Lattice QCD for TMD Physics: **Nonperturbative Collins Soper Kernel**

Swagato Mukherjee

May 2024, QCD Evolution, Pavia, Italy

transverse momentum dependent (TMD) functions are ubiquitous

TMD parton distribution function (TMDPDF) $\phi(x,k_{\perp},\zeta,\mu)$

TMD fragmentation function (TMDFF) $F(x, k_{\perp}, \zeta, \mu)$

Quark **Polarization**

k_{T} xp Х leon Polarization

transverse momentum dependent (TMD) functions are ubiquitous

Drell-Yan processes

$\sigma \sim \phi(x, k_{\perp}, \zeta, \mu) \otimes \phi(x, k_{\perp}, \zeta, \mu)$

RHIC, LHC, ...

transverse momentum dependent (TMD) functions are ubiquitous

semi-inclusive deep inelastic scatterings

$\sigma \sim F(x, k_{\perp}, \zeta, \mu) \otimes \phi(x, k_{\perp}, \zeta, \mu)$

JLAB, EIC, ...

evolution of TMD functions across collision energies ...

$$\gamma^{\overline{\rm MS}}(b_{\perp},\mu)$$

Collins Soper (CS) kernel

 $\frac{\partial \phi(x, b_{\perp}, \zeta, \mu)}{\partial \ln \sqrt{\zeta}}$

UV property of QCD— independent of hadronic state

nonperturbative CS kernel

nonperturbative

 $\gamma^{\overline{\mathrm{MS}}}(b_{\perp},\mu)$

our dream ...

lattice QCD

nonperturbative CS kernel

our challenge ...

how to 'see' a parton on the lattice ?

strongly coupled quark, gluon fields

partonic picture

λ

- QCD in infinite-momentum fame / probed at vanishingly short distances
- QCD simplified / effective description of on the lightcone
- $\ll P_{\tau} \to \infty / z^2 \to 0$ first, regularize QFT later

partonic structure from lattice QCD

\circledast first regularize QCD on a lattice, then $P_{_{Z}} \rightarrow \infty$ / $z^2 \rightarrow 0$

opposite order of limits; two limits don't commute

11

$$+ \mathcal{O}\left[\frac{\Lambda_{\text{QCD}}^2}{x^2 P_z^2}, \frac{\Lambda_{\text{QCD}}}{(1-x)P_z}, \frac{M_H^2}{P_z^2}, \cdots\right]$$

- ET - 1 + $\mathscr{O} \left[z^2 \Lambda_{\text{QCD}}^2, z^2 M_H^2, \dots \right]$

$C(x, P_z, \mu) \otimes$

momentum space

 $C(\alpha, z^2, \mu) \otimes$

position space

TMD distributions from lattice QCD

 $\tilde{\phi}(z, b_{\perp}, \eta, P_z)$

quasi-TMD beam function

lighcone-TMD beam function

$$\checkmark$$
 renormalize: $\tilde{\phi}(b_z, b_\perp, P_z) \longrightarrow \tilde{\phi}(b_z, b_\perp)$

Perturbative matching:

$$\frac{\tilde{\phi}_{\Gamma}(x,b_{\perp},P_{z},\mu)}{\sqrt{S_{r}(b_{\perp},\mu)}} = H(x,\bar{x},P_{z},\mu)\phi(x,b_{\perp},\zeta,\mu)\exp\left[\frac{1}{4}\left(\ln\frac{(2xP_{z})^{2}}{\zeta} + \ln\frac{(2\bar{x}P_{z})^{2}}{\zeta}\right)\gamma^{\overline{MS}}(b_{\perp},\lambda)\right]$$
soft
function
$$\frac{\tilde{\phi}_{\Gamma}(x,b_{\perp},P_{z},\mu)}{function} + \mathcal{O}\left(\frac{\Lambda_{QCD}^{2}}{(xP_{z})^{2}},\frac{1}{(b_{\perp}(xP_{z}))^{2}},\frac{\Lambda_{QCD}^{2}}{(\bar{x}P_{z})^{2}},\frac{1}{(b_{\perp}(\bar{x}P_{z}))^{2}},\frac{\Lambda_{QCD}^{2}}{(\bar{x}P_{z})^{2}},\frac{1}{(b_{\perp}(\bar{x}P_{z}))^{2}}\right]$$

 (P_z, μ)

\oplus Fourier transform to momentum (x) space: $\tilde{\phi}(b_z, b_\perp, P_z, \mu) \longrightarrow \tilde{\phi}(x, b_\perp, P_z, \mu)$

Collins Soper kernel

power corrections

14

CS kernel from lattice QCD

Collins Soper kernel

$$\gamma^{\overline{\mathrm{MS}}}(b_{\perp},\mu) = rac{1}{\ln(P_2/P_1)} \ln \left| rac{ ilde{\phi}}{ ilde{\phi}} \right|$$

independent of x, P_1 , P_2

soft function cancels

 $P_1 \& P_2$ both must be large to suppress power corrections, such that CS kernel is indep. of those

ratios of quasi-TMD beam functions for 2 different boost momenta, $P_1 \& P_2$

perturbative kernel

$\left[\frac{\tilde{\phi}(x,b_{\perp},P_{2},\mu)}{\tilde{\phi}(x,b_{\perp},P_{1},\mu)}\right] + \delta\gamma^{\overline{\mathrm{MS}}}(x,\mu,P_{1},P_{2})$

+ power corrections

lattice QCD calculations of CS kernel

simplest choice for the quasi-TMD beam function $\dot{\phi}(b_z, b_\perp, \eta, P_z)$

pion TMD wave function (TMDWF)

$$\langle \Omega | \overline{\psi}(\frac{b_z}{2}, b_\perp) \Gamma W_{\exists}(\frac{\mathbf{b}}{2}, -\frac{\mathbf{b}}{2}, \eta) \psi(-\frac{b_z}{2}, 0) |$$

difficulties in lattice QCD calculations

rapidly growing errors with increasing b_{\perp}

Avkhadiev et al.: 2402.06725

 $b_T \, [\mathrm{fm}]$

multiplicative renormalization factor of the Wilson line:

 $\sim e^{-\delta m(\eta+b_{\perp})}$

exponential decrease of signal for large η and increasing b_\perp

overcoming difficulties

physical lightcone gauge $A^+ = 0$

overcoming difficulties

but how can we access $A^+ = 0$ in lattice QCD calculations ? find a gauge that becomes equivalent to $A^+ = 0$ in the limit $P_7 \rightarrow \infty$

Coulomb gauge: $\overrightarrow{\nabla} \cdot \overrightarrow{A} = 0$

Ji et al., Phys. Rev. Lett. 111, 112002 (2013)

Hatta et al., Phys. Rev. D 89, no.8, 085030 (2014)

 $A^+ = 0$

quasi-TMD beam function in Coulomb gauge (CG)

CG quasi-TMD beam function

+ re-computation of pQCD matching function $\delta \gamma^{\overline{\text{MS}}}(x, \mu, P_1, P_2)$ NLL accuracy Zhao: 2311.01391

 $\langle \Omega | \overline{\psi}(\frac{b_z}{2}, b_\perp) \Gamma \psi(-\frac{b_z}{2}, 0) |_{\overrightarrow{\nabla} \cdot \overrightarrow{A} = 0} | \pi^+, P_z \rangle$

unitary chiral (Domain Wall) fermions, physical pion mass

lattice spacing a=0.085 fm

gauge invariant (GI) operator

 $P_{z} = 0.231 n_{z} \text{ GeV}$

quasi-TMD beam functions in momentum space

x and P independence of CS kernel

 $P_i = 0.231 n_i \text{ GeV}, \mu = 2 \text{ GeV}$

Summary: nonperturbative CS kernel from lattice QCD

Bollweg et al.: Phys. Lett. B 852, 138617 (2024)

Summary: nonperturbative CS kernel from lattice QCD

Bollweg et al.: Phys. Lett. B 852, 138617 (2024)

