -0.318259

[U 7]o,4€[0,0]0.4 [U alo.e€[o,0]0.6
-3.276278 0.419036

[U alo,4¢€[0,0]0,4 [a dlo.e€[o,0]0.6
0.237375 0.882017

[U alo,4€[0,0]0.4 [a alo.6€[o,0]0.6

» Plugging in {As, A¢, \soc}, We can get an approximation to the
unknown 3d Ising data (inversion of (1,¢€) + (€,1) exchange)



5pt bootstrap for 3d Ising with disc. improvement (DI)

> Now we can use it as the starting point for an improved 5pt truncation:

min(¢,¢")
— nrJj nyJj o
0= D D Aes0sdeo0n A o FAL A
(0a,0,0" a1 ¢r)ES M17=0
min(¢,¢")
ol 1J
Z Z P(”’é’n’E7”U)]:;lAg+2n+e,z,2Ag+zn/+equ

([U,U}n’[,[U,U]n/ll)ESd nry=0

> S contains all pairs from {¢, €, T}, Crupo }
» S, contains all pairs from {[o, 0]0.0, [0, 0]1,0, [0, 002, [0, 004}
=0...4 :
> All data except {Ag, Ao, AJers Al %, Aerec'} fixed to known values
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5pt bootstrap for 3d Ising with disc. improvement (DI)

S,noDI | S, with DI
A, 0.518(2) | 0.5181(6)

Mo | 0.81(5) | 0.96(1)
M. | 0.30(6) | 0.48(3)
Moo | -0.3(1) | -0.27(2)
Moo | -22) | -0.5(4)
Mo | 2(5) 0.1(9)

Mo | -5(11) | -10(1)
Moo | -3(11) | -4(1)
Aeec | 0(2) 0.9(4)

» Results significantly more constrained
> See noticable upward shift in A, and A}
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5pt bootstrap for 3d Ising with disc. improvement (DI)

S,noDI | S,withDI | +(¢, Syvpoas) | +(€Euy..ps)
A, |0.518(2) [ 0.5181(6) | 0.5181(6) 0.5181(7)
A..r | 0.81(5) | 0.96(1) 0.959(8) 0.958(7)
Mo | 0.30(6) | 0.48(3) 0.48(2) 0.48(2)
Moo | -0.3(1) | -0.27(2) | -0.28(2) -0.28(2)
Mo | -2(2) -0.5(4) -0.4(2) -0.4(2)
Moo | 2(5) 0.1(9) 0.3(6) 0.6(9)
Mo | -5(11) | -10(1) -10.3(7) -10(2)
Moo | -3(11) | -4(1) -4.9(6) -4(2)
Ao | 0(2) 0.9(4) 1.0(3) 1.1(3)

» Results appear stable against adding spin-6 and spin-8 contributions
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3d lIsing

> Let us focus on our determination A, ;- ~ 0.958(7)

» This coefficient was bounded by [Cordova, Maldacena, Turiaci '17] to satisfy:
Ao < 0.981(2)

» Also recently computed using the " fuzzy sphere” method [He, He, Zhu '23]:
Mo = 0.8057(65)

» This coefficient can also be probed from the stress tensor bootstrap...
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(TTTT) bootstrap in 3d

Nmax=0,10,14 single correlator

Amh].gnp
12;

O(e0)
4 ~—— Ising A,
2
) I ) e ) ) ) _ ) . ) Acvml.n‘;xp
1 2 3 4 5 6 7 -

[Dymarsky, Kos, Kravchuk, Poland, Simmons-Duffin '17]
[Chang, Dommes, Erramilli, Homrich, Kravchuk, Liu, Mitchell, Poland, Simmons-Duffin]

» From stress-tensor 4-point functions one can get general bounds on
parity-even and parity-odd scalar gaps, producing map of CFT landscape
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(TTTT) bootstrap in 3d

(TTTT) Npar=10,14; Aogq=6; A'even=3.828

» f
,'11":(' ?

& L
£ /,"i' FS

0.2 _’:.,;:"""l" ~— Ising A,

0.0
0.6 0.8 1.0 1.2 14 1.6 1.8 2.0

Aeven

[Chang, Dommes, Erramilli, Homrich, Kravchuk, Liu, Mitchell, Poland, Simmons-Duffin]

» We have computed bounds on the (T'T¢) coefficient after assuming
gaps compatible with 3d Ising
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(TTTT) bootstrap in 3d
(TTTT) npax=10,14; Apga=6; A’ evenZ3 8289

[ | (CT€TT)no disc.

206
g l,’,"i‘r FS |:| (0-0-60-0->disc4
0.4 l,l;:'rl’" M fuzzy sphere
0.2 ,:;;:1"::;/ <~— Ising A,
0.0"
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

A(‘,V(‘,ll
[Chang, Dommes, Erramilli, Homrich, Kravchuk, Liu, Mitchell, Poland, Simmons-Duffin]

» We have computed bounds on the (T'T¢) coefficient after assuming
gaps compatible with 3d Ising
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(TTTT) bootstrap in 3d

A%pre bounds, Ac=1.412625, Au=3.8289

|]-A.(())TTE |

0.9

08 B (TTTT) nypax=14

0.7

0.6 i
80 85 90 95 100 105 110

[Chang, Dommes, Erramilli, Homrich, Kravchuk, Liu, Mitchell, Poland, Simmons-Duffin]

» We have computed bounds on the (T'T¢) coefficient after assuming
gaps compatible with 3d Ising
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(TTTT) bootstrap in 3d

A1 bounds, Ac=1.412625, Ag=3.8289

HAAUOTTG |

0.9 B (TTTT) npax=14

D (TOETT )0 disc.

0.8 M (coera)aise.

M fuzzy sphere
0.7

0.6

Aodd,gap
8.0 8.5 9.0 9.5 10.0 105 11.0

[Chang, Dommes, Erramilli, Homrich, Kravchuk, Liu, Mitchell, Poland, Simmons-Duffin]

> Expect definitive results from {T, o, €} mixed system (stay tuned...)
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Lessons and Outlook

» The 5-point bootstrap works!

v

We should explore other channels/correlators and extend to 6-points

» Blocks are under control, main bottleneck to adding more operators is
handling the many unknown OPE coefficients

» Some low-lying observables (e.g. Apre) are sensitive to hard truncations
and greatly benefit from introducing a disconnected approximation

» Approximating the truncated spectrum may be useful more generally in
other bootstrap problems where truncation methods are used
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