Parton pseudo-distributions and their evolution

Joe Karpie (JLab) part of the HadStruc and JAM Collaboration

Parton and loffe Time distributions

• Unpolarized loffe time distributions I loffe time: $\nu = p \cdot z$

"loffe time distributions instead of parton momentum distributions in description of DIS" V. Braun, P. Gornicki, L. Mankiewicz *Phys Rev* D 51 (1995) 6036-6051

•
$$I_q(\nu, \mu^2) = \frac{1}{2p^+} \langle p | \bar{\psi}_q(z^-) \gamma^+ W(z^-; 0) \psi_q(0) | p \rangle_{\mu^2}$$

 $z^2 = 0$
 $I_q(\nu, \mu^2) = \frac{1}{2p^+} \langle p | F_q(z^-; 0) F^i(0) | p \rangle_{\mu^2}$

$$I_{g}(\nu,\mu^{2}) = \frac{1}{(2p^{+})^{2}} \langle p | F_{+i}(z^{-})W(z^{-};0)F_{+}^{i}(0) | p \rangle_{\mu^{2}}$$
if $i = x, y$

Parton Distribution Functions

•
$$I_q(\nu, \mu^2) = \int_{-1}^{1} dx \, e^{ix\nu} f_q(x, \mu^2)$$

• $I_g(\nu, \mu^2) = \int_{0}^{1} dx \, \cos(x\nu) \, x f_g(x, \mu^2)$

Parton Distributions and the Lattice

 Parton Distributions are defined by operators with light-like separations

- Use space-like separations
 X. Ji *Phys Rev Lett* 110 (2013) 262002
 - Wilson line operators

$$O_{\Gamma}^{\text{WL}}(z) = \bar{\psi}(z)\Gamma W(z;0)\psi(0)$$
$$z^2 \neq 0$$

 Factorizations exist analogous to cross sections

Many approaches

- Wilson line operators
 - LaMET X. Ji Phys. Rev. Lett. 110 (2013) 262002
 - Pseudo-PDF A. Radyushkin Phys. Rev. D 96 (2017) 3, 034025
- Two current correlators
 - Hadronic Tensor
 K.-F. Liu et al *Phys. Rev. Lett.* 72 1790 (1994)
 - HOPE Phys. Rev. D 62 (2000) 074501
 W. Detmold and C.-J. D. Lin, Phys. Rev. D 73 (2006) 014501
 - Short distance OPE

V. Braun and D. Muller Eur. Phys. J. C 55 (2008) 349

• OPE-without-OPE

A. Chambers et al, Phys. Rev. Lett. 118 (2017) 242001

Good Lattice Cross Sections

Y.-Q. Ma and J.-W. Qiu Phys. Rev. Lett. 120 (2018) 2, 022003

 $O_{WL}(x;z) = \bar{\psi}(x+z)\Gamma W(x+z;x)\psi(x)$

$$O_{CC}(x, y) = J_{\Gamma}(x)J_{\Gamma'}(y)$$

Wilson Line Matrix Elements

• Matrix element $M^{\alpha}(p, z) = \langle p | \bar{\psi}(z) \gamma^{\alpha} W(z; 0) \psi(0) | p \rangle$ = $2p^{\alpha} \mathscr{M}(\nu, z^2) + 2z^{\alpha} \mathscr{N}(\nu, z^2)$

• Quasi-PDF:
$$\tilde{q}(y, p_z^2) = \frac{1}{2p_\alpha} \int dz e^{iyp_z z} M^\alpha(p_z, z)$$
 $\alpha = t \text{ and } z^t = 0$

• Large Momentum Effective Theory: X. Ji Phys. Rev. Lett. 110 (2013) 262002

•
$$\tilde{q}(y, p_z^2) = \int \frac{dx}{|x|} K\left(\frac{y}{x}, \frac{\mu^2}{(xp_z)^2}\right) q(x, \mu^2) + O\left(\frac{\Lambda_{\text{QCD}}^2}{(xp_z)^2}, \frac{\Lambda_{\text{QCD}}^2}{((1-x)p_z)^2}\right)$$

• Pseudo-PDF: A. Radyushkin Phys. Rev. D 96 (2017) 3, 034025

$$\begin{aligned} \mathcal{M}(\nu, z^2) &= \int dx \, C(x\nu, \mu^2 z^2) q(x, \mu^2) + O(\Lambda_{\rm QCD}^2 z^2) \\ &= \int du C'(u, \mu^2 z^2) I_q(u\nu, \mu^2) + O(\Lambda_{\rm QCD}^2 z^2) \end{aligned}$$

The Role of Separation and Momentum

- In Structure Functions, quasi-PDF, and pseudo-PDF, variables have common roles
 - **Scale:** $Q^2 / p_z^2 / z^2$

Dynamical variable:

 $x_B / z / p_z$, or $\nu = p \cdot z$

- Scale for factorization to PDF
- Scale in power expansion
- ${\scriptstyle \bullet}\, {\rm Keep}$ away from Λ^2_{QCD}
- Technically only requires single value, use many to study systematics

- Variable describes non-perturbative dynamics
- Can take large or small value
- Want as many as are available
- Wider range improves the inverse problem

From Lattice QCD to PDFs

- Correlators (vacuum expectation values of time separated operators) are described as sums over an exponential for each energy eigenstate.
- Coefficients are matrix elements and exponential rates are energy levels
- Model and/or remove subdominant states by using large time but noise grows exponentially

Unpolarized Gluon PDF

T. Khan, R. Sufian, JK, C. Monahan, C. Egerer, B. Joo, W. Morris, K. Orginos, A. Radyushkin, D. Richards, E. Romero, S. Zafeiropoulos PRD 104 (2021) 9, 094516

From Lattice QCD to PDFs

Hadron Matrix Elements Lattice Correlation Functions 1.2 $\mathcal{M}^{\text{eff}}(t)$, p = 0.41 GeV, $\tau = 1.0$ 1.0 0.8 $\mathfrak{M}(\nu,z^2)$ 0.6 z = az = 2a0.4 z = 3az = 4a0.2 z = 5az = 6a0.0 8 10 12 6 2.0 3.0 5.0 6.0 1.0 4.00.0 t/a \mathcal{V}

2 - param(Q) 1e+00 NNPDF3.1 **CT18** JAM20 1e-01 (x) bx 1e-02 1e-03 1e-04 1e-05 · 0.2 0.4 0.6 0 0.8 1.0 x

Parton Distributions

0.8

0.6

0.4

0.2

0.0

2

4

 $\mathcal{M}^{ ext{eff}}(t)$

z = az = 6a

> Incomplete information gives integral inverse problem $M(\nu) = \int dx C(x\nu) x g(x)$

$$xg(x) = x^{a}(1-x)^{b}/B(a+1,b+1)$$

To more accurately infer PDF, we need larger ν •

Unpolarized Gluon PDF

T. Khan, R. Sufian, JK, C. Monahan, C. Egerer, B. Joo, W. Morris, K. Orginos, A. Radyushkin, D. Richards, E. Romero, S. Zafeiropoulos PRD 104 (2021) 9, 094516

7.0

Nucleon Unpolarized Quark PDF

What can we do beyond looking at nice PDF fits?

If PDFs are universal....

If the **same** PDFs are factorizable from lattice and experiment, and if power corrections can be controlled for both

Why not analyze both simultaneously?

Factorization of hadronic cross sections

 Factorization of Lattice observables

 $d\sigma_h = d\sigma_q \otimes f_{h/q} + P \cdot C \cdot$

$$M_h = M_q \otimes f_{h/q} + P \cdot C \cdot$$

Consider Lattice data as a theoretical prior to the experimental Global Fit

Complementarity in Lattice and Experiment

LATTICE

- Lattice limited to low ν , inverse Fourier gives to $x \gtrsim 0.2$, but higher sensitivity to large x
- Lattice matching relation is integral over all *x*
- Low p_z data can reach high signal-to-noise compared to experiment
- Lattice can evaluate independently each spin, flavor, and hadron

EXPERIMENT

- Cross Sections limited to specific max but can reach low x_B
- Cross Section matching is integral from x_B to 1
 - Creates sensitively to hard kernel in large *x* region
- Wealth of decades of experimental data outweigh modern lattice in both number and systematic error control

Complementarity in pion PDF

- Lattice can readily access different hadrons
- Lattice lacks sensitivity to threshold logs and can be used to study theoretical kernels
- Improves precision in large x where experimental data does not exist
- Low momentum pion data are extremely precise

Spinning gluons

- Positivity assumed in many analyses
 - $|\Delta g| \leq g(x)$
 - Removing reveals new band of -0.2solutions
- $\Delta G = 0.39(9)$ With constraint:
- Without constraint: $\Delta G = 0.3(5)$
- $\Delta G = 0.251(47)(16)$ Lattice:

Y-B. Yang et al (χ -QCD) Phys. Rev. Lett. 118, 102001 (20 K-F. Liu arXiv: 2112.08416

Y. Zhou et al (JAM) Phys. Rev. D 105, 074022 (2022)

R. Jaffe and A. Manohar, Nucl. Phys. B 337, 509 (1990)

$$J = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + L_G + \Delta G$$

$$\Delta G = \int dx \,\Delta g(x)$$
¹³

Spinning gluons

Y. Zhou et al Phys. Rev. D 105, 074022 (2022)
C. Egerer et al (HadStruc) arXiv:2207.08733
JK et al arXiv:2310.18179

Can lattice data affect phenomenological polarized gluon analysis?

• The positive and negative solutions without positivity constraints

 Only positive band "consistent" with lattice data, but is too noisy to constrain.

Resolution of the helicity sign

- Rejection of negative helicity gluon PDF requires 3 datasets
 - RHIC Spin Asymmetries
 - Linear and quadratic in Δg
 - Lattice QCD matrix element
 - Linear in Δg
 - JLab high-x DIS from relaxing cuts on Final state mass
 - Linear in Δg
 - $W^2 > 10 \,\mathrm{GeV}^2 \rightarrow W^2 > 4 \,\mathrm{GeV}^2$

N.T. Hunt-Smith et al arXiv:2403.08117

Evolution of parton distributions

- Standard DGLAP evolution
 - Parton model: Splitting of partons into smaller *x*

$$\mu^2 \frac{d}{d\mu^2} q(x, \mu^2) = \int_x^1 dy \, P_{qq}(y) q(\frac{x}{y}, \mu^2)$$

MSbar Step Scaling function

• Integrated or discretized version of evolution

$$q(x, \mu^2) = \int_x^1 dy \, \mathscr{E}(y, \mu^2, \mu_0^2) q(\frac{x}{y}, \mu_0^2)$$
PDF at high
PDF at low input
scale $\mu \sim Q$
scale $\mu_0 \sim m_c$
H. Dutrieux, JK, C. Monahan, K. Orginos, S. Zafeiropoulos arXiv:2310.19926

Evolution of parton distributions

- Standard DGLAP evolution
 - Parton model: Splitting of partons into smaller *x*

$$\mu^2 \frac{d}{d\mu^2} q(x, \mu^2) = \int_x^1 dy \, P_{qq}(y) q(\frac{x}{y}, \mu^2)$$

- MSbar Step Scaling function
- Integrated or discretized version of evolution $z^2 \frac{d}{dz^2} \mathfrak{M}(\nu, z^2) = \int_0^1 d\alpha \mathscr{P}(\alpha, z^2) \mathfrak{M}(\alpha\nu, z^2) + O(z^2)$ $q(x, \mu^2) = \int_x^1 dy \,\mathscr{E}(y, \mu^2, \mu_0^2) q(\frac{x}{y}, \mu_0^2) \quad \mathfrak{M}(\nu, z^2) = \int_0^1 d\alpha \,\Sigma(\alpha, z^2, z_0^2) \mathfrak{M}(\alpha\nu, z_0^2) + O(z^2, z_0^2)$

$$\mathscr{E}(\mu^2, \mu_0^2) = C^{-1}(\mu^2 z^2) \otimes \Sigma(z^2, z_0^2) \otimes C(\mu_0^2 z_0^2)$$

H. Dutrieux, JK, C. Monahan, K. Orginos, S. Zafeiropoulos arXiv:2310.19926

pseudo-PDF evolution

•
$$\mathfrak{M}(\nu, z^2) = \int_0^1 du \, C(u, \mu^2 z^2) \, I(u\nu, \mu^2) + O(z^2)$$

 Data does not know about MSbar scale

$$\mu^2 \frac{d}{d\mu^2} \mathfrak{M}(\nu, z^2) = 0$$

Evolution of parton distributions

H. Dutrieux, JK, C. Monahan, K. Orginos, S. Zafeiropoulos arXiv:2310.19926

- Perturbative evolution from ~700 MeV (0.282 fm) to ~1GeV (0.188 fm)
- Bands from varying scale by factor of 2 to estimate higher order effects

17

H. Dutrieux, JK, C. Monahan, K. Orginos, S. Zafeiropoulos arXiv:2310.19926

Step Scaling from the lattice

• Requires data in same range of ν and different z

- Catch: Requires assumption of leading twist dominance and ranges of $\boldsymbol{\nu}$ are limited
 - Need very fine lattices to study systematics
 - Test universality by studying pion, kaon, nucleon, quark (in fixed gauge)

Non-Parametric Bayesian inferences

- Take advantage of single dimension and limited range
- Approximate unknown by value on grid and interpolate for integrals
- Maximize the posterior distribution $P\left[q \mid \mathfrak{M}, I\right] \propto P\left[\mathfrak{M} \mid q, I\right] P\left[q \mid I\right]$
- Add prior information to regulate the inverse problem $P\left[q \mid I\right] \propto \exp[-S(q)]$

Shannon-Jaynes entropy

$$S(q) = \alpha \int_0^1 dx \left(q(x) - m(x) - q(x) \log(\frac{q(x)}{m(x)}) \right) \qquad S(q)$$

Y. Burnier and A. Rothkopf (2013) 1307.6106 Burnier-Rothkopf

$$S(q) = \alpha \int_0^1 dx \left(1 - \frac{q(x)}{m(x)} + \log(\frac{q(x)}{m(x)}) \right)$$

Non-Parametric Bayesian inferences

- Use different priors to study model dependencies
- First prior with easily understood biases

- Large errors from prior with no correlations at different α Need for better choices

H. Dutrieux, JK, C. Monahan, K. Orginos, S. Zafeiropoulos arXiv:2310.19926

Conclusions

- Lattice matrix elements can be related to PDFs and their calculation have matured over the decade
- With control of systematic errors, lattice PDFs are approaching accuracy of global fits
- Non-perturbative PDF evolution can be determined from lattice data
- Adding Lattice data into global fits give better results than either could do alone
- All lessons can be extended to TMDs and GPDs

Back up slides

I. Balitsky, W. Morris, A. Radyushkin JHEP 02 (2022) 193 C. Egerer et al (HadStruc) arXiv:2207.08733

$$\widetilde{M}_{\mu\alpha;\nu\beta}(z,p,s) = \frac{1}{2} \epsilon_{\nu\beta\rho\sigma} M_{\mu\alpha;\rho\sigma} = \langle p,s | \operatorname{Tr} \left[F^{\mu\alpha}(z) W(z;0) \widetilde{F}^{\nu\beta}(0) \right] | p,s \rangle$$

• Useful Combination $\widetilde{\mathscr{M}}(z,p) = \left[\widetilde{M}_{ti;it} + \widetilde{M}_{ij;ij}\right]$

Helicity Gluon Matrix Element:

•

Gives two amplitudes, one has no leading twist contribution

I. Balitsky, W. Morris, A. Radyushkin JHEP 02 (2022) 193 C. Egerer et al (HadStruc) arXiv:2207.08733

$$\widetilde{M}_{\mu\alpha;\nu\beta}(z,p,s) = \frac{1}{2} \epsilon_{\nu\beta\rho\sigma} M_{\mu\alpha;\rho\sigma} = \langle p,s | \operatorname{Tr} \left[F^{\mu\alpha}(z) W(z;0) \widetilde{F}^{\nu\beta}(0) \right] | p,s \rangle$$

- Useful Combination $\widetilde{\mathscr{M}}(z,p) = \left[\widetilde{M}_{ti;it} + \widetilde{M}_{ij;ij}\right]$
 - Gives two amplitudes, one has no leading twist contribution
- Use ratio with finite continuum limit

Helicity Gluon Matrix Element:

•

$$\widetilde{\mathfrak{M}}(\nu, z^2) = i \frac{\left[\widetilde{\mathcal{M}}(z, p)/p_z p_0\right]/Z_L(z/a)}{\mathcal{M}(0, z^2)/m^2}$$

I. Balitsky, W. Morris, A. Radyushkin JHEP 02 (2022) 193 C. Egerer et al (HadStruc) arXiv:2207.08733

$$\widetilde{M}_{\mu\alpha;\nu\beta}(z,p,s) = \frac{1}{2} \epsilon_{\nu\beta\rho\sigma} M_{\mu\alpha;\rho\sigma} = \langle p,s | \operatorname{Tr} \left[F^{\mu\alpha}(z) W(z;0) \widetilde{F}^{\nu\beta}(0) \right] | p,s \rangle$$

- Useful Combination $\widetilde{\mathscr{M}}(z,p) = \left[\widetilde{M}_{ti;it} + \widetilde{M}_{ij;ij}\right]$
 - Gives two amplitudes, one has no leading twist contribution
- Use ratio with finite continuum limit

•

$$\widetilde{\mathfrak{M}}(\nu, z^2) = i \frac{\left[\mathcal{M}(z, p)/p_z p_0 \right] / Z_L(z/a)}{\mathcal{M}(0, z^2)/m^2}$$

Relation to gluon and quark singlet ITD

$$\langle x \rangle_g \widetilde{\mathfrak{M}}(\nu, z^2) = \int_0^1 \widetilde{C}^{gg}(u, \mu^2 z^2) \widetilde{I}_g(u\nu, \mu^2) + \widetilde{C}^{qg}(u, \mu^2 z^2) \widetilde{I}_s(u\nu, \mu^2)$$

I. Balitsky, W. Morris, A. Radyushkin JHEP 02 (2022) 193 C. Egerer et al (HadStruc) arXiv:2207.08733

$$\widetilde{M}_{\mu\alpha;\nu\beta}(z,p,s) = \frac{1}{2} \epsilon_{\nu\beta\rho\sigma} M_{\mu\alpha;\rho\sigma} = \langle p,s | \operatorname{Tr} \left[F^{\mu\alpha}(z) W(z;0) \widetilde{F}^{\nu\beta}(0) \right] | p,s \rangle$$

- Useful Combination $\widetilde{\mathscr{M}}(z,p) = \left[\widetilde{M}_{ti;it} + \widetilde{M}_{ij;ij}\right]$
 - Gives two amplitudes, one has no leading twist contribution
- Use ratio with finite continuum limit

•

$$\widetilde{\mathfrak{M}}(\nu, z^2) = i \frac{\left[\mathcal{M}(z, p)/p_z p_0 \right] / Z_L(z/a)}{\mathcal{M}(0, z^2)/m^2}$$

Relation to gluon and quark singlet ITD

$$\langle x \rangle_g \widetilde{\mathfrak{M}}(\nu, z^2) = \int_0^1 \widetilde{C}^{gg}(u, \mu^2 z^2) \widetilde{I}_g(u\nu, \mu^2) + \widetilde{C}^{qg}(u, \mu^2 z^2) \widetilde{I}_s(u\nu, \mu^2)$$

Pol Gluon Lorentz decomposition

$$\begin{split} \widetilde{M}_{\mu\alpha;\lambda\beta}^{(2)}(z,p) &= (sz)(g_{\mu\lambda}p_{\alpha}p_{\beta} - g_{\mu\beta}p_{\alpha}p_{\lambda} - g_{\alpha\lambda}p_{\mu}p_{\beta} + g_{\alpha\beta}p_{\mu}p_{\lambda})\widetilde{\mathcal{M}}_{pp} & \text{I. Balitsky, W. Morris, A. Radyushkin} \\ &+ (sz)(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}z_{\beta} + g_{\alpha\beta}z_{\mu}z_{\lambda})\widetilde{\mathcal{M}}_{zz} \\ &+ (sz)(g_{\mu\lambda}z_{\alpha}p_{\beta} - g_{\mu\beta}z_{\alpha}p_{\lambda} - g_{\alpha\lambda}z_{\mu}p_{\beta} + g_{\alpha\beta}z_{\mu}p_{\lambda})\widetilde{\mathcal{M}}_{pp} \\ &+ (sz)(g_{\mu\lambda}z_{\alpha}p_{\beta} - g_{\mu\beta}p_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}p_{\beta} + g_{\alpha\beta}p_{\mu}z_{\lambda})\widetilde{\mathcal{M}}_{pz} \\ &+ (sz)(g_{\mu\lambda}z_{\alpha}p_{\beta} - g_{\mu\beta}p_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}p_{\beta} + g_{\alpha\beta}p_{\mu}p_{\lambda})\widetilde{\mathcal{M}}_{ppz} \\ &+ (sz)(g_{\mu\lambda}z_{\alpha}p_{\alpha} - p_{\alpha}z_{\mu})(p_{\lambda}z_{\beta} - p_{\beta}z_{\lambda})\widetilde{\mathcal{M}}_{ppzz} \\ &+ (sz)(g_{\mu\lambda}g_{\alpha\beta} - g_{\mu\beta}g_{\alpha\lambda})\widetilde{\mathcal{M}}_{gg} \\ &\widetilde{M}_{\mu\alpha;\lambda\beta}^{(1)}(z,p) &= \left[\widetilde{\mathcal{M}}_{sp}^{(+)} - \nu\widetilde{\mathcal{M}}_{pp}\right] \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}p_{\beta} + g_{\alpha\beta}p_{\mu}z_{\lambda}\right)\widetilde{\mathcal{M}}_{sz} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}p_{\beta} + g_{\alpha\beta}p_{\mu}z_{\lambda}\right)\widetilde{\mathcal{M}}_{sz} \\ &= M_{\Delta g} - \frac{m^{2}z^{2}}{\nu}\widetilde{\mathcal{M}}_{pp} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}z_{\beta} + g_{\alpha\beta}z_{\mu}z_{\lambda}\right)\widetilde{\mathcal{M}}_{szpz} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}z_{\beta} + g_{\alpha\beta}z_{\mu}z_{\lambda}\right)\widetilde{\mathcal{M}}_{szpz} \\ &= M_{\Delta g} - \frac{m^{2}z^{2}}{\rho_{z}^{2}}\widetilde{\mathcal{M}}_{pp} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}z_{\beta} + g_{\alpha\beta}z_{\mu}z_{\lambda}\right)\widetilde{\mathcal{M}}_{szpz} \\ &= M_{\Delta g} - \frac{m^{2}}{\rho_{z}^{2}}\nu\widetilde{\mathcal{M}}_{pp} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}z_{\beta} + g_{\alpha\beta}z_{\mu}z_{\lambda}\right)\widetilde{\mathcal{M}}_{szpz} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\alpha}z_{\lambda} - g_{\alpha\lambda}z_{\mu}z_{\beta} + g_{\alpha\beta}z_{\mu}z_{\lambda}\right)\widetilde{\mathcal{M}}_{szpz} \\ &= M_{\Delta g} - \frac{m^{2}}{\rho_{z}^{2}}\widetilde{\mathcal{M}}_{pp} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\lambda}\right)\widetilde{\mathcal{M}}_{szpz} \\ &+ \left(g_{\mu\lambda}z_{\alpha}z_{\beta} - g_{\mu\beta}z_{\lambda}\right)\widetilde{\mathcal{M}}_$$

Helicity Gluon PDF

Model both terms

Subtract rest frame

a = 0.094 fm $m_{\pi} = 358 \text{ MeV}$

C. Egerer et al (HadStruc) arXiv: 2207.08733

Lattice gluon data impacts quarks

C. Egerer et al (HadStruc) arXiv:2207.08733

Non-Parametric Bayesian inferences

- Use different priors to study model dependencies
- First prior with easily understood biases
 - Quadratic Difference Ratio (QDR) $S(\Sigma) = u \int_{0}^{1} d\alpha \frac{(\Sigma(\alpha) h(\alpha))^{2}}{\sigma(\alpha)^{2}}$

"I'm sorry, Nature hates Wiggles" -A. Radyushkin

- Characteristic curves from fit
- QDR has no correlations between neighbors
- Need better priors!

H. Dutrieux, JK, C. Monahan, K. Orginos, S. Zafeiropoulos arXiv:2310.19926

"I'm sorry, Nature hates Wiggles" -A. Radyushkin

- Use different priors to study model dependencies
- Can we remove the wiggles?
 - A smoothing prior

$$S(\Sigma) = u \int_0^1 d\alpha \,\alpha (1 - \alpha) \left(\frac{\partial \Sigma}{\partial \alpha}\right)^2$$

u = 1

- Set *u* too large and it forces a flat result.
- Alternative to correlate α 's is to use Gaussian Processes

H. Dutrieux, JK, C. Monahan, K. Orginos, S. Zafeiropoulos arXiv:2310.19926