Improving the Five-Point Bootstrap

David Poland
Yale

Feb 20, 2024
$50+\epsilon$ Years of Conformal Bootstrap

Motivation

- The conformal bootstrap has had some surprising successes in computing low-lying CFT data in some theories
- This comes from applying crossing to 4-point functions involving scalars, and more recently fermions, currents, and stress tensors

Motivation

- However, some basic data is not so easy to access using this approach, e.g. 3-point couplings like $\left\langle C^{\ell=4} C^{\ell=4} \epsilon\right\rangle$ and $\left\langle C^{\ell=4} C^{\ell=4} T^{\ell=2}\right\rangle$
- In principle this data can be computed using 4-point functions like $\left\langle C^{\ell=4} C^{\ell=4} C^{\ell=4} C^{\ell=4}\right\rangle$, but it has 881 tensor structures!

The five-point bootstrap

- Recently we started exploring what can be extracted from CFT 5-point functions like $\left\langle\phi_{1} \phi_{2} \phi_{3} \phi_{4} \phi_{5}\right\rangle$ [DP, Prilepina, Tadic, May '23; Dec '23]
- It gives a convenient probe of 3-point functions w/ 2 spinning operators: $\left\langle\mathcal{O}_{\Delta, \ell} \phi \mathcal{O}_{\Delta^{\prime}, \ell^{\prime}}^{\prime}\right\rangle^{\left(n_{I J}\right)} \propto V_{1}^{\ell-n_{I J}} V_{3}^{\ell^{\prime}-n_{I J}} H_{13}^{n_{I J}} \quad\left(n_{I J}=0, \ldots, \min \left(\ell, \ell^{\prime}\right)\right)$

Five-point blocks

$$
\begin{aligned}
& \left\langle\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \phi_{4}\left(x_{4}\right) \phi_{5}\left(x_{5}\right)\right\rangle= \\
& \sum_{\left(\mathcal{O}_{\Delta, \ell}, \mathcal{O}^{\prime}{ }_{\Delta^{\prime}, \ell^{\prime}}\right)} \sum_{n_{I J}=0}^{\min \left(\ell, \ell^{\prime}\right)}\left(\lambda_{\left.\phi_{1} \phi_{2} \mathcal{O}_{\Delta, \ell}\right)}\right)\left(\lambda_{\phi_{4} \phi_{5} \mathcal{O}^{\prime}{ }_{\Delta^{\prime}, \ell^{\prime}}}\right)\left(\lambda_{\mathcal{O}_{\Delta, \ell} \phi_{3} \mathcal{O}^{\prime}{ }_{\Delta^{\prime}, \ell^{\prime}}}^{n_{I J}}\right) \\
& \times P\left(x_{i}\right) G_{\left(\Delta, \ell, \Delta^{\prime}, \ell^{\prime}\right)}^{\left(n_{I J}\right)}\left(u_{1}, v_{1}, u_{2}, v_{2}, w\right) \\
& u_{1}=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}, v_{1}=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}, u_{2}=\frac{x_{23}^{2} x_{45}^{2}}{x_{24}^{2} x_{35}^{2}}, v_{2}=\frac{x_{25}^{2} x_{34}^{2}}{x_{24}^{2} x_{35}^{2}}, w=\frac{x_{15}^{2} x_{23}^{2} x_{34}^{2}}{x_{24}^{2} x_{13}^{2} x_{35}^{2}}
\end{aligned}
$$

- Blocks with scalars exchanged can be computed as a series expansion [Rosenhaus '18; Parikh '19; Fortin, Ma, Skiba '19]
- Blocks with spins exchanged can be computed via a couple methods:
- Recursion relations relating $\ell \rightarrow \ell-1$ [DP, Prilepina '21]
- Solving two quadratic Casimir equations order by order [Goncalves, Pereira, Zhou '19; DP, Prilepina, Tadic, May '23; Dec '23]

Cross ratios

[Buric, Lacroix, Mann, Quintavalle, Schomerus '21]

- One can go to a conformal frame which puts $\left\{x_{2}, x_{3}, x_{4}\right\}$ at $\{0, \infty, 1\}$
- The position of x_{1} on a plane is specified by $\left\{z_{1}, \bar{z}_{1}\right\}, x_{5}$ on a different plane by $\left\{z_{2}, \bar{z}_{2}\right\}$, and the angle between the planes $w_{1}=\sin (\phi / 2)^{2}$

$$
\begin{aligned}
& u_{1}=z_{1} \bar{z}_{1}, \quad v_{1}=\left(1-z_{1}\right)\left(1-\bar{z}_{1}\right) \\
& u_{2}=z_{2} \bar{z}_{2}, \quad v_{2}=\left(1-z_{2}\right)\left(1-\bar{z}_{2}\right) \\
& w=w_{1}\left(z_{1}-\bar{z}_{1}\right)\left(z_{2}-\bar{z}_{2}\right)+\left(1-z_{1}-z_{2}\right)\left(1-\bar{z}_{1}-\bar{z}_{2}\right)
\end{aligned}
$$

Cross ratios

We've found it useful to define a set of "radial coordinates" on each plane: (4pt radial coords: [Pappadopulo, Rychkov, Espin, Rattazzi '12; Hogervorst, Rychkov' 13])

$$
\begin{aligned}
& z_{i}=\frac{4 \rho_{i}}{\left(1+\rho_{i}\right)^{2}}, \quad \rho_{i}=r_{i} e^{i \theta_{i}}, \quad \eta_{i}=\cos \theta_{i}, \quad i=1,2, \\
& R=\sqrt{r_{1} r_{2}}, \quad r=\sqrt{\frac{r_{1}}{r_{2}}}, \quad \hat{w}=\left(\frac{1}{2}-w_{1}\right) \sqrt{\left(1-\eta_{1}^{2}\right)\left(1-\eta_{2}^{2}\right)}
\end{aligned}
$$

Five-point blocks

In these coordinates the blocks have a nice expansion:

$$
\begin{aligned}
& G_{\left(\Delta, \ell, \Delta^{\prime}, \ell^{\prime}\right)}^{\left(n_{I J}\right)}\left(R, r, \eta_{1}, \eta_{2}, \hat{w}\right)=\sum_{n=0}^{\infty} R^{\Delta+\Delta^{\prime}+n} \sum_{m} \sum_{j_{1}, j_{2}} \sum_{k=0}^{\min \left(j_{1}, j_{2}\right)} \\
& \quad c\left(\frac{n+m}{2}, \frac{n-m}{2}, j_{1}, j_{2}, k\right) r^{\Delta-\Delta^{\prime}+m} \eta_{1}^{j_{1}-k} \eta_{2}^{j_{2}-k} \hat{w}^{k} \\
& m \in[-n,-n+2, \ldots, n-2, n] \\
& j_{1} \in\left[\frac{n+m}{2}+\ell, \frac{n+m}{2}+\ell-2, \ldots, \operatorname{Mod}\left(\frac{n+m}{2}+\ell, 2\right)\right] \\
& j_{2} \in\left[\frac{n-m}{2}+\ell^{\prime}, \frac{n-m}{2}+\ell^{\prime}-2, \ldots, \operatorname{Mod}\left(\frac{n-m}{2}+\ell^{\prime}, 2\right)\right]
\end{aligned}
$$

The power of R gives total exchanged dimension and there is a single ∞-sum

Five-point blocks

The blocks satisfy two quadratic Casimir equations $\mathcal{D}_{12}^{2} G=\mathcal{D}_{45}^{2} G=0$, giving two recursion relations for the c-coefficients:

$$
\sum_{\left\{\hat{m}_{1}, \hat{m}_{2}, \hat{j}_{1}, \hat{j}_{2}, \hat{k}\right\} \in \mathcal{S}_{j}} q_{j}\left(\hat{m}_{1}, \hat{m}_{2}, \hat{j}_{1}, \hat{j}_{2}, \hat{k}\right)
$$

$$
c\left(\frac{n+m}{2}+\hat{m}_{1}, \frac{n-m}{2}+\hat{m}_{2}, j_{1}+\hat{j}_{1}, j_{2}+\hat{j}_{2}, k+\hat{k}\right)=0
$$

- They have 499 terms but can be easily solved in e.g. Mathematica
- To relate to structure $n_{I J}$ labeling block have boundary conditions:

$$
c\left(0,0, \ell, \ell^{\prime}, k\right)=(-1)^{\ell+\ell^{\prime}+k+n_{I J}} 2^{k+2\left(\Delta+\Delta^{\prime}\right)}\binom{n_{I J}}{k}
$$

Mean-field theory

- One application is to expand a known 5-point function in blocks and read off OPE coefficients
- E.g., we can expand the MFT correlator $\left\langle\phi \phi \phi^{2} \phi \phi\right\rangle$:

$$
\begin{aligned}
& \left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi^{2}\left(x_{3}\right) \phi\left(x_{4}\right) \phi\left(x_{5}\right)\right\rangle=\left(\frac{x_{24}}{x_{12} x_{23} x_{34} x_{45}}\right)^{2 \Delta} \times \\
& \sqrt{2}\left(\left(u_{1}\right)^{\Delta}+\left(u_{2}\right)^{\Delta}+\left(u_{1} u_{2}\right)^{\Delta}+\left(\frac{u_{1} u_{2}}{v_{1}}\right)^{\Delta}+\left(\frac{u_{1} u_{2}}{v_{2}}\right)^{\Delta}+\left(\frac{u_{1} u_{2}}{w}\right)^{\Delta}\right)
\end{aligned}
$$

and read off the product of OPE coefficients

$$
P_{n, \ell, n^{\prime}, \ell^{\prime}}^{n_{I J}} \equiv \lambda_{\phi \phi[\phi, \phi]_{n, \ell}} \lambda_{\phi \phi[\phi, \phi]_{n^{\prime}, \ell^{\prime}}} \lambda_{[\phi, \phi]_{n, \ell}[\phi, \phi]_{0,0}[\phi, \phi]_{n^{\prime}, \ell^{\prime}}}^{n_{I J}}
$$

(Here $\left.[\phi, \phi]_{n, \ell} \sim \phi \partial^{\mu_{1} \ldots \mu_{\ell}} \partial^{2 n} \phi\right)$ are double-twist operators)

Mean-field theory

- The coefficients with leading twists $\left(n=n^{\prime}=0\right)$ were computed in [Antunes, Costa, Goncalves, Vilas Boas '22]
- We were able to extract the general formula [DP, Prilepina, Tadic, May '23]:

$$
\begin{aligned}
& P_{n, \ell, n^{\prime}, \ell^{\prime}}^{n_{I J}=} \\
& \begin{array}{l}
(-1)^{n_{I J}} 2^{\frac{5}{2}-n_{I J}}\left(\ell-n_{I J}+1\right)_{n_{I J}}\left(\ell^{\prime}-n_{I J}+1\right)_{n_{I J}}(\Delta)_{\frac{\ell}{2}+n}(\Delta)_{\frac{\ell^{\prime}}{2}+n^{\prime}} \\
\frac{\ell!\ell^{\prime}!n!n!n^{\prime}!n_{I J}!(\ell+\nu+1)\left(\ell^{\prime}+\nu+1\right)(\ell+\nu+2)_{n-1}\left(\ell^{\prime}+\nu+2\right)_{n^{\prime}-1}}{} \\
\frac{(\Delta-\nu)_{n}(\Delta-\nu)_{n^{\prime}}(\Delta-\nu)_{n+n^{\prime}}}{\left(\frac{\ell-1}{2}+n+\Delta\right)_{\frac{\ell}{2}}\left(\frac{\ell^{\prime}-1}{2}+n^{\prime}+\Delta\right)_{\frac{\ell^{\prime}}{2}}(n+2 \Delta-2 \nu-1)_{n}\left(n^{\prime}+2 \Delta-2 \nu-1\right)_{n^{\prime}}} \\
\frac{(\Delta)_{\ell+n+n^{\prime}}(\Delta)_{\ell^{\prime}+n+n^{\prime}}}{(\ell+n+2 \Delta-\nu-1)_{n}\left(\ell^{\prime}+n^{\prime}+2 \Delta-\nu-1\right)_{n^{\prime}}(\Delta)_{n+n^{\prime}+n_{I J}}}
\end{array}
\end{aligned}
$$

Five-point numerical bootstrap

We can also try the numerical bootstrap [DP, Prilepina, Tadic, May '23]:

- We expand $\langle\sigma \sigma \epsilon \sigma \sigma\rangle$ in the (12)(45) and (14)(25) OPEs
- After separating the $(\mathbb{1}, \epsilon)+(\epsilon, \mathbb{1})$ contributions, we get a sum rule:

$$
\sum_{\mathcal{O}, \mathcal{O}^{\prime} \neq \mathbb{1}} \frac{\lambda_{\sigma \sigma \mathcal{O}} \lambda_{\mathcal{O} \epsilon \mathcal{O}^{\prime}}^{n_{I J}} \lambda_{\sigma \sigma \mathcal{O}^{\prime}}\left(P G_{\mathcal{O}, \mathcal{O}^{\prime}}-\tilde{P} \tilde{G}_{\mathcal{O}, \mathcal{O}^{\prime}}\right)}{\lambda_{\sigma \sigma \epsilon}\left(\tilde{P} \tilde{G}_{\mathbb{1}, \epsilon}+\tilde{P} \tilde{G}_{\epsilon, \mathbb{1}}-P G_{\mathbb{1}, \epsilon}-P G_{\epsilon, \mathbb{1}}\right)}=1
$$

- We truncate to include operators with $\Delta \leq \Delta_{\text {cutoff, }}$ and fix exchanged dimensions and $\lambda_{\sigma \sigma \mathcal{O}}$ coefficients to their known values
- Then we choose a set of derivatives of the sum rule and search for the $\lambda_{\mathcal{O} \epsilon \mathcal{O}^{\prime}}^{n_{I J}}$ coefficients that make these equations closest to being satisfied (by minimizing a cost function)

Five-point configuration

- Expand around configuration: $\phi=\pi / 2$ and $x_{12}^{2}=x_{14}^{2}=x_{52}^{2}=x_{54}^{2}=1$
- In radial coordinates it is: $\quad R=2-\sqrt{3}, r=1, \eta_{i}=\hat{w}=0$

Five-point block convergence

- The radius of convergence in R is controlled by the singularity $x_{15}^{2}=0$
- In general it is a complicated function of $\left\{r, \eta_{1}, \eta_{2}, \hat{w}\right\}$ (determined by the smallest root of an 8th order polynomial)
- Above shows $\tilde{R}=R_{\text {max }} /(2-\sqrt{3})$ vs. \hat{w} at $r=1, \eta_{i}=0$

Five-point block convergence

- Blocks/derivatives eventually converge but first show big oscillations
- It is very helpful to accelerate the convergence of the series using a Padé approximant: $G_{\text {Padé }} \equiv\left[\frac{N_{\max }}{2} / \frac{N_{\max }}{2}\right]_{G}(R)$

3d free scalar with hard truncation

- We studied $\left\langle\phi \phi \phi^{2} \phi \phi\right\rangle$ and included the exchanged operators:

$$
\left\{\mathbb{1}, \quad \phi^{2}, \quad T_{\mu \nu} \sim \phi \partial_{\mu} \partial_{\nu} \phi, \quad C_{\mu \nu \rho \sigma} \sim \phi \partial_{\mu} \partial_{\nu} \partial_{\rho} \partial_{\sigma} \phi\right\}
$$

- Treat $\left\{\Delta_{\phi}, \lambda_{T \phi^{2} T}, \lambda_{T \phi^{2} C}, \lambda_{C \phi^{2} C}\right\}$ as unknowns, input other data
- Pick a set of derivatives of the sum rule $\mathcal{D}_{i}\left(\Delta_{\phi}, \lambda\right)$, minimize cost function $\sum w_{i}\left(\frac{\mathcal{D}_{i}\left(\Delta_{\phi}, \lambda\right)}{\mathcal{D}_{i}\left(\Delta_{\phi}, 0\right)}\right)^{2}$ with randomly chosen weights $w_{i} \in[0,1]$
- Take \mathcal{D}_{i} which gives $\Delta_{\phi} \sim 0.5$ with smallest deviation as w_{i} varied

3d free scalar with hard truncation

Results:

	truncation	exact
Δ_{ϕ}	$0.5000(3)$	0.500000
$\lambda_{T \phi^{2} T}^{0}$	$0.52(1)$	0.530330
$\lambda_{T \phi^{2} C}^{0}$	$0.21(2)$	0.226428
$\lambda_{C \phi^{2} C}^{4}$	$0.03(2)$	0.022097
$\lambda_{C \phi^{2} C}^{3}$	$-1.0(3)$	-0.618718
$\lambda_{C \phi^{2} C}^{2}$	$5.1(9)$	2.320194
$\lambda_{C \phi^{2} C}^{1}$	$2(2)$	-1.546796
$\lambda_{C \phi^{2} C}^{0}$	$1.2(5)$	0.096675

(Inputs: $\Delta_{\phi^{2}}, \Delta_{T}, \Delta_{C}, \lambda_{\phi \phi \phi^{2}}, \lambda_{\phi \phi T}, \lambda_{\phi \phi C}, \lambda_{\phi^{2} \phi^{2} \phi^{2}}, \lambda_{\phi^{2} \phi^{2} T}, \lambda_{\phi^{2} \phi^{2} C}$)

3d free scalar with hard truncation

3d Ising with hard truncation

- We studied $\langle\sigma \sigma \epsilon \sigma \sigma\rangle$ and included the exchanged operators:

$$
\left\{\mathbb{1}, \quad \epsilon, \quad \epsilon^{\prime}, \quad T_{\mu \nu}, \quad C_{\mu \nu \rho \sigma}\right\}
$$

- Treat $\left\{\Delta_{\sigma}, \lambda_{T \epsilon T}, \lambda_{T \epsilon C}, \lambda_{C \epsilon C}, \lambda_{\epsilon^{\prime} \epsilon \epsilon^{\prime}}, \lambda_{\epsilon^{\prime} \epsilon C}\right\}$ as unknowns, input other data using best 4 -point bootstrap results
- Pick a set of derivatives of the sum rule $\mathcal{D}_{i}\left(\Delta_{\sigma}, \lambda\right)$, minimize cost function $\sum w_{i}\left(\frac{\mathcal{D}_{i}\left(\Delta_{\sigma}, \lambda\right)}{\mathcal{D}_{i}\left(\Delta_{\sigma}, 0\right)}\right)^{2}$ with randomly chosen weights $w_{i} \in[0,1]$
- Take \mathcal{D}_{i} which gives $\Delta_{\sigma} \sim 0.51815$ with smallest deviation as w_{i} varied

3d Ising with hard truncation

Results:

	truncation
Δ_{σ}	$0.518(2)$
$\lambda_{T \epsilon T}^{0}$	$0.81(5)$
$\lambda_{T \epsilon C}^{0}$	$0.30(6)$
$\lambda_{C \epsilon C}^{4}$	$-0.3(1)$
$\lambda_{C \epsilon C}^{3}$	$-2(2)$
$\lambda_{C \epsilon C}^{2}$	$2(5)$
$\lambda_{C \epsilon C}^{1}$	$-5(11)$
$\lambda_{C \epsilon C}^{0}$	$-3(11)$
$\lambda_{\epsilon^{\prime} \epsilon \epsilon^{\prime}}$	$1(3)$
$\lambda_{\epsilon^{\prime} \epsilon C}$	$0(2)$

(Inputs: $\Delta_{\epsilon}, \Delta_{\epsilon^{\prime}}, \Delta_{T}, \Delta_{C}, \lambda_{\sigma \sigma \epsilon}, \lambda_{\epsilon \epsilon \epsilon}, \lambda_{\sigma \sigma \epsilon^{\prime}}, \lambda_{\epsilon \epsilon \epsilon^{\prime}}, \lambda_{\sigma \sigma T}, \lambda_{\epsilon \epsilon T}, \lambda_{\sigma \sigma C}, \lambda_{\epsilon \epsilon C}$)

3d Ising with hard truncation

Disconnnected-correlator improvement

- These results can be improved further by introducing an approximation to the truncated contributions [Li, Dec '23; DP, Prilepina, Tadic, Dec '23]
- E.g. for the 4-point function, we can write:

$$
\langle\sigma \sigma \sigma \sigma\rangle=\langle\sigma \sigma \sigma \sigma\rangle_{M F T}+\frac{1}{x_{12}^{2 \Delta_{\sigma}} x_{34}^{2 \Delta_{\sigma}}} \sum_{\mathcal{O}}^{\Delta_{\max }}\left(P_{\mathcal{O}} g_{\Delta, \ell}-P_{\mathcal{O}}^{M F T} g_{\Delta_{M F T}, \ell}\right)
$$

where we use $\langle\sigma \sigma \sigma \sigma\rangle_{M F T}=\langle\sigma \sigma\rangle\langle\sigma \sigma\rangle+$ (perm.) and subtract and replace a finite number of MFT contributions

- Crossing symmetry then gives a sum rule

$$
0=\sum_{\mathcal{O}}^{\Delta_{\max }}\left(P_{\mathcal{O}} F_{\Delta, \ell}-P_{\mathcal{O}}^{M F T} F_{\Delta_{M F T}, \ell}\right)
$$

Disconnnected-correlator improvement for 4pt bootstrap

	no MFT	with MFT	Numerical Bootstrap
Δ_{σ}	$0.514(5)$	$0.5182(4)$	$0.5181489(10)$
$\mathcal{P}[\epsilon]$	$1.15(4)$	$1.106(5)$	$1.106396(9)$
$\mathcal{P}\left[\epsilon^{\prime}\right]$	$-0.010(8)$	$0.003(2)$	$0.002810(6)$
$\mathcal{P}\left[T_{\mu \nu}\right]$	$0.33(5)$	$0.422(2)$	$0.425463(1)$
$\mathcal{P}\left[C_{\mu \nu \rho \sigma}\right]$	$0.115(9)$	$0.0768(5)$	$0.0763(1)$

- Here we fixed scaling dimensions of $\left\{\epsilon, \epsilon^{\prime}, T_{\mu \nu}, C_{\mu \nu \rho \sigma}\right\}$ to their known values and computed OPE coefficients using the improved truncation
- As before, minimized cost function after selecting "optimal" derivative set and estimated errors by varying random weights of each constraint

Disconnnected correlator for 5pt function

- For a 5-point function like $\langle\sigma \sigma \epsilon \sigma \sigma\rangle$ it is not a good idea to use a MFT correlator like $\left\langle\sigma \sigma \sigma^{2} \sigma \sigma\right\rangle_{M F T}$, since σ^{2} is very different from ϵ.
- Instead, one can use $\langle\sigma \sigma \epsilon \sigma \sigma\rangle_{d}=\langle\sigma \sigma\rangle\langle\epsilon \sigma \sigma\rangle+$ (perm.), which in an AdS dual is the leading contribution of a bulk 3-point interaction

Disconnnected correlator for 5pt function

$$
\begin{aligned}
& \left\langle\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \epsilon\left(x_{3}\right) \sigma\left(x_{4}\right) \sigma\left(x_{5}\right)\right\rangle_{d}=\frac{\lambda_{\sigma \sigma \epsilon}}{x_{12}^{2 \Delta_{\sigma}} x_{45}^{2 \Delta_{\sigma}} x_{34}^{\Delta_{\epsilon}}}\left(\frac{x_{24}}{x_{23}}\right)^{\Delta_{\epsilon}} \times \\
& \left(u_{1}{ }^{\frac{\Delta_{\epsilon}}{2}}+u_{2}{ }^{\frac{\Delta_{\epsilon}}{2}}+\left(\frac{u_{1} u_{2}}{v_{1} v_{2}}\right)^{\Delta_{\sigma}}\left(v_{1}^{\frac{\Delta_{\epsilon}}{2}}+v_{2}^{\frac{\Delta_{\epsilon}}{2}}\right)+\left(\frac{u_{1} u_{2}}{w}\right)^{\Delta_{\sigma}}\left(w^{\frac{\Delta_{\epsilon}}{2}}+1\right)\right)
\end{aligned}
$$

Disconnnected correlator for 5pt function

- Decomposing in terms of conformal blocks, one finds $(\mathbb{1}, \epsilon)$ exchange as well as all the expected $[\sigma, \sigma]_{n, \ell} \sim \sigma \partial^{2 n} \partial^{\ell} \sigma$ double-twist contributions

$$
\begin{aligned}
\langle\sigma \sigma \epsilon \sigma \sigma\rangle_{d}= & P\left(x_{i}\right)\left(\lambda_{\sigma \sigma \epsilon} G_{\left(0,0, \Delta_{\epsilon}, 0\right)}^{(0)}+\lambda_{\sigma \sigma \epsilon} G_{\left(\Delta_{\epsilon}, 0,0,0\right)}^{(0)}\right. \\
& \left.+\sum_{n, \ell, n^{\prime}, \ell^{\prime}, n_{I J}} \mathcal{P}\left(n, \ell, n^{\prime}, \ell^{\prime}, n_{I J}\right) G_{\left(2 \Delta_{\sigma}+2 n+\ell, \ell, 2 \Delta_{\sigma}+2 n^{\prime}+\ell^{\prime}, \ell^{\prime}\right)}^{\left(n_{I J}\right)}\right),
\end{aligned}
$$

with

$$
\begin{aligned}
& \mathcal{P}(0,2,0,2,0)=\frac{\Delta_{\sigma}^{2} \Delta_{\epsilon}^{2}\left(\Delta_{\epsilon}+2\right)^{2} \lambda_{\sigma \sigma \epsilon}}{4\left(2 \Delta_{\sigma}+1\right)^{2}} \\
& \mathcal{P}(0,2,0,4,0)=\frac{\Delta_{\sigma}^{2}\left(\Delta_{\sigma}+1\right) \Delta_{\epsilon}^{2}\left(\Delta_{\epsilon}+2\right)^{2}\left(\Delta_{\epsilon}+4\right)\left(\Delta_{\epsilon}+6\right) \lambda_{\sigma \sigma \epsilon}}{96\left(2 \Delta_{\sigma}+1\right)\left(2 \Delta_{\sigma}+3\right)\left(2 \Delta_{\sigma}+5\right)}
\end{aligned}
$$

etc.

Disconnnected correlator for 5pt function

	$\langle\sigma \sigma \epsilon \sigma \sigma\rangle_{d}$
$\lambda_{[\sigma, \sigma]_{0,2} \epsilon[\sigma, \sigma]_{0,2}}^{2}$	-0.353885
$\lambda_{[\sigma, \sigma]_{0,2} \epsilon[\sigma, \sigma]_{0,2}}^{1}$	-2.892385
$\lambda_{[\sigma, \sigma]_{0,2} \epsilon[\sigma, \sigma]_{0,2}}^{0}$	0.988418
$\lambda_{[\sigma, \sigma]_{0,2} \epsilon[\sigma, \sigma]_{0,4}}^{2}$	0.580279
$\lambda_{[\sigma, \sigma]_{0,2} \epsilon[\sigma, \sigma]_{0,4}}^{1}$	-3.100420
$\lambda_{[\sigma, \sigma]_{0,2} \epsilon[\sigma, \sigma]_{0,4}}^{0}$	0.484382
$\lambda_{[\sigma]_{0,4} \epsilon[\sigma, \sigma]_{0,4}}^{4}$	-0.439644
$\lambda_{[\sigma, \sigma]_{0,4} \epsilon[\sigma, \sigma]_{0,4}}^{3}$	-0.231194
$\lambda_{[\sigma, \sigma]_{0,4} \epsilon[\sigma, \sigma]_{0,4}}^{2}$	3.849048
$\lambda_{[\sigma, \sigma]_{0,4} \epsilon[\sigma, \sigma]_{0,4}}^{1}$	-3.276278
$\lambda_{[\sigma, \sigma]_{0,4} \epsilon[\sigma, \sigma]_{0,4}}^{0}$	0.237375

	$\langle\sigma \sigma \epsilon \sigma \sigma\rangle_{d}$
$\lambda_{[\sigma, \sigma]_{0,2} \epsilon[\sigma, \sigma]_{0,6}}^{2}$	1.034441
$\lambda_{[\sigma, \sigma]_{0,2} \epsilon[\sigma, \sigma]_{0,6}}^{1}$	-2.351395
$\lambda_{[\sigma, \sigma]_{0,2} \epsilon[\sigma, \sigma]_{0,6}}^{0}$	0.238792
$\lambda_{[\sigma, \sigma]_{0,4} \epsilon[\sigma, \sigma]_{0,6}}^{4}$	-0.426110
$\lambda_{[\sigma, \sigma]_{0,4} \epsilon[\sigma, \sigma]_{0,6}}^{3}$	-1.729458
$\lambda_{[\sigma, \sigma]_{0,4} \epsilon[\sigma, \sigma]_{0,6}}^{2}$	5.210505
$\lambda_{[\sigma, \sigma]_{0,4} \epsilon[\sigma, \sigma]_{0,6}}^{\square}$	-2.475238
$\lambda_{[\sigma, \sigma]_{0,4} \epsilon[\sigma, \sigma]_{0,6}}^{0}$	0.117022
$\lambda_{[\sigma, \sigma]_{0,6} \epsilon[\sigma, \sigma]_{0,6}}^{6}$	-0.318259
$\lambda_{[\sigma, \sigma]_{0,6} \epsilon[\sigma, \sigma]_{0,6}}^{5}$	0.419036
$\lambda_{[\sigma, \sigma]_{0,6} \epsilon[\sigma, \sigma]_{0,6}}^{4}$	0.882017

- Plugging in $\left\{\Delta_{\sigma}, \Delta_{\epsilon}, \lambda_{\sigma \sigma \epsilon}\right\}$, we can get an approximation to the unknown 3d Ising data (inversion of $(\mathbb{1}, \epsilon)+(\epsilon, \mathbb{1})$ exchange)

5pt bootstrap for 3d Ising with disc. improvement (DI)

- Now we can use it as the starting point for an improved 5pt truncation:

$$
\begin{aligned}
& 0=\sum_{\left(\mathcal{O}_{\Delta, \ell,}, \mathcal{O}^{\prime}{ }_{\Delta^{\prime}, \ell^{\prime}}\right) \in \mathcal{S}} \sum_{n_{I J}=0}^{\min \left(\ell, \ell^{\prime}\right)} \lambda_{\sigma \sigma \mathcal{O}_{\Delta, \ell}} \lambda_{\sigma \sigma \mathcal{O}^{\prime} \Delta^{\prime}, \ell^{\prime}} n_{\mathcal{O}_{\Delta, \ell} \mathcal{O}^{\mathcal{O}^{\prime}}{ }_{\Delta^{\prime}, \ell^{\prime}}}^{n_{\Delta}} \mathcal{F}_{\Delta, \ell, \Delta^{\prime}, \ell^{\prime}}^{n_{I J}}- \\
& \sum_{\left([\sigma, \sigma]_{\left.n, \ell,[\sigma, \sigma]_{n^{\prime}, \ell^{\prime}}\right) \in \mathcal{S}_{d}}\right.} \sum_{n_{I J}=0}^{\min \left(\ell, \ell^{\prime}\right)} \mathcal{P}\left(n, \ell, n^{\prime}, \ell^{\prime}, n_{I J}\right) \mathcal{F}_{2 \Delta_{\sigma}^{d}+2 n+\ell, \ell, 2 \Delta \Delta_{\sigma}^{d}+2 n^{\prime}+\ell^{\prime}, \ell^{\prime}}^{n_{I J}}
\end{aligned}
$$

- \mathcal{S} contains all pairs from $\left\{\epsilon, \epsilon^{\prime}, T_{\mu \nu}, C_{\mu \nu \rho \sigma}\right\}$
- \mathcal{S}_{d} contains all pairs from $\left\{[\sigma, \sigma]_{0,0},[\sigma, \sigma]_{1,0},[\sigma, \sigma]_{0,2},[\sigma, \sigma]_{0,4}\right\}$
- All data except $\left\{\Delta_{\sigma}, \lambda_{T \epsilon T}^{0}, \lambda_{T \epsilon C}^{0}, \lambda_{C \epsilon C}^{n_{I J}=0 \ldots 4}, \lambda_{\epsilon^{\prime} \epsilon C}\right\}$ fixed to known values

5pt bootstrap for 3d Ising with disc. improvement (DI)

	\mathcal{S}, no DI	\mathcal{S}, with DI
Δ_{σ}	$0.518(2)$	$0.5181(6)$
$\lambda_{T \epsilon T}^{0}$	$0.81(5)$	$0.96(1)$
$\lambda_{T \epsilon C}^{0}$	$0.30(6)$	$0.48(3)$
$\lambda_{C \epsilon C}^{4}$	$-0.3(1)$	$-0.27(2)$
$\lambda_{C \epsilon C}^{3}$	$-2(2)$	$-0.5(4)$
$\lambda_{C \epsilon C}^{2}$	$2(5)$	$0.1(9)$
$\lambda_{C \epsilon C}^{1}$	$-5(11)$	$-10(1)$
$\lambda_{C \epsilon C}^{0}$	$-3(11)$	$-4(1)$
$\lambda_{\epsilon^{\prime} \epsilon C}$	$0(2)$	$0.9(4)$

- Results significantly more constrained
- See noticable upward shift in $\lambda_{T \epsilon T}^{0}$ and $\lambda_{T \epsilon C}^{0}$

5pt bootstrap for 3d Ising with disc. improvement (DI)

	\mathcal{S}, no DI	\mathcal{S}, with DI	$+\left(\epsilon, S_{\mu \nu \rho \sigma \alpha \delta}\right)$	$+\left(\epsilon, \mathcal{E}_{\mu_{1} \ldots \mu_{8}}\right)$
Δ_{σ}	$0.518(2)$	$0.5181(6)$	$0.5181(6)$	$0.5181(7)$
$\lambda_{T \epsilon T}^{0}$	$0.81(5)$	$0.96(1)$	$0.959(8)$	$0.958(7)$
$\lambda_{T \epsilon C}^{0}$	$0.30(6)$	$0.48(3)$	$0.48(2)$	$0.48(2)$
$\lambda_{C \epsilon C}^{4}$	$-0.3(1)$	$-0.27(2)$	$-0.28(2)$	$-0.28(2)$
$\lambda_{C \epsilon C}^{3}$	$-2(2)$	$-0.5(4)$	$-0.4(2)$	$-0.4(2)$
$\lambda_{C \epsilon C}^{2}$	$2(5)$	$0.1(9)$	$0.3(6)$	$0.6(9)$
$\lambda_{C \epsilon C}^{1}$	$-5(11)$	$-10(1)$	$-10.3(7)$	$-10(2)$
$\lambda_{C \epsilon C}^{0}$	$-3(11)$	$-4(1)$	$-4.9(6)$	$-4(2)$
$\lambda_{\epsilon^{\prime} \epsilon C}$	$0(2)$	$0.9(4)$	$1.0(3)$	$1.1(3)$

- Results appear stable against adding spin-6 and spin-8 contributions

5pt bootstrap for 3d Ising with DI

3d Ising

- Let us focus on our determination $\lambda_{T \epsilon T}^{0} \simeq 0.958$ (7)
- This coefficient was bounded by [Cordova, Maldacena, Turiaci '17] to satisfy:

$$
\left|\lambda_{T \epsilon T}^{0}\right| \leq 0.981(2)
$$

- Also recently computed using the "fuzzy sphere" method [He, He, Zhu '23]:

$$
\lambda_{T \epsilon T}^{0} \simeq 0.8057(65)
$$

- This coefficient can also be probed from the stress tensor bootstrap...

$\langle T T T T\rangle$ bootstrap in 3d

$$
n_{\max }=6,10,14 \text { single correlator }
$$

[Chang, Dommes, Erramilli, Homrich, Kravchuk, Liu, Mitchell, Poland, Simmons-Duffin]

- From stress-tensor 4-point functions one can get general bounds on parity-even and parity-odd scalar gaps, producing map of CFT landscape

$\langle T T T T\rangle$ bootstrap in 3d

[Chang, Dommes, Erramilli, Homrich, Kravchuk, Liu, Mitchell, Poland, Simmons-Duffin]

- We have computed bounds on the $\langle T T \epsilon\rangle$ coefficient after assuming gaps compatible with 3d Ising

$\langle T T T T\rangle$ bootstrap in 3d

[Chang, Dommes, Erramilli, Homrich, Kravchuk, Liu, Mitchell, Poland, Simmons-Duffin]

- We have computed bounds on the $\langle T T \epsilon\rangle$ coefficient after assuming gaps compatible with 3d Ising

$\langle T T T T\rangle$ bootstrap in 3d

[Chang, Dommes, Erramilli, Homrich, Kravchuk, Liu, Mitchell, Poland, Simmons-Duffin]

- We have computed bounds on the $\langle T T \epsilon\rangle$ coefficient after assuming gaps compatible with 3d Ising

$\langle T T T T\rangle$ bootstrap in 3d

[Chang, Dommes, Erramilli, Homrich, Kravchuk, Liu, Mitchell, Poland, Simmons-Duffin]

- Expect definitive results from $\{T, \sigma, \epsilon\}$ mixed system (stay tuned...)

Lessons and Outlook

- The 5-point bootstrap works!
- We should explore other channels/correlators and extend to 6-points
- Blocks are under control, main bottleneck to adding more operators is handling the many unknown OPE coefficients
- Some low-lying observables (e.g. $\lambda_{T T \epsilon}$) are sensitive to hard truncations and greatly benefit from introducing a disconnected approximation
- Approximating the truncated spectrum may be useful more generally in other bootstrap problems where truncation methods are used

