Factorization for J / ψ leptoproduction at $s m a l l p_{T}$

Samuel F. Romera
University of the Basque Country (UPV/EHU)

In collaboration with M.G. Echevarria and P. Taels

Gluon TMDs and Quarkonium

- We are interested in TMDs.
- The quark TMDs have been extensively studied by theoretical approaches as well as experimental measurements. On the contrary, the gluon TMDs are almost unknown from experimental aspect. ATLAS Collab., https://arxiv.org/abs/2202.00487
- Quarkonium production is a good tool to extract gluon TMDs:
- Heavy quarks are sensitive to the gluon content of hadrons.
W. J. den Dunnen, J.-P. Lansberg, C. Pisano, M. Schlegel, https://arxiv.org/abs/1401.7611 Dominantly produced by g-g fusion J.-P. Lansberg, C. Pisano, F. Scarpa, M. Schlegel, https://arxiv.org/abs/1710.01684 Gluon TMD fits in Di-J/u production
- J / ψ is straightforward to detect and there are numerous events.
- Challenges: no universality of the LDMEs in the NRQCD approach, quarkonium production mechanism?, theoretical framework, phenomenological analysis, etc.
U. D'Alesio, A. Mukherjee, F. Murgia, C. Pisano and S. Rajesh, https://arxiv.org/abs/2203.03299
H.S. Chung, http://arxiv.org/abs/2211.10201v1
and many others

NRQCD for quarkonium production mechanism Review on universality

Setup (of the talk)

Leptoproduction, e-h

e+e-, pp, photoproduction...
S. Fleming, A.K. Leibovich, T. Mehen, arXiv:hep-ph/0607121
S. Fleming, A.K. Leibovich, T. Mehen, arXiv:hep-ph/0306139
M.G. Echevarria, arXiv:1907.06494
S. Fleming, Y. Makris, T. Mehen, arXiv:1910.03586
A. Bacchetta, D. Boer, C. Pisano, P. Taels, arXiv:1809.02056
-Quarkonium production mechanism: NRQCD factorization
G.T. Bodwin, E. Braaten, G.P. Lepage, arXiv:hep-ph/9407339

$$
\begin{aligned}
& \text { NRQCD: } m, m v, m v^{2} \text { (potential, soft, ultra-soft) }
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{O}_{N \rightarrow J / \psi}=\chi^{\dagger} \mathscr{K}_{N}^{\dagger} \psi \sum_{X}(|J / \psi+X\rangle+\langle J / \psi+X|) \times \psi^{\dagger} \mathscr{K}_{N} \chi \\
N=2 S+1 L_{J}^{[c o l .]} \begin{array}{l}
\text { S: spin } \\
\text { L: angular momentum } \\
\text { J: total angular momentum }
\end{array}
\end{gathered}
$$

Intermediate region
D. Boer, U. D'Alesio, F. Murgia, C. Pisano, S. Rajesh, arXiv: 2004.06740
U. D'Alesio, L. Maxia, F. Murgia, C. Pisano, S. Rajesh, arXiv:2110.07529 D. Boer, J. Bor, L. Maxia, C. Pisano, F. Yuan, arXiv: 2304.09473

About this talk...

- Factorization:
- Definition of operators in NRQCD+TMD framework
- Matching onto QCD
- TMD shape function (TMDShF)
- LDMEs and TMDShFs at NLO
- Calculation at NLO
- Renormalization group equations
- Matching onto LDMEs
- Discussion on Hard function

N-operators: scaling

$$
J / \psi \text { production in SIDIS: } \quad \ell(k)+N\left(P_{N}\right) \rightarrow \ell^{\prime}\left(k^{\prime}\right)+J / \psi\left(P_{\psi}\right)+X\left(P_{X}\right)
$$

$$
\begin{gathered}
\left.W^{\mu \nu}=\sum_{X} \int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i q \cdot \xi}<N\left|J^{\mu^{\dagger}}(\xi)\right| J / \psi, X\right\rangle\langle J / \psi, X| J^{\nu}(0)|N\rangle \\
J^{\nu}=\sum_{\Theta_{N}} \sum_{p} J_{N}^{\nu(p)} \quad N=2 S+1 L_{J}^{[c o l .]} \\
N \text {-operators (defined in UNRQCD+SCET framework) }
\end{gathered}
$$

- Puzzle pieces for $\gamma^{*}+g \rightarrow c \bar{c}$ (2 power expansions: \vee y λ):
Gluons: $\quad B_{n \perp}^{\mu} \sim \lambda$
In SCET
Heavy quarks: $\quad \psi, \chi \sim v^{3 / 2}$
In UNRQCD
\longrightarrow
The lowest power operator will scale as $\lambda \cdot v^{3}$

-Power-counting in vNRQCD (v): $\frac{\left\langle{ }^{3} S_{1}^{[1]}\right\rangle}{\text { Dominant Fock state } \mathrm{v}^{3}} \frac{\left\langle{ }^{1} S_{0}^{[8]}\right\rangle,\left\langle{ }^{3} S_{1}^{[8]}\right\rangle,\left\langle{ }^{3} P_{J}^{[8]}\right\rangle}{\mathrm{v}^{7}}\left\langle\mathcal{O}\left({ }^{2 S+1} L_{J}\right)\right\rangle \sim \mathrm{v}^{3+2 L+2 E+4 M}$

$$
N=1 S_{0}^{[8]}, 3 S_{1}^{[8]}, 3 P_{J}^{[8]} \longrightarrow\left\{\mathcal{O}_{1 S_{0}^{[8]}}^{\mu}, \mathcal{O}_{3 S_{1}^{[8]}}^{\mu}, \mathcal{O}_{3 P_{0}^{[8]}}^{\mu}, \mathcal{O}_{3 P_{1}^{[8]}}^{\mu}, \mathcal{O}_{3 P_{2}^{[8]}}^{\mu}\right\}
$$

N-operators: definition

-Definition of operators:

$$
\mathcal{O}_{{ }_{S}^{[8]}}^{\mu}=\Gamma_{{ }_{1} S_{0}^{[8]}}^{\mu \alpha} \frac{\left(\mathcal{S}_{v}^{c d} \psi_{\mathbf{p}_{c}}^{\dagger} T^{d} \chi_{\mathbf{p}_{\overline{\mathrm{c}}}}\right)}{\text { pair formation }} \times \frac{\left(\mathcal{\delta}_{n}^{c e} B_{n \perp \alpha}^{e}\right)}{\text { incoming gluon }}
$$

$$
\mathcal{O}_{3 S_{1}^{[8]}}^{\mu}=\Gamma_{{ }_{3} S_{1}^{(8]}}^{\mu \alpha \rho}\left(\mathcal{S}_{v}^{c d} \psi_{\mathbf{p}_{c}}^{\dagger} T^{d}(\boldsymbol{\Lambda} \cdot \boldsymbol{\sigma})_{\rho} \chi_{\mathbf{p}_{\bar{c}}}\right) \times\left(\mathcal{S}_{n}^{c e} B_{n \perp \alpha}^{e}\right)
$$

$$
\begin{array}{r}
*\langle c \bar{c}| \psi^{\dagger} \chi|0\rangle=M \xi^{\dagger} \eta \\
M=2 m_{c}
\end{array}
$$

$\mathcal{O}_{3_{J}^{[8]}}^{\mu}=\Gamma_{{ }_{3} P_{J}^{[8]}}^{\mu \alpha \sigma \rho}\left(\mathcal{S}_{v}^{c d} \frac{(\boldsymbol{\Lambda} \cdot \mathbf{q})_{\sigma}}{M^{*}} \psi_{\mathbf{p}_{c}}^{\dagger} T^{d}(\boldsymbol{\Lambda} \cdot \boldsymbol{\sigma})_{\rho} \chi_{\mathbf{p}_{\bar{c}}}\right) \times\left(\mathcal{S}_{n}^{c e} B_{n \perp \alpha}^{e}\right)$
Properties of the boost matrix

See also: S. Fleming, Y. Makris,
T. Mehen, arXiv:1910.03586
$(\Lambda \cdot P)_{i}=0$,
$\left(\Lambda \cdot k_{1}\right)_{i}=-\left(\Lambda \cdot k_{2}\right)_{i}$
photon

N-operators: definition

-Definition of operators:
Matching onto OCD (tree level):

$$
\Gamma_{{ }^{1} S_{0}^{(8]}}^{\mu \alpha}=\frac{4 g_{s} e}{\mathcal{N}} \frac{\epsilon_{\perp}^{\mu \nu}}{M}
$$

$$
\Gamma_{{ }_{3 S_{1}^{(8]}}^{\mu \alpha \rho}}^{\mu \alpha \rho}
$$

Depends on the
production mechanism

$$
\begin{aligned}
& \mathcal{O}_{{ }_{3} P_{J}^{[8]}}^{\mu}=\Gamma_{{ }_{3} P_{J}^{[8]}}^{\mu \alpha \sigma \rho}\left(\mathcal{S}_{v}^{c d} \frac{(\mathbf{\Lambda} \cdot \mathbf{q})_{\sigma}}{M *} \psi_{\mathbf{p}_{c}}^{\dagger} T^{d}(\mathbf{\Lambda} \cdot \boldsymbol{\sigma})_{\rho} \chi_{\mathbf{p}_{\bar{c}}}\right) \times\left(\mathcal{S}_{n}^{c e} B_{n \perp \alpha}^{e}\right) \\
& \text { Properties of the boost matrix } \\
& \Gamma_{3 P_{J}^{[8]}}^{\mu \nu \rho}=\frac{i 4 g_{s} e}{\mathcal{N}} \frac{1}{M}\left\{g_{\perp}^{\nu \sigma}\left[g^{\mu \rho}\left(\frac{M^{2}-Q^{2}}{M^{2}+Q^{2}}\right)-2 \bar{n}^{\mu} \bar{n}^{\rho} \frac{M^{2}+Q^{2}}{P^{+2}}-n^{\mu} \bar{n}^{\rho}\right]\right. \\
& \left.+g_{\perp}^{\nu \rho}\left[g^{\mu \sigma}+2 \bar{n}^{\mu} \bar{n}^{\sigma} \frac{M^{2}+Q^{2}}{P^{+2}}-n^{\mu} \bar{n}^{\sigma}\left(\frac{M^{2}-Q^{2}}{M^{2}+Q^{2}}\right)\right]-4 g_{\perp}^{\nu \mu} \bar{n}^{\sigma} \bar{n}^{\rho} \frac{M^{2}}{P^{+2}}\right\}
\end{aligned}
$$

See also: S. Fleming, Y. Makris,
T. Mehen, arXiv:1910.03586
$(\Lambda \cdot P)_{i}=0$,
$\left(\Lambda \cdot k_{1}\right)_{i}=-\left(\Lambda \cdot k_{2}\right)_{i}$
photon gluon
$\xrightarrow{ }$

There are other results for the matching tensor
S. Fleming, A. K. Leibovich, T. Mehen, hep-ph/0306139

TMD Shape Function: factorization

$$
P_{\psi \psi}^{\mu}=\left(\omega_{g}, \omega_{q}, P_{\psi T}\right)
$$

$$
W^{\mu \nu}=\sum_{X} \int \sum_{N} \delta^{4}\left(q+P_{N}-P_{\psi}-P_{X}\right)\langle N| J_{N}^{\dagger \mu}(0)|J / \psi, X\rangle\langle J / \psi, X| J_{N}^{\nu}(0)|N\rangle .
$$

Photon frame

- Taylor expansion: $\quad p_{g} \sim Q_{h}\left(1, \lambda^{2}, \lambda\right), q \sim Q_{h}\left(\lambda^{2}, 1, \lambda\right), P_{\psi} \sim Q_{h}(1,1, \lambda)$

$$
\delta^{4}\left(q+P_{N}-P_{\psi}-P_{X}\right) \rightarrow \delta^{2}\left(\mathbf{P}_{\psi \perp}+\mathbf{P}_{X_{n} \perp}+\mathbf{P}_{X_{s} \perp}\right)=\int \frac{d^{2} \mathbf{b}_{\perp}}{(2 \pi)^{2}} e^{-i \mathbf{b}_{\perp} \cdot\left(\mathbf{P}_{\psi \perp}+\mathbf{P}_{X_{n} \perp}+\mathbf{P}_{X_{s} \perp}\right)}
$$

-Hilbert space: $\quad|J / \psi, X\rangle=\left|X_{n}\right\rangle \otimes\left|X_{\bar{n}}\right\rangle \otimes\left|J / \psi, X_{s}\right\rangle$
TMDShF encodes soft and non-perturbative effects

$$
\mathscr{L}=-g_{s} \sum_{\mathbf{p}} \psi_{\mathbf{p}}^{\dagger}\left(\frac{\mathbf{B}_{u s} \cdot \mathbf{P}}{m_{c}}\right) \psi_{\mathbf{p}}(x)+(\psi \rightarrow \chi)
$$

$W^{\mu \nu}=\sum_{N} 2 H_{N}(Q, M) \int \frac{d^{2} \mathbf{b}_{\perp}}{(2 \pi)^{2}} e^{-i \mathbf{b}_{\perp} \cdot \mathbf{P}_{\psi \perp}} \operatorname{Tr}\left[\Gamma_{N}^{\dagger \mu} \Gamma_{N}^{\nu} J_{n}^{(0)}\left(\omega_{g}, \mathbf{b}_{\perp}\right) S_{N \rightarrow J / \psi}^{(0)}\left(\mathbf{b}_{\perp}\right)\right]$

TMD Shape Function: definition

$$
W^{\mu \nu}=\sum_{N} 2 H_{N}(Q, M) \int \frac{d^{2} \mathbf{b}_{\perp}}{(2 \pi)^{2}} e^{-i \mathbf{b}_{\perp}} \cdot \mathbf{P}_{\psi \perp \operatorname{Ir}}\left[\Gamma_{N}^{\dagger} \Gamma_{N}^{\nu} J_{n}^{(0)}\left(\omega_{g}, \mathbf{b}_{\perp}\right) S_{N \rightarrow J / \mu}^{(0)}\left(\mathbf{b}_{\perp}\right)\right]
$$

-Gluon TMD parton distribution function:

$$
J_{n}^{\alpha \alpha^{\prime}(0)}\left(\omega_{g}, \mathbf{b}_{\perp}\right)=\frac{\theta\left(\omega_{g}\right)}{N_{c}^{2}-1} \operatorname{tr}_{c}\langle N| B_{n \perp}^{\alpha^{\prime}}\left(\mathbf{b}_{\perp}\right) B_{n \perp, \omega_{g}}^{\alpha}(0)|N\rangle
$$

-TMD shape functions:

$$
\begin{aligned}
& S_{1 S_{0}^{(8)} \rightarrow J / \psi}^{(0)}\left(\mathbf{b}_{\perp}\right)=\frac{1}{N_{c}^{2}-1} \operatorname{tr}_{c}\langle 0|\left[\left(\mathcal{S}_{\nu} \mathcal{S}_{n}\right)^{\dagger} \chi_{\overline{\mathbf{p}}}^{\dagger} T^{a} \psi_{\mathbf{p}}\right]\left(\mathbf{b}_{\perp}\right) \mathcal{N}_{\psi}\left[\mathcal{S}_{v} \mathcal{S}_{n} \psi_{\mathbf{p}}^{\dagger} T^{a} \chi_{\overline{\mathbf{p}}}\right](0)|0\rangle \\
& S_{3 P_{J}^{(s)} \rightarrow J / \psi}^{\rho \sigma \sigma^{\prime} \sigma^{\prime}(0)}\left(\mathbf{b}_{\perp}\right)=\frac{\Lambda_{i^{\prime}}^{\rho^{\prime}} \Lambda_{j^{\prime}}^{\sigma^{\prime}} \Lambda_{i}^{\rho} \Lambda_{j}^{\sigma}}{M^{2}\left(N_{c}^{2}-1\right)} \\
& \times \operatorname{tr}_{c}\langle 0|\left[\left(\mathcal{S}_{v} \mathcal{S}_{n}\right)^{\dagger} \chi_{\overline{\mathbf{p}}}^{\dagger} \sigma^{\left.i^{\prime} q^{j} T^{a} \psi_{\mathbf{p}}\right]\left(\mathbf{b}_{\perp}\right) \mathcal{N}_{\psi}\left[\mathcal{S}_{v} \mathcal{S}_{n} \psi_{\mathbf{p}}^{\dagger} \sigma^{i} q^{j} T^{a} \chi_{\overline{\mathbf{p}}}\right](0)|0\rangle, ~(0)}\right.
\end{aligned}
$$

-Rapidity renormalization:

$$
G_{g / P}^{\alpha \beta}\left(x, \mathbf{b}_{\perp}\right)=J_{n}^{\alpha \beta(0)}\left(x, \mathbf{b}_{\perp}\right) \sqrt{S\left(\mathbf{b}_{\perp}\right)} \quad S_{N \rightarrow J / \psi}\left(\mathbf{b}_{\perp}\right)=\frac{S_{N \rightarrow J / \psi}^{(0)}\left(\mathbf{b}_{\perp}\right)}{\sqrt{S\left(\mathbf{b}_{\perp}\right)}} \quad \begin{gathered}
\text { Just enough, the shape } \\
\text { function only has RDs in } \\
\text { the } n \text {-collinear sector }
\end{gathered}
$$

Calculation at NLO

- Leading order:

$$
\begin{aligned}
& \left\langle{ }^{1} S_{0}^{[8]}\right\rangle^{\mathrm{LO}}=M^{2} \eta^{\dagger} T^{a} \xi \times \xi^{\dagger} T^{a} \eta \\
& S_{\mid S_{0}^{(s)} \rightarrow J / \psi^{\prime}}^{\mathrm{LO}}\left(\mathbf{k}_{\perp}\right)=\delta^{(2)}\left(\mathbf{k}_{\perp}\right)\left\langle{ }^{1} S_{0}^{[8]}\right\rangle^{\mathrm{LO}}
\end{aligned}
$$

-LDME:

$$
\left\langle{ }^{2 S+1} L_{J}^{[8]}\right\rangle=\frac{4 \alpha_{S}}{3 \pi m_{c}^{2}}\left(C_{F}\left\langle{ }^{2 S+1} L_{J^{\prime}}^{[1]}\right\rangle^{L 0}+B_{F}\left\langle{ }^{2 S+1} L_{J^{\prime}}^{[8]}\right\rangle^{L 0}\right)\left(\frac{1}{\varepsilon_{\mathrm{UV}}}-\frac{1}{\varepsilon_{\mathrm{IR}}}\right)
$$

$$
\begin{aligned}
& \left\langle{ }^{1} S_{0}^{[8]}\right\rangle=\left(1+\underset{\left(C_{F}-C_{A} / 2\right) \frac{\pi \alpha_{s}}{2 \mathrm{v}}}{ }\right)\left\langle{ }^{1} S_{0}^{[8]}\right\rangle^{\mathrm{LO}}+\frac{4 \alpha_{s}}{3 \pi m_{c}^{2}}\left(C_{F}\left\langle{ }^{1} P_{1}^{[1]}\right\rangle^{\mathrm{LO}}+B_{F}\left\langle{ }^{1} P_{1}^{[8]}\right\rangle^{\mathrm{LO}}\right)\left(\frac{1}{\varepsilon_{\mathrm{UV}}}-\frac{1}{\varepsilon_{\mathrm{IR}}}\right) \\
& \text { Mixing between channels } \\
& \mathscr{L}^{\text {Coul. }}=\sum_{\mathbf{p}, \mathbf{p}^{\prime}} \frac{4 \pi \alpha_{s}}{\left(\mathbf{p}-\mathbf{p}^{\prime}\right)^{2}} \psi_{\mathbf{p}}^{\dagger} T^{a} \psi_{\mathbf{p}^{\prime}} \chi_{-\mathbf{p}}^{\dagger} \bar{T}^{a} \chi_{-\mathbf{p}^{\prime}} \\
& \mathscr{L}^{\text {Chro. }}=-g_{s} \sum_{\mathbf{p}} \psi_{\mathbf{p}}^{\dagger}\left(\frac{\mathbf{B}_{u s} \cdot \mathbf{P}}{m_{c}}\right) \psi_{\mathbf{p}}(x)+(\psi \rightarrow \chi)
\end{aligned}
$$

Calculation at NLO

- TMDShF:

Vanishes in pairs

$$
\begin{aligned}
& \stackrel{\delta \text {-regularization }}{S_{1 S_{0}^{[8]}}^{[8]}\left(\mathbf{k}_{\perp} ; \mu, \delta\right)}=\frac{\alpha_{S}}{2 \pi} \delta^{2}\left(\mathbf{k}_{\perp}\right)\left(\left(C_{F}-C_{A} / 2\right) \frac{\pi^{2}}{\mathrm{v}}-\frac{C_{A}}{\varepsilon_{\mathrm{IR}}}\right)
\end{aligned}{\left.{ }^{1} S_{0}^{[8]}\right\rangle^{\mathrm{LO}}}_{\text {Coulomb }}^{\alpha^{\frac{\alpha_{S} C_{A}}{2 \pi^{2}} \pi \delta^{2}\left(\mathbf{k}_{\perp}\right)\left(\frac{1}{\varepsilon_{\mathrm{UV}}^{2}}-\frac{1}{\varepsilon_{\mathrm{UV}}} \ln \frac{\delta^{2}}{\mu^{2}}+\frac{1}{2} \ln ^{2} \frac{\delta^{2}}{\mu^{2}}+\frac{\pi^{2}}{4}\right)}\left\langle{ }^{1} S_{0}^{[8]}\right\rangle^{\mathrm{LO}}}
$$

$$
\left.\begin{array}{l}
-\frac{\alpha_{s} C_{A}}{2 \pi^{2}} \frac{1}{\mathbf{k}_{\perp}^{2}-\delta^{2}} \ln \left(\frac{\delta^{2}}{\mathbf{k}_{\perp}^{2}}\right)
\end{array}{ }^{1} S_{0}^{[8]}\right\rangle^{\mathrm{LO}} \mathrm{Ha} .
$$

$$
+\frac{4 \alpha_{s}}{3 \pi^{2} m_{c}^{2}} \frac{1}{\mathbf{k}_{\perp}^{2}}\left(C_{F}\left\langle{ }^{1} P_{1}^{[1]}\right\rangle^{\mathrm{LO}}+B_{F}\left\langle{ }^{1} P_{1}^{[8]}\right\rangle^{\mathrm{LO}}\right)
$$

Chromo-electric

RG evolution: LDME

$$
\begin{aligned}
& \frac{d}{d \ln \mu}\left\langle\sigma_{\psi}^{n}\right\rangle^{\mu}=\sum_{m} \gamma_{\sigma}^{n m}\left\langle\sigma_{\psi}^{m}\right\rangle^{\mu} \quad\left\langle\sigma_{\psi}^{n}\right\rangle^{\mu}=Z_{\theta}^{n m}\left\langle\sigma_{\psi}^{m}\right\rangle^{\mu} \\
& Z_{\mathrm{ISO}_{\mathrm{S}_{\mathrm{g}}^{1}}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\frac{4 \alpha_{s}(\mu)}{3 \pi m^{2}} \frac{1}{\varepsilon_{\mathrm{UV}}}\left(\begin{array}{ccc}
0 & C_{F} & B_{F} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \frac{d}{d \ln \mu}\left\langle{ }^{1} S_{0}^{[8]}\right\rangle=\frac{8 \alpha_{\mu}(\mu)}{3 \pi m^{2}}\left(C_{F}\left\langle{ }^{1}{ }_{1}^{[1]}\right\rangle+B_{F}\left\langle{ }^{1} P_{1}^{[8]}\right\rangle\right) \\
& \gamma_{i s s_{0}^{9}}=\frac{8 \alpha_{s}(\mu)}{3 \pi m^{2}}\left(\begin{array}{llc}
0 & C_{F} & B_{F} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \left.\left\langle S_{0}^{18}\right\rangle^{[8]}\right\rangle^{\mu}=\mathscr{I}^{1 m}\left(\mu, \mu_{f}\right)\left\langle\theta^{m)^{\mu}}\right)^{\mu_{f}} \\
& \left\langle{ }^{1} S_{0}^{[8]}\right\rangle^{\mu}=\left\langle{ }^{1} S_{0}^{[8]}\right\rangle^{\mu_{f}}-\frac{8}{3 m^{2} \beta_{0}} \ln \left(\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{f}\right)}\right)\left(C_{F}\left\langle{ }^{1} P_{1}^{[1]}\right\rangle^{\mu_{f}}+B_{F}\left\langle{ }^{1}{ }^{1}{ }_{1}^{[8]}\right\rangle^{\mu_{j}}\right) \\
& \left\langle{ }^{3}\left[{ }_{J}^{[8]}\right\rangle^{\mu}=\left\langle{ }^{3}{ }_{J}^{[8]}\right\rangle^{\mu_{f}}-\frac{8}{3 m^{2} \beta_{0}} \ln \left(\frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{f}\right)}\right)\left(C_{F}\left\langle{ }^{3} D_{J+1}^{[1]}\right\rangle^{\mu_{f}}+B_{F}\left\langle{ }^{3} D_{J+1}^{[8]}\right\rangle^{\mu_{f}}\right)\right.
\end{aligned}
$$

RG evolution: TMDShF

$$
\begin{aligned}
& \frac{d}{d \ln \mu} S_{1 S_{0}^{[8]} \rightarrow J / \psi}\left(b_{T} ; \zeta_{B}, \mu\right)=\gamma_{1 S_{0}^{[8]}}\left(\alpha_{S}(\mu), \zeta_{B}, \mu\right) \\
& Z_{S h}=1-\frac{\alpha_{s} C_{A}}{2 \pi} \frac{1}{\varepsilon_{\mathrm{UV}}}\left(1-\ln \frac{\zeta_{B}}{Q_{h}^{2}}\right) \\
& \gamma_{S h} \equiv \frac{d}{d \ln \mu} \ln Z_{S h}=\frac{\alpha_{S} C_{A}}{\pi}\left(1-\ln \frac{\zeta_{B}}{Q_{h}^{2}}\right) \begin{array}{l}
\text { Consistency result } \\
\text { confirmed at NLO }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
L_{T} & =\ln \left(\mu^{2} b_{T}^{2} e^{2 \gamma_{E}} / 4 \pi\right) \\
Q_{h}^{4} & =\zeta_{A} \zeta_{B}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d \ln \zeta_{B}} \ln S_{1 S_{0}^{[8]} \rightarrow J / \psi}\left(b_{T} ; \mu, \zeta_{B}\right)=-\mathscr{D}_{g}\left(b_{T} ; \mu\right) \\
& \mathscr{D}_{g}\left(b_{T} ; \mu\right)=\frac{\alpha_{s} C_{A}}{2 \pi} L_{T}
\end{aligned}
$$

Same as for the TMPDF:
M.G. Echevarria, T. Kasemets, P.J. Mulders, C. Pisano, arXiv:1502.05354
(Higgs production in hadron-hadron collision)

Matching onto LDMEs

$$
\begin{aligned}
N_{\text {col. }} & =N_{c} \text { or } N_{c}^{2}-1 \\
N_{\text {pol. }}^{S} & =d-1 \\
N_{\text {pol.(0) }}^{P} & =1 \\
N_{\text {pol.(1) }}^{P} & =\frac{(d-1)(d-2)}{2} \\
N_{\text {pol.(2) }}^{P} & =\frac{(d+1)(d-2)}{2} \\
L_{T} & =\ln \left(\mu^{2} b_{T}^{2} e^{\left.2 \gamma_{E} / 4 \pi\right)}\right.
\end{aligned}
$$

- Operator product expansion:
-Renormalized LDME and TMDShF:
- Matching coefficients:

$$
\begin{aligned}
& \left\langle{ }^{1} S_{0}^{[8]}\right\rangle=\left(1+\left(C_{F}-C_{A} / 2 \frac{\pi \alpha_{s}}{2 v}\right)\left\langle{ }^{[18}{ }_{0}^{[8]}\right\rangle^{\mathrm{LO}}-\frac{4 \alpha_{s}}{3 \pi m^{2}} \frac{1}{\epsilon_{\mathbb{R}}}\left(C_{F}\left\langle{ }^{1} P_{1}^{[1]}\right\rangle^{\mathrm{LO}}+B_{F}\left\langle{ }^{1} P_{1}^{[8]}\right\rangle^{\mathrm{LO}}\right)\right. \\
& S_{\mid S_{0}^{[8]} \rightarrow J / \mu}\left(b_{T} ; \mu, \zeta_{B}\right)=\left\langle{ }^{1} S_{0}^{[8]}\right\rangle^{\mathrm{LO}}+\frac{\alpha_{s}}{2 \pi}\left[\frac{\pi^{2}}{\mathrm{v}}\left(C_{F}-C_{A} / 2\right)\left\langle{ }^{1} S_{0}^{[8]}\right\rangle^{\mathrm{LO}}-\frac{8}{3 m^{2}} \frac{1}{\varepsilon_{\mathrm{IR}}}\left(C_{F}\left\langle{ }^{1} P_{1}^{[1]}\right\rangle^{\mathrm{LO}}+B_{F}\left\langle{ }^{1} P_{1}^{[8]}\right\rangle^{\mathrm{LO}}\right)\right. \\
& \text { Infrared part } \\
& \left.\left.+C_{A} L_{T}\left(1-\ln \frac{\zeta_{B}}{Q^{2}}\right)\left\langle{ }^{1} S_{0}^{[8]}\right\rangle^{\mathrm{LO}}-\frac{8}{3 m^{2}} L_{T}\left(C_{F}\left\langle{ }^{1} P_{1}^{[1]}\right\rangle^{\mathrm{LO}}+B_{F}\left\langle{ }^{1} P_{1}^{[8]}\right\rangle^{\mathrm{LO}}\right)\right]\right\} \\
& C_{1 S_{0}^{[8]}}^{S}\left(b_{T} ; \mu, \zeta_{B}\right)=1+\frac{\alpha_{s} C_{A}}{2 \pi} L_{T}\left(1-\ln \frac{\zeta_{B}}{Q_{h}^{2}}\right) \\
& C_{1 P_{1}^{(1)}}^{S}\left(b_{T} ; \mu\right)=-\frac{\alpha_{s}}{2 \pi} \frac{8 C_{F}}{3 m^{2}} L_{T} \\
& C_{1 P_{1}^{8]}}^{S}\left(b_{T} ; \mu\right)=-\frac{\alpha_{s}}{2 \pi} \frac{8 B_{F}}{3 m^{2}} L_{T}
\end{aligned}
$$

It is analogous for the P-waves, the matching coefficients will be the same

Check: Hard function

- Virtual contribution of the cross section in photoproduction (F. Maltoni, M. L. Mangano, A. Petrelli, hep-ph/9708349): $Q_{h}=M_{\psi}$

$$
\sigma_{N}=\sigma_{N}^{0}\left[1+\frac{\alpha_{s}}{2 \pi}\left\{\left[\left(C_{F}-C_{A} / 2\right) \frac{\pi^{2}}{\mathrm{~V}}-\frac{C_{A}}{\varepsilon_{\mathrm{IR}}}\right]-\left[\frac{C_{A}}{\varepsilon_{\mathbb{R}}^{2}}+\frac{1}{\varepsilon_{\mathrm{IR}}}\left(b_{0}+C_{A} \ln \frac{\mu^{2}}{Q_{h}^{2}}\right)\right]-C_{A}\left(\frac{b_{0}}{C_{A}} \ln \frac{\mu^{2}}{Q_{h}^{2}}+\ln \frac{\mu^{2}}{Q_{h}^{2}}+\frac{1}{2} \ln ^{2} \frac{\mu^{2}}{Q_{h}^{2}}+\frac{\pi^{2}}{12}\right)+\mathscr{D}_{N}\right\}\right]
$$

- Virtual contribution of the cross section in leptoproduction (M.G. Echevarria, R. Kishore, S.F. Romera, P. Taels, In progress): $Q_{h}=f\left(Q, M_{\psi}\right) \gtrsim M_{\psi}$

$$
\begin{gathered}
\sigma_{N}=\sigma_{N}^{0}\left[1+\frac{\alpha_{s}}{2 \pi}\left\{\left[\left(C_{F}-C_{A} / 2\right) \frac{\pi^{2}}{\mathrm{v}}-\frac{C_{A}}{\varepsilon_{\mathrm{IR}}}\right]\right.\right. \\
\text { TMDShF }<\frac{\left.\left.\left[\frac{C_{A}}{\varepsilon_{\mathrm{IR}}^{2}}+\frac{1}{\varepsilon_{\mathrm{IR}}}\left(b_{0}+C_{A} \ln \frac{\mu^{2}}{Q_{h}^{2}}\right)\right]+H_{N}\right\}\right]}{\text { Gluon TMDPDF }} . \\
\text { TMDShF: } \quad S_{\mid S_{0}^{[8]} \rightarrow J / \psi}\left(\mathbf{k}_{\perp} ; \mu, \delta^{+}\right)=\frac{S\left(\mathbf{k}_{\perp}^{2} ; \mu, \delta^{+}\right)}{2}\left\langle{ }^{1} S_{0}^{[8]}\right\rangle^{\mathrm{LO}}+\frac{\alpha_{s}}{2 \pi} \delta^{(2)}\left(\mathbf{k}_{\perp}\right)\left(\left(C_{F}-C_{A} / 2\right) \frac{\pi^{2}}{\mathrm{v}}-\frac{C_{A}}{\varepsilon_{\mathrm{IR}}}\right)\left\langle{ }^{1} S_{0}^{[8]}\right\rangle
\end{gathered}
$$

Summary

- In the vNRQCD+SCET framework, the precise definition of operators describing the incoming gluon and the heavyquark pair within. the previously derived configurations is established.
- While the spin-triplet S-wave emerges as the leading power in the power counting expansion, the heavy-quark pair is not observed in this state.
- At LP in the λ-expansion, we established the factorization of the hadronic tensor into a TMDPDF and a TMDShF for the (u)soft radiation throughout the entire process and the formation of the bound state. Through the calculation, it became apparent that since the TMDShF possesses only one collinear direction, the definition provided is sufficient to eliminate any spurious rapidity regulators.
- We have studied the renormalization group evolution of the LDMEs and the TMDShFs, as well as calculated at next-toleading order the Wilson matching.
- A concise examination of the process's hard function offers evidence supporting the results of the virtual contribution of the TMDShF and its associated anomalous dimension.

Future: color-singlet contribution, phenomenology, other processes...

Summary

- In the vNRQCD+SCET framework, the precise definition of operators describing the incoming gluon and the heavyquark pair within. the previously derived configurations is established.
- While the spin-triplet S-wave emerges as the leading power in the power counting expansion, the heavy-quark pair is not observed in this state.
- At LP in the λ-expansion, we established the factorization of the hadronic tensor into a TMDPDF and a TMDShF for the (u)soft radiation throughout the entire process and the formation of the bound state. Through the calculation, it became apparent that since the TMDShF possesses only one collinear direction, the definition provided is sufficient to eliminate any spurious rapidity regulators.
- We have studied the renormalization group evolution of the LDMEs and the TMDShFs, as well as calculated at next-toleading order the Wilson matching.
- A concise examination of the process's hard function offers evidence supporting the results of the virtual contribution of the TMDShF and its associated anomalous dimension.

Future: color-singlet contribution, phenomenology, other processes...
Thank you!

Backup slides

Matching tensors for $J=0,1,2$

- Tensorial decomposition:

$$
q^{i} \sigma^{j}=\frac{\delta^{i j}}{3} \mathbf{q} \cdot \boldsymbol{\sigma}+\frac{e^{i j k}}{2}(\mathbf{q} \times \boldsymbol{\sigma})^{k}+q^{(i} \sigma^{j)},
$$

- Operators in vNRQCD:
- Matching tensors:

$$
\begin{aligned}
& \mathcal{O}\left({ }^{3} P_{0}^{[8]}\right)=\frac{1}{3} \psi_{\mathbf{q}}^{\dagger}\left(\frac{\overleftrightarrow{\mathscr{P}}}{2} \cdot \frac{\boldsymbol{\sigma}}{\sqrt{2}}\right) \sqrt{2} T^{a} \chi_{-\mathbf{q}}=\frac{1}{3} \psi_{\mathbf{q}}^{\dagger}(\mathbf{q} \cdot \boldsymbol{\sigma}) T^{a} \chi_{-\mathbf{q}}, \\
& \mathcal{O}^{k}\left({ }^{3} P_{1}^{[8]}\right)=\frac{1}{2} \psi_{\mathbf{q}}^{\dagger}\left(\frac{(\overleftrightarrow{\mathscr{P}} \times \boldsymbol{\sigma})^{k}}{2 \sqrt{2}}\right) \sqrt{2} T^{a} \chi_{-\mathbf{q}}=\frac{1}{2} \psi_{\mathbf{q}}^{\dagger}(\mathbf{q} \times \boldsymbol{\sigma})^{k} T^{a} \chi_{-\mathbf{q}}, \\
& \mathcal{O}^{i j}\left({ }^{3} P_{2}^{[8]}\right)=\psi_{\mathbf{q}}^{\dagger}\left(\frac{\overleftrightarrow{\mathscr{P}}}{}{ }^{(i} \frac{\sigma^{j)}}{\sqrt{2}}\right) \sqrt{2} T^{a} \chi_{-\mathbf{q}}=\psi_{\mathbf{q}}^{\dagger}\left(q^{(i} \sigma^{j)}\right) T^{a} \chi_{-\mathbf{q}} .
\end{aligned}
$$

$$
\Gamma_{3 P_{0}^{[8]}}^{\mu \nu}=\Gamma_{3 P_{J}^{[8]}}^{\mu \nu \sigma \rho}\left(-g_{\sigma \rho}+\frac{P_{\sigma} P_{\rho}}{s}\right), \quad \Gamma_{k, P_{1}^{[8]}}^{\mu \nu}=\Gamma_{3^{3} P_{J}^{[8]}}^{\mu \nu \sigma \rho} \epsilon_{\alpha \beta \sigma \rho} \Lambda_{k}^{\alpha} \frac{P^{\beta}}{M}, \quad \Gamma_{i j, P_{2}^{3}}^{\mu \nu}=\Gamma_{3 P_{J}^{[8]}}^{\mu \nu \sigma \rho} \Lambda_{i \sigma} \Lambda_{j \rho}
$$

