QCD EVOLUTION 2024

A first implementation of the HSO approach to TMD phenomenology

J. Osvaldo Gonzalez-Hernandez Università di Torino \& INFN Torino

Based on:

JOGH, T.C. Rogers T., N. Sato
Phys.Rev.D 106 (2022) 3, 034002 • e-Print: 2205.05750 [hep-ph]
JOGH, T. Rainaldi, T.C. Rogers
e-Print: 2303.04921 [hep-ph]
Accepted in Phys. Rev. D
F. Aslan, M. Boglione, JOGH, T.C. Rogers, T. Rainaldi, A. Simonelli
e-Print: 2401.14266 [hep-ph]

OUTLINE

* Building models in HSO
* HSO Strategy
* DY and Zo production exarnples
"Hadron Structure Oriented approach"
* Building models in HSO

Unpolarized DY cross section (TMD region)

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} q_{h \mathrm{~T}}^{2} \mathrm{~d} Q^{2} \mathrm{~d} y_{h}}=\frac{2 \pi^{2} \alpha_{\mathrm{em}}^{2}}{3 s Q^{2}}\left(2 F_{U U}^{1}+F /{ }^{\prime}\right) .
$$

$$
q_{h}=\left(e^{y_{h}} \sqrt{\frac{Q^{2}+q_{h \mathrm{~T}}^{2}}{2}}, e^{-y_{h}} \sqrt{\frac{Q^{2}+q_{h \mathrm{~T}}^{2}}{2}}, \boldsymbol{q}_{h \mathrm{~T}}\right)
$$

$$
x_{a}=\frac{Q e^{y_{h}}}{\sqrt{s\left(1+\frac{q_{2}^{2}}{Q^{2}}\right)}}, \quad x_{b}=\frac{Q e^{-y_{b}}}{\sqrt{s\left(1+\frac{q_{i}^{2}}{Q^{2}}\right)}} .
$$

$$
\begin{aligned}
& F_{U U}^{1}=\sum_{j} e_{j}^{e} \frac{\left|H_{j j}\right|^{2}}{4 \pi^{2} N_{c}} \int \mathrm{~d}^{2} \boldsymbol{b}_{\mathrm{T}} e^{i \boldsymbol{q}_{\mathrm{h}} \mathrm{r}} \cdot \boldsymbol{b}_{\mathrm{T}} \tilde{f}_{j / h_{a}}\left(x_{a}, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q}, Q^{2}\right) \tilde{f}_{\bar{j} / h_{b}}\left(x_{b}, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q}, Q^{2}\right)+(a \longleftrightarrow b) \\
&+O\left(m / Q, q_{\mathrm{T}} / Q\right)
\end{aligned}
$$

Unpolarized DY cross section (TMD region)

$$
\begin{aligned}
& \text { CS kernel } \\
& \frac{\partial \ln \tilde{f}_{j / p}\left(x, b_{\mathrm{T}} ; \mu, \zeta\right)}{\partial \ln \sqrt{\zeta}}=\tilde{K}\left(b_{\mathrm{T}} ; \mu\right), \\
& \frac{\mathrm{d} \tilde{K}\left(b_{\mathrm{T}} ; \mu\right)}{\mathrm{d} \ln \mu}=-\gamma_{K}\left(\alpha_{s}(\mu)\right), \\
& \frac{\mathrm{d} \ln \tilde{f}_{j / p}\left(x, b_{\mathrm{T}} ; \mu, \zeta\right)}{\mathrm{d} \ln \mu}=\gamma\left(\alpha_{s}(\mu) ; \zeta / \mu^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
F_{U U}^{1}=\sum_{j} e_{j}^{2} \frac{\left|H_{j j}\right|^{2}}{4 \pi^{2} N_{c}} \int \mathrm{~d}^{2} \boldsymbol{b}_{\mathrm{T}} e^{i \boldsymbol{q}_{\mathrm{h} \mathrm{~T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / h_{a}}\left(x_{a}, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q}, Q^{2}\right) \tilde{f}_{\bar{J} / h_{b}}\left(x_{b}, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q}, Q^{2}\right)+(a \longleftrightarrow b) \\
+O\left(m / Q, q_{\mathrm{T}} / Q\right)
\end{gathered}
$$

Unpolarized DY cross section (TMD region)

$$
\begin{aligned}
& \text { CS kernel } \\
& \frac{\partial \ln \tilde{f}_{j / p}\left(x, b_{\mathrm{T}} ; \mu, \zeta\right)}{\partial \ln \sqrt{\zeta}}=\tilde{K}\left(b_{\mathrm{T}} ; \mu\right), \\
& \frac{\mathrm{d} \tilde{K}\left(b_{\mathrm{T}} ; \mu\right)}{\mathrm{d} \ln \mu}=-\gamma_{K}\left(\alpha_{s}(\mu)\right) \\
& \frac{\mathrm{d} \ln \tilde{f}_{j / p}\left(x, b_{\mathrm{T}} ; \mu, \zeta\right)}{\mathrm{d} \ln \mu}=\gamma\left(\alpha_{s}(\mu) ; \zeta / \mu^{2}\right)
\end{aligned}
$$

Solve evolution equations and write in terms of input scale

$$
\begin{aligned}
F_{U U}^{1} & =\sum_{j} e_{j}^{2} \frac{\left|H_{j \bar{\jmath}}\right|^{2}}{4 \pi^{2} N_{c}} \int \mathrm{~d}^{2} \boldsymbol{b}_{\mathrm{T}} e^{i \boldsymbol{q}_{h \mathrm{~T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / h_{a}}\left(x_{a}, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) \tilde{f}_{\bar{\jmath} / h_{b}}\left(x_{b}, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) \times \\
& \times \exp \left\{\tilde{K}\left(b_{\mathrm{T}} ; \mu_{Q_{0}}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)+\int_{\mu_{Q_{0}}}^{\mu_{Q}} \frac{\mathrm{~d} \mu^{\prime}}{\mu^{\prime}}\left[2 \gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \left(\frac{Q^{2}}{\mu^{\prime 2}}\right) \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]\right\}+(a \longleftrightarrow b)
\end{aligned}
$$

Unpolarized DY cross section (TMD region)

Usually, here one rearranges the expression to take advantage of the small-b $\mathbf{b}_{\mathbf{T}}$ OPE. We depart from this, but one can see a correspondence with the usual treatment (later).

$$
\begin{aligned}
F_{U U}^{1} & =\sum_{j} e_{j}^{2} \frac{\left|H_{j \bar{J}}\right|^{2}}{4 \pi^{2} N_{c}} \int \mathrm{~d}^{2} \boldsymbol{b}_{\mathrm{T}} e^{i \boldsymbol{q}_{\boldsymbol{h} \mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / h_{a}}\left(x_{a}, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) \tilde{f}_{\tilde{J} / h_{b}}\left(x_{b}, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) \times \\
& \times \exp \left\{\tilde{K}\left(b_{\mathrm{T}} ; \mu_{Q_{0}}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)+\int_{\mu_{Q_{0}}}^{\mu_{Q}} \frac{\mathrm{~d} \mu^{\prime}}{\mu^{\prime}}\left[2 \gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \left(\frac{Q^{2}}{\mu^{\prime 2}}\right) \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]\right\}+(a \longleftrightarrow b)
\end{aligned}
$$

We build models in transverse momentum space.

$$
\begin{aligned}
f_{\text {operator }}\left(x, k_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) & \Longrightarrow f_{\text {inpt }}\left(x, k_{\mathrm{T}} ; \mu_{Q_{0}}, \sqrt[Q_{0}^{2}]{\begin{array}{l}
\text { input } \\
\text { scale }
\end{array}}\right. \\
\text { Abstract } & \text { Pheno }
\end{aligned}
$$

Special role of input scale:

- Larger values: factorization/pQCD works better
-Small values: more prominent intrinsic kT

We build models in transverse momentum space.

$$
\begin{aligned}
f_{\text {operator }}\left(x, k_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) & \Longrightarrow f_{\text {inpt }}\left(x, k_{\mathrm{T}} ; \mu_{Q_{0}}, \sqrt[Q_{0}^{2}]{\begin{array}{l}
\text { input } \\
\text { scale }
\end{array}}\right. \\
\text { Abstract } & \text { Pheno }
\end{aligned}
$$

Must preserve fundamental properties of the operator definition in our models at the input scale.

We do it additively (other options allowed)

$f_{\text {inpt }, i / p}\left(x, k_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)=$

$$
C_{i / p} f_{\text {core }, i / p}\left(x, k_{\mathrm{T}} ; Q_{0}^{2}\right)+
$$

Start with a "core" model/parametrization for intrinsic k_{T}

$$
C_{i / p} f_{\text {core }, i / p}\left(x, k_{\mathrm{T}} ; Q_{0}^{2}\right)+
$$

Make sure the model has the large k_{T} behavior of the $T M D$ in the $k_{T} \sim Q_{0}$ approximation

$$
\begin{aligned}
f_{i / p}^{\text {operator }}\left(x, k_{\mathrm{T}} \sim Q_{0} ; \mu_{Q_{0}}, Q_{0}^{2}\right) & =f_{i / p}^{\mathrm{pert}}\left(x, k_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) \\
& =\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}}\left[A_{i / p}\left(x ; \mu_{Q_{0}}\right)+B_{i / p}\left(x ; \mu_{Q_{0}}\right) \ln \left(\frac{Q_{0}^{2}}{k_{\mathrm{T}}^{2}}\right)+A_{i / p}^{g}\left(x ; \mu_{Q_{0}}\right)\right]
\end{aligned}
$$

pQCD tail, related to OPE in b_{T} space

We do it additively (other options allowed)

$$
\begin{aligned}
& f_{\text {inpt }, i / p}\left(x, k_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)= \\
& \quad \begin{array}{l}
\text { model masses } \\
C_{i / p} f_{\text {core }, i / p}\left(x, k_{\mathrm{T}} ; Q_{0}^{2}\right)+\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{i, p, A}^{2}} A_{i / p}\left(x ; \mu_{Q_{0}}\right) \\
\quad+\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{i, p, B}^{2}} B_{i / p}\left(x ; \mu_{Q_{0}}\right) \ln \left(\frac{Q_{0}^{2}}{k_{\mathrm{T}}^{2}+m_{i, p, L}^{2}}\right)+\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{g, p}^{2}} A_{i / p}^{g}\left(x ; \mu_{Q_{0}}\right)
\end{array}
\end{aligned}
$$

Make sure the model has the large k_{T} behavior of the $T M D$ in the $k_{T} \sim Q_{0}$ approximation

$$
\begin{aligned}
f_{i / p}^{\text {operator }}\left(x, k_{\mathrm{T}} \sim Q_{0} ; \mu_{Q_{0}}, Q_{0}^{2}\right) & =f_{i / p}^{\text {pert }}\left(x, k_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) \\
& =\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}}\left[A_{i / p}\left(x ; \mu_{Q_{0}}\right)+B_{i / p}\left(x ; \mu_{Q_{0}}\right) \ln \left(\frac{Q_{0}^{2}}{k_{\mathrm{T}}^{2}}\right)+A_{i / p}^{g}\left(x ; \mu_{Q_{0}}\right)\right]
\end{aligned}
$$

We do it additively (other options allowed)

$$
f_{\text {inpt }, i / p}\left(x, k_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)=
$$

$$
\begin{aligned}
& C_{i / p} f_{\text {core }, i / p}\left(x, k_{\mathrm{T}} ; Q_{0}^{2}\right)+\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{i, p, A}^{2}} A_{i / p}\left(x ; \mu_{Q_{0}}\right) \\
& \quad+\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{i, p, B}^{2}} B_{i / p}\left(x ; \mu_{Q_{0}}\right) \ln \left(\frac{Q_{0}^{2}}{k_{\mathrm{T}}^{2}+m_{i, p, L}^{2}}\right)+\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{g, p}^{2}} A_{i / p}^{g}\left(x ; \mu_{Q_{0}}\right)
\end{aligned}
$$

Impose the QCD integral relation

$$
2 \pi \int_{0}^{\mu_{Q_{0}}} \mathrm{~d} k_{\mathrm{T}} k_{\mathrm{T}} f_{i / p}^{\text {operator }}\left(x, \boldsymbol{k}_{\mathrm{T}} ; \mu_{Q_{0}}, \mu_{Q_{0}}^{2}\right)=f_{i / p}^{\overline{\mathrm{MS}}}\left(x ; \mu_{Q_{0}}\right)+\Delta_{i / p}\left(\alpha_{s}\left(\mu_{Q_{0}}\right)\right)+O\left(\frac{m^{2}}{\mu_{Q_{0}}^{2}}\right)
$$

We do it additively (other options allowed)

In b_{T} space Bessel " K "
$\begin{aligned} \tilde{f}_{\text {inpt }, j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) & =K_{0}\left(\begin{array}{l}\left(m_{i, p} b_{\mathrm{T}}\right) A_{i / p}\left(x ; \mu_{Q_{0}}\right)+K_{0}\left(m_{i, p} b_{\mathrm{T}}\right) \ln \left(\frac{Q_{0}^{2} b_{\mathrm{T}}}{2 m_{i, p} e^{-\gamma_{E}}}\right) B_{i / p}\left(x ; \mu_{Q_{0}}\right) \\ \\ \\ K_{0}\left(m_{g, p} b_{\mathrm{T}}\right) A_{i / p}^{g}\left(x ; \mu_{Q_{0}}\right)+C_{i / p} \tilde{f}_{\text {core }, i / p}\left(x, b_{\mathrm{T}} ; Q_{0}^{2}\right),\end{array}\right.\end{aligned}$

$$
\begin{equation*}
\tilde{f}_{\mathrm{inpt}, j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) \rightarrow \tilde{f}_{\mathrm{OPE}, j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) \tag{T}
\end{equation*}
$$

We do it additively (other options allowed)

$$
\begin{gathered}
\text { In } \begin{array}{c}
\text { b space } \\
\tilde{f}_{\mathrm{inpt}, j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)= \\
\\
+K_{0}\left(\begin{array}{l}
K_{0}\left(m_{i, p} b_{\mathrm{T}}\right) A_{i / p}\left(x ; \mu_{Q_{0}}\right)+K_{0}\left(m_{i, p} b_{\mathrm{T}}\right) \ln \left(\frac{Q_{0}^{2} b_{\mathrm{T}}}{2 m_{i, p} e^{-\gamma_{E}}}\right) B_{i / p}\left(x ; \mu_{Q_{0}}\right) \\
\left(m_{g, p} b_{\mathrm{T}}\right) A_{i / p}^{g}\left(x ; \mu_{Q_{0}}\right)+C_{i / p} \tilde{f}_{\text {core }, i / p}\left(x, b_{\mathrm{T}} ; Q_{0}^{2}\right),
\end{array}\right. \\
\tilde{f}_{\text {inpt }, j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) \rightarrow \tilde{f}_{\mathrm{OPE}, j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) \quad\left(b_{\mathrm{T}} \rightarrow 0\right)
\end{array}
\end{gathered}
$$

Note, it does not necessarily work the other way around: starting from the OPE and multiplying by a model does not guarantee the constraints to hold.

We do it additively (other options allowed)

$$
\begin{aligned}
& f_{\text {inpt }, i / p}\left(x, k_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)= \\
& \qquad C_{i / p} f_{\text {core }, i / p}\left(x, k_{\mathrm{T}} ; Q_{0}^{2}\right)+\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{i, p, A}^{2}} A_{i / p}\left(x ; \mu_{Q_{0}}\right) \\
& \quad+\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{i, p, B}^{2}} B_{i / p}\left(x ; \mu_{Q_{0}}\right) \ln \left(\frac{Q_{0}^{2}}{k_{\mathrm{T}}^{2}+m_{i, p, L}^{2}}\right)+\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{g, p}^{2}} A_{i / p}^{g}\left(x ; \mu_{Q_{0}}\right)
\end{aligned}
$$

In b_{T} space

$$
\begin{aligned}
\tilde{f}_{\text {inpt }, j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) & =K_{0}\left(\begin{array}{l}
\left(m_{i, p} b_{\mathrm{T}}\right) A_{i / p}\left(x ; \mu_{Q_{0}}\right)+K_{0}\left(m_{i, p} b_{\mathrm{T}}\right) \ln \left(\frac{Q_{0}^{2} b_{\mathrm{T}}}{2 m_{i, p} e^{-\gamma_{E}}}\right) B_{i / p}\left(x ; \mu_{Q_{0}}\right) \\
\\
\\
+K_{0}\left(m_{g, p} b_{\mathrm{T}}\right) A_{i / p}^{g}\left(x ; \mu_{Q_{0}}\right)+C_{i / p} \tilde{f}_{\text {core }, i / p}\left(x, b_{\mathrm{T}} ; Q_{0}^{2}\right),
\end{array}\right.
\end{aligned}
$$

Bessel "K"

SIMILAR STEPS FOR THE KERNEL

Model in the HSO approach: CS kernel

$$
\begin{aligned}
& D_{K}\left(\mu_{Q_{0}}\right)=-b_{K}+\frac{2 \alpha_{s}\left(\mu_{Q_{0}}\right) C_{F}}{\pi} \ln \left(\frac{m_{K}}{\mu_{Q_{0}}}\right) \\
& K_{\text {inpt }}\left(k_{\mathrm{T}} ; \mu_{Q_{0}}\right)=A_{K}^{(1)}\left(\mu_{Q_{0}}\right) \frac{1}{k_{\mathrm{T}}^{2}+m_{K}^{2}}+K_{\text {core }}\left(k_{\mathrm{T}}\right)+D_{K}\left(\mu_{Q_{0}}\right) \delta^{(2)}\left(\boldsymbol{k}_{\mathrm{T}}\right) \\
& K^{(1)}\left(k_{\mathrm{T}} ; \mu_{Q_{0}}\right)=\frac{\alpha_{s}\left(\mu_{Q_{0}}\right) C_{F}}{\pi^{2}} \frac{1}{k_{\mathrm{T}}^{2}} . \quad \begin{array}{l}
\frac{\mathrm{d} \tilde{K}_{\text {input }}^{(n)}\left(b_{\mathrm{T}} ; \mu\right)}{\mathrm{d} \ln \mu}=-\gamma_{K}^{(n)}\left(\alpha_{s}(\mu)\right)+O\left(\alpha_{s}(\mu)^{n+1}\right) \\
\text { Perturbative tail } \\
\text { Evolution equation valid }
\end{array}
\end{aligned}
$$

*HSO Strategy

HSO Strategy.

-Use theoretical constraints, don't trust the fit will do this job by itself.
-Check/improve constraints
-Prioritize the role of lower scale data (more information about intrinsic kT)
-Emphasize the predictive aspect of factorization theorems

Emphasize the predictive aspect of factorization theorems

POSTDICTIONS

(NO FITTING)
CDF II

Fit
E288, E605 (for now)

Plot from (MAP collaboration):
JHEP 10 (2022) 127

* DY and Z0 production examples

Simple minimization procure

$$
\chi^{2}=\frac{(1-N)^{2}}{\delta_{N}^{2}}+\sum_{i} \frac{\left(d_{i}-t_{i} / N\right)^{2}}{\sigma_{i}^{2}}
$$

(Produce errors with eigensets)

Fit only $\quad q_{\mathrm{T}} \leq 0.2 Q$,

Simple treatment of target

$$
f_{i / t}=\frac{Z}{A} f_{i / p}+\frac{A-Z}{A} f_{i / n},
$$

Example I: fit E288 (only) vs fit E605 (only)

Models for core functions

$$
\begin{array}{ll}
f_{\text {core }, i / p}^{\mathrm{Gauss}}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right)=\frac{e^{-k_{\mathrm{T}}^{2} / M_{\mathrm{F}}^{2}}}{\pi M_{\mathrm{F}}^{2}} & K_{\text {core }}\left(k_{\mathrm{T}}\right)=\frac{b_{K}}{4 \pi m_{K}^{2}} e^{-\frac{k_{\mathrm{T}}^{2}}{4 m_{K}^{2}}} \\
\quad M_{\mathrm{F}} \rightarrow M_{0}+M_{1} \log (1 / x),
\end{array}
$$

Free parameters M_{0}, M_{1}, b_{k}

Other small model masses fixed to 0.3 GeV

Example I: fit E288 (only) vs fit E605 (only)

Gaussian fits

	E288 (130 pts.)	E605 (52 pts.)
$\chi_{\text {dof }}^{2}$	1.04	1.68
$M_{0}(\mathrm{GeV})$	0.0576	0.404
$M_{1}(\mathrm{GeV})$	0.403	0.290
b_{K}	2.12	0.744
N (nuisance)	1.29	1.28

Example I: fit E288 (only) vs fit E605 (only)

Must extrapolate
Example I: comparing postdictions to smaller values of \mathbf{x}

Plot from (MAP collaboration):
JHEP 10 (2022) 127

Saturate to keep consistency with pQCD tail
fit E288 (only)

fit E288 (only)

fit E605 (only)

fit E605 (only)
E605 only one energy beam. Not likely to determine both TMD and kernel from this set alone.

Example II: fit E288 (only). Gaussian vs spectator

Models for TMD core functions
(same kernel as before)

$$
\begin{aligned}
& f_{\text {core }, i / p}^{\mathrm{Gass}}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right)=\frac{e^{-k_{\mathrm{T}}^{2} / M_{\mathrm{F}}^{2}}}{\pi M_{\mathrm{F}}^{2}} \quad M_{\mathrm{F}} \rightarrow M_{0}+M_{1} \log (1 / x), \\
& \text { Free parameters } \mathbf{M}_{0}, \mathbf{M}_{\mathbf{1}}, \mathbf{b}_{\mathbf{k}} \\
& f_{\text {core }, i / p}^{\mathrm{Spect}}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right)=\frac{1}{\pi} \frac{6 L^{6}}{L^{2}+2\left(m_{q}+x M_{p}\right)^{2}} \frac{k_{\mathrm{T}}^{2}+\left(m_{q}+x M_{p}\right)^{2}}{\left(k_{\mathrm{T}}^{2}+L^{2}\right)^{4}} \\
& L^{2}=(1-x) \Lambda^{2}+x M_{X}^{2}-x(1-x) M_{p}^{2}
\end{aligned}
$$

Free parameters $\Lambda, M_{X}, b_{k} \quad m_{q}=0$

Gaussian			Spectator model fit	
	E288 (130 pts.)		E288 (130 pts.)	
$\chi_{\text {dof }}^{2}$	1.04		$\chi_{\text {dof }}^{2}$	1.04
$M_{0}(\mathrm{GeV})$	0.0576		$\Lambda(\mathrm{GeV})$	0.801
$M_{1}(\mathrm{GeV})$	0.403		$M_{X}(\mathrm{GeV})$	0.438
b_{K}	2.12		b_{K}	1.90
N (nuisance)	1.29		N (nuisance)	1.23

Same $\chi^{2} /$ dof

Same no. of parameters

Gaussian

Spectator

Examples here somewhat qualitative

Examples TMDs Gaussian fit to E288

HSO Strategy (and final remarks)

-Use theoretical constraints, don't trust the fit will do this job by itself.
-Check/improve constraints
-Prioritize the role of lower scale data (more information about intrinsic kT)
-Emphasize the predictive aspect of factorization theorems

Thanks

$$
\begin{aligned}
{\left[f_{j / p}, D_{h / j}\right] } & \rightarrow \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, \mu_{Q_{0}}^{2}\right) \tilde{D}_{h / j}\left(z, \boldsymbol{b}_{\mathrm{T}} ; \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, \mu_{Q_{0}}^{2}\right) \\
& \times \exp \left\{2 \int_{\mu_{Q_{0}}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q^{2}}{Q_{0}^{2}} \tilde{K}\left(\boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}\right)\right\} . \\
{\left[f_{j / p}, D_{h / j}\right] } & \rightarrow \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / p}\left(x, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \tilde{D}_{h / j}\left(z, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \\
& \times \exp \left\{2 \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q^{2}}{\mu_{b_{*}}^{2}} \tilde{K}\left(b_{*} ; \mu_{b_{*}}\right)\right\} \\
& \times \exp \left\{-g_{j / p}\left(x, b_{\mathrm{T}}\right)-g_{h / j}\left(z, b_{\mathrm{T}}\right)-g_{K}\left(b_{\mathrm{T}}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)\right\} .
\end{aligned}
$$

Same formula, just reorganized

$$
\begin{aligned}
& -g_{j / p}\left(x, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right), \quad-g_{h / j}\left(z, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right), \\
& g_{K}\left(b_{\mathrm{T}}\right) \equiv \tilde{K}\left(b_{*} ; \mu\right)-\tilde{K}\left(b_{\mathrm{T}} ; \mu\right) .
\end{aligned}
$$

Precise definitions for g functions, $b_{*}\left(b_{T}\right)$ is a transition function bounded by some $b_{\max }$. Note that b_{*} dependence cancels exactly. It is really unimportant which b* we choose.

$$
\begin{aligned}
{\left[f_{j / p}, D_{h / j}\right] } & \rightarrow \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / p}\left(x, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \tilde{D}_{h / j}\left(z, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \\
& \times \exp \left\{2 \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q^{2}}{\mu_{b_{*}}^{2}} \tilde{K}\left(b_{*} ; \mu_{b_{*}}\right)\right\} \\
& \times \exp \left\{-g_{j / p}\left(x, b_{\mathrm{T}}\right)-g_{h / j}\left(z, b_{\mathrm{T}}\right)-g_{K}\left(b_{\mathrm{T}}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)\right\}
\end{aligned}
$$

Same formula, just reorganized

$$
\begin{array}{cc}
-g_{j / p}\left(x, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right), & -g_{h / j}\left(z, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right), \\
g_{K}\left(b_{\mathrm{T}}\right) \equiv \tilde{K}\left(b_{*} ; \mu\right)-\tilde{K}\left(b_{\mathrm{T}} ; \mu\right) . & \boldsymbol{b}_{*}\left(b_{\mathrm{T}}\right)=\frac{\boldsymbol{b}_{\mathrm{T}}}{\sqrt{1+b_{\mathrm{T}}^{2} / b_{\max }^{2}}},
\end{array}
$$

Precise definitions for g functions, $b_{*}\left(b_{T}\right)$ is a transition function bounded by some $b_{\max }$. Note that b_{*} dependence cancels exactly. High sensitivity to $b *$ or $b_{\max }$ signals an issue.

$$
\begin{aligned}
{\left[f_{j / p}, D_{h / j}\right] } & \rightarrow \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / p}^{\mathrm{OPE}}\left(x, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \tilde{D}_{h / j}^{\mathrm{OPE}}\left(z, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \\
& \times \exp \left\{2 \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q^{2}}{\mu_{b_{*}}^{2}} \tilde{K}\left(b_{*} ; \mu_{b_{*}}\right)\right\} \\
& \times \exp \left\{-g_{j / p}\left(x, b_{\mathrm{T}}\right)-g_{h / j}\left(z, b_{\mathrm{T}}\right)-g_{K}\left(b_{\mathrm{T}}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)\right\}+O\left(b_{\max } m\right) \leftarrow \text { errors }
\end{aligned}
$$

Use of OPE introduces errors. Must keep $\mathbf{b}_{\max }$ reasonably small.

$$
\frac{\mathrm{d}}{\mathrm{~d} b_{\max }}\left[f_{j / p}, D_{h / j}\right]=O\left(m b_{\max }\right)
$$

$$
\begin{aligned}
& {\left[f_{j / p}, D_{h / j}\right] } \rightarrow \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / p}^{\mathrm{OPE}}\left(x, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \tilde{D}_{h / j}^{\mathrm{OPE}}\left(z, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \\
& \times \exp \left\{2 \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q^{2}}{\mu_{b_{*}}^{2}} \tilde{K}\left(b_{*} ; \mu_{b_{*}}\right)\right\} \\
& \text { Models } \rightarrow \quad \times \exp \left\{-g_{j / p}\left(x, b_{\mathrm{T}}\right)-g_{h / j}\left(z, b_{\mathrm{T}}\right)-g_{K}\left(b_{\mathrm{T}}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)\right\}+O\left(b_{\max } m\right)
\end{aligned}
$$

Definitions:

 Smooth transition to small-b b_{T} region by constructionTypical choices: generally unconstrained

$$
\begin{gathered}
-g_{h / j}\left(z, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right) \\
-g_{j / p}\left(x, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right) \\
g_{K}\left(b_{\mathrm{T}}\right) \equiv \tilde{K}\left(b_{*} ; \mu\right)-\tilde{K}\left(b_{\mathrm{T}} ; \mu\right)
\end{gathered}
$$

$$
\begin{gathered}
g_{h / j}\left(z, b_{\mathrm{T}}\right)=\frac{1}{4 z^{2}} M_{D}^{2} b_{\mathrm{T}}^{2} \\
g_{j / p}\left(x, b_{\mathrm{T}}\right)=\frac{1}{4} M_{F}^{2} b_{\mathrm{T}}^{2}
\end{gathered}
$$

$$
g_{K}\left(b_{\mathrm{T}}\right)=\frac{g_{2}}{2 M_{K}^{2}} \ln \left(1+M_{K}^{2} b_{\mathrm{T}}^{2}\right)
$$

Issues:

Note the large-qT (small-b ${ }_{T}$) region should be determined by the OPE. Small mass parameters can't really compensate for this $\mathrm{b}_{\text {max }}$ dependence.

Typical choices: generally unconstrained

$$
\begin{gathered}
g_{h / j}\left(z, b_{\mathrm{T}}\right)=\frac{1}{4 z^{2}} M_{D}^{2} b_{\mathrm{T}}^{2} \\
g_{j / p}\left(x, b_{\mathrm{T}}\right)=\frac{1}{4} M_{F}^{2} b_{\mathrm{T}}^{2} \\
g_{K}\left(b_{\mathrm{T}}\right)=\frac{g_{2}}{2 M_{K}^{2}} \ln \left(1+M_{K}^{2} b_{\mathrm{T}}^{2}\right)
\end{gathered}
$$

Issues:

Typical choices: generally unconstrained

$$
\begin{gathered}
g_{h / j}\left(z, b_{\mathrm{T}}\right)=\frac{1}{4 z^{2}} M_{D}^{2} b_{\mathrm{T}}^{2} \\
g_{j / p}\left(x, b_{\mathrm{T}}\right)=\frac{1}{4} M_{F}^{2} b_{\mathrm{T}}^{2} \\
g_{K}\left(b_{\mathrm{T}}\right)=\frac{g_{2}}{2 M_{K}^{2}} \ln \left(1+M_{K}^{2} b_{\mathrm{T}}^{2}\right)
\end{gathered}
$$

Issues:

Asymptotic term does not approximate well the TMD term, even at a scale of $Q_{0}=20 \mathrm{GeV}$

Typical choices: generally unconstrained

$$
\begin{gathered}
g_{h / j}\left(z, b_{\mathrm{T}}\right)=\frac{1}{4 z^{2}} M_{D}^{2} b_{\mathrm{T}}^{2} \\
g_{j / p}\left(x, b_{\mathrm{T}}\right)=\frac{1}{4} M_{F}^{2} b_{\mathrm{T}}^{2} \\
g_{K}\left(b_{\mathrm{T}}\right)=\frac{g_{2}}{2 M_{K}^{2}} \ln \left(1+M_{K}^{2} b_{\mathrm{T}}^{2}\right)
\end{gathered}
$$

Issues:

No region of "overlap" between TMD term and FO.

This means smooth matching is not possible

Typical choices: generally unconstrained

$$
\begin{gathered}
g_{h / j}\left(z, b_{\mathrm{T}}\right)=\frac{1}{4 z^{2}} M_{D}^{2} b_{\mathrm{T}}^{2} \\
g_{j / p}\left(x, b_{\mathrm{T}}\right)=\frac{1}{4} M_{F}^{2} b_{\mathrm{T}}^{2} \\
g_{K}\left(b_{\mathrm{T}}\right)=\frac{g_{2}}{2 M_{K}^{2}} \ln \left(1+M_{K}^{2} b_{\mathrm{T}}^{2}\right)
\end{gathered}
$$

Issues:

No region of "overlap" between TMD term and FO.

This means smooth matching is not possible

Typical choices: generally unconstrained

$$
\begin{gathered}
g_{h / j}\left(z, b_{\mathrm{T}}\right)=\frac{1}{4 z^{2}} M_{D}^{2} b_{\mathrm{T}}^{2} \\
g_{j / p}\left(x, b_{\mathrm{T}}\right)=\frac{1}{4} M_{F}^{2} b_{\mathrm{T}}^{2} \\
g_{K}\left(b_{\mathrm{T}}\right)=\frac{g_{2}}{2 M_{K}^{2}} \ln \left(1+M_{K}^{2} b_{\mathrm{T}}^{2}\right)
\end{gathered}
$$

$$
\bar{Q}_{0}\left(b_{\mathrm{T}}\right)=Q_{0} \mathrm{GeV}\left[1-\left(1-\frac{C_{1}}{Q_{0} b_{\mathrm{T}}}\right) e^{-a^{2} b_{\mathrm{T}}^{2}}\right]
$$

* goes as $1 / b_{T}$ for small b_{T}
* approaches input scale Q_{0} at large b_{T}
* analogous to b_{*} in usual treatment

Model in the HSO approach

Need RG improvements for pheno at \mathbf{Q} >> $\mathbf{Q o}_{0}$

$$
\sim \alpha_{s}\left(Q_{0}\right)^{n} \ln ^{m}\left(\frac{q_{\mathrm{T}}}{Q_{0}}\right) \quad \begin{aligned}
& \text { Wider range of } \mathrm{qT} \text { available } \\
& \text { upon evolution to large } \mathrm{Q}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{f}_{i / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) \\
& =\tilde{f}_{\text {inpt }, i / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{\bar{Q}_{0}}, \bar{Q}_{0}^{2}\right) E\left(\bar{Q}_{0} / Q_{0}, b_{\mathrm{T}}\right) \quad \bar{Q}_{0}\left(b_{\mathrm{T}}\right)=Q_{0} \mathrm{GeV}\left[1-\left(1-\frac{C_{1}}{Q_{0} b_{\mathrm{T}}}\right) e^{-a^{2} b_{\mathrm{T}}^{2}}\right] \\
& E\left(\bar{Q}_{0} / Q_{0}, b_{\mathrm{T}}\right) \equiv \exp \left\{\int_{\mu_{\bar{Q}_{n}}}^{\mu_{Q_{0}}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q_{0}}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q_{0}}{\bar{Q}_{0}} \tilde{K}_{\text {inpt }}\left(b_{\mathrm{T}} ; \mu_{\bar{Q}_{0}}\right)\right\} . \\
& \text { The usual evolution factor }
\end{aligned}
$$

Scale transformation not really needed for pheno at $\mathbf{Q} \approx \mathbf{Q}_{0}$

Work with $Q=Q_{0}$ for now

Asymptotic term

The usual asymptotic term

$$
\lim _{q_{\mathrm{T}} / Q \rightarrow 0} F^{\mathrm{FO}}
$$

Still not a good approximation to the TMD term at large q_{T}

The usual asymptotic term

$$
\lim _{q_{\mathrm{T}} / Q \rightarrow 0} F^{\mathrm{FO}}
$$

Still not a good approximation to the TMD term at large q_{T}

We compute instead

$$
\lim _{m / q_{\mathrm{T}} \rightarrow 0} F^{\mathrm{TMD}}
$$

Stays a good approximation to the TMD term at large q_{T}, from around
this region

> The usual asymptotic term

$$
\begin{gathered}
\lim _{q_{\mathrm{T}} / Q \rightarrow 0} F^{\mathrm{FO}} \lim _{m / q_{\mathrm{T}} \rightarrow 0} F^{\mathrm{TMD}} \\
{\left[\lim _{q_{\mathrm{T}} / Q \rightarrow 0} F^{\mathrm{FO}}\right]^{O\left(\alpha_{s}^{n}\right)}-\left[\lim _{m / q_{\mathrm{T}} \rightarrow 0} F^{\mathrm{TMD}}\right]^{O\left(\alpha_{s}^{n}\right)}=O\left(\alpha_{s}^{n+1}, m^{2} / Q^{2}\right)} \\
\text { If using different schemes } \\
\text { for collinear functions }
\end{gathered}
$$

$$
\begin{gathered}
\text { The usual asymptotic } \\
\text { term }
\end{gathered}
$$

$$
\lim _{q_{\mathrm{T}} / Q \rightarrow 0} F^{\mathrm{FO}} \quad \lim _{m / q_{\mathrm{T}} \rightarrow 0} F^{\mathrm{TMD}}
$$

$$
\left.\left[\lim _{q_{\mathrm{T}} / Q \rightarrow 0} F^{\mathrm{FO}}\right]^{O\left(\alpha_{s}^{n}\right)}-\left[\lim _{m / q_{\mathrm{T}} \rightarrow 0} F^{\mathrm{TMD}}\right]^{O\left(\alpha_{s}^{n}\right)}=O \underset{\left(\alpha_{s}^{n+1}\right.}{ } m^{2} / Q^{2}\right)
$$

$$
\begin{gathered}
\text { From two places } \\
\text { (fixing the scheme } \\
\text { for collinear functions) }
\end{gathered}
$$

> The usual asymptotic term

HSO approach

HSO approach

$f_{\text {core }, i / p}^{\mathrm{Gauss}}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right)=\frac{e^{-k_{\mathrm{T}}^{2} / M_{\mathrm{F}}^{2}}}{\pi M_{\mathrm{F}}^{2}}$

$f_{\text {core }, i / p}^{\mathrm{Spect}}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right)=\frac{6 M_{0 \mathrm{~F}}^{6}}{\pi\left(2 M_{\mathrm{F}}^{2}+M_{0 \mathrm{~F}}^{2}\right)} \frac{M_{\mathrm{F}}^{2}+k_{\mathrm{T}}^{2}}{\left(M_{0 \mathrm{~F}}^{2}+k_{\mathrm{T}}^{2}\right)^{4}}$

HSO approach

Consistency of the band with the asymptotic term means the models for TMDs have been made consistent with collinear factorization. In the usual approach, this is the aim when embedding the OPE.

HSO approach

*Standard treatment vs HSO approach.

$\mathbf{b}_{\text {max }}$ sensitivity

b* prescription not used in HSO. It is instructive though to construct g-functions from HSO approach

$$
\begin{gathered}
-g_{j / p}\left(x, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right), \quad-g_{h / j}\left(z, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right), \\
g_{K}\left(b_{\mathrm{T}}\right) \equiv \tilde{K}\left(b_{*} ; \mu\right)-\tilde{K}\left(b_{\mathrm{T}} ; \mu\right)
\end{gathered}
$$

b* prescription not used in HSO. It is instructive though to construct g-functions from HSO approach

Some comparisons

