

A first implementation of the HSO approach to TMD phenomenology

J. Osvaldo Gonzalez-Hernandez Università di Torino & INFN Torino

Based on:

JOGH, T.C. Rogers T., N. Sato Phys.Rev.D 106 (2022) 3, 034002 • e-Print: 2205.05750 [hep-ph]

JOGH, T. Rainaldi, T.C. Rogers e-Print: 2303.04921 [hep-ph] Accepted in Phys. Rev. D

F. Aslan, M. Boglione, JOGH, T.C. Rogers, T. Rainaldi, A. Simonelli e-Print: 2401.14266 [hep-ph]

OUTLINE

* Building models in HSO

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q_{h\mathrm{T}}^2\,\mathrm{d}Q^2\,\mathrm{d}y_h} = \frac{2\pi^2\alpha_{\mathrm{em}}^2}{3sQ^2}\left(2F_{UU}^1 + F_{UU}^2\right)\,.$$

$$q_{h} = \left(e^{y_{h}}\sqrt{\frac{Q^{2} + q_{hT}^{2}}{2}}, e^{-y_{h}}\sqrt{\frac{Q^{2} + q_{hT}^{2}}{2}}, \boldsymbol{q}_{hT}\right)$$

$$x_{a} = \frac{Qe^{y_{h}}}{\sqrt{s\left(1 + \frac{q_{\mathrm{T}}^{2}}{Q^{2}}\right)}}, \qquad x_{b} = \frac{Qe^{-y_{h}}}{\sqrt{s\left(1 + \frac{q_{\mathrm{T}}^{2}}{Q^{2}}\right)}}.$$

$$\begin{split} F_{UU}^{1} &= \sum_{j} e_{j}^{2} \frac{\left|H_{j\bar{j}}\right|^{2}}{4\pi^{2} N_{c}} \int \mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}} \, e^{i\boldsymbol{q}_{h\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j/h_{a}}(x_{a},\boldsymbol{b}_{\mathrm{T}};\mu_{Q},Q^{2}) \, \tilde{f}_{\bar{j}/h_{b}}(x_{b},\boldsymbol{b}_{\mathrm{T}};\mu_{Q},Q^{2}) + (a \longleftrightarrow b) \\ &+ O\left(m/Q,q_{\mathrm{T}}/Q\right) \quad \text{errors} \end{split}$$

Unpolarized DY cross section (TMD region)

CS kernel

$$\frac{\partial \ln \tilde{f}_{j/p}(x, b_{\mathrm{T}}; \mu, \zeta)}{\partial \ln \sqrt{\zeta}} = \tilde{K}(b_{\mathrm{T}}; \mu),$$
$$\frac{\mathrm{d}\tilde{K}(b_{\mathrm{T}}; \mu)}{\mathrm{d}\ln \mu} = -\gamma_{K}(\alpha_{s}(\mu)),$$
$$\frac{\mathrm{d}\ln \tilde{f}_{j/p}(x, b_{\mathrm{T}}; \mu, \zeta)}{\mathrm{d}\ln \mu} = \gamma(\alpha_{s}(\mu); \zeta/\mu^{2})$$

$$F_{UU}^{1} = \sum_{j} e_{j}^{2} \frac{|H_{j\bar{j}}|^{2}}{4\pi^{2}N_{c}} \int d^{2}\boldsymbol{b}_{\mathrm{T}} e^{i\boldsymbol{q}_{h\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j/h_{a}}(x_{a},\boldsymbol{b}_{\mathrm{T}};\mu_{Q},Q^{2}) \quad \tilde{f}_{\bar{j}/h_{b}}(x_{b},\boldsymbol{b}_{\mathrm{T}};\mu_{Q},Q^{2}) + (a \longleftrightarrow b) + O\left(m/Q,q_{\mathrm{T}}/Q\right)$$

Unpolarized DY cross section (TMD region)

Solve evolution equations and write in terms of input scale

$$F_{UU}^{1} = \sum_{j} e_{j}^{2} \frac{|H_{j\bar{j}}|^{2}}{4\pi^{2} N_{c}} \int d^{2}\boldsymbol{b}_{\mathrm{T}} e^{i\boldsymbol{q}_{h\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j/h_{a}}(x_{a},\boldsymbol{b}_{\mathrm{T}};\mu_{Q_{0}},Q_{0}^{2}) \tilde{f}_{\bar{j}/h_{b}}(x_{b},\boldsymbol{b}_{\mathrm{T}};\mu_{Q_{0}},Q_{0}^{2}) \times \\ \times \exp\left\{\tilde{K}(b_{\mathrm{T}};\mu_{Q_{0}})\ln\left(\frac{Q^{2}}{Q_{0}^{2}}\right) + \int_{\mu_{Q_{0}}}^{\mu_{Q}} \frac{d\mu'}{\mu'} \left[2\gamma(\alpha_{s}(\mu');1) - \ln\left(\frac{Q^{2}}{{\mu'}^{2}}\right)\gamma_{K}(\alpha_{s}(\mu'))\right]\right\} + (a \longleftrightarrow b)$$

Unpolarized DY cross section (TMD region)

Usually, here one rearranges the expression to take advantage of the small- b_T OPE. We depart from this, but one can see a correspondence with the usual treatment (later).

$$F_{UU}^{1} = \sum_{j} e_{j}^{2} \frac{|H_{j\bar{j}}|^{2}}{4\pi^{2} N_{c}} \int d^{2}\boldsymbol{b}_{\mathrm{T}} e^{i\boldsymbol{q}_{h\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j/h_{a}}(x_{a},\boldsymbol{b}_{\mathrm{T}};\mu_{Q_{0}},Q_{0}^{2}) \tilde{f}_{\bar{j}/h_{b}}(x_{b},\boldsymbol{b}_{\mathrm{T}};\mu_{Q_{0}},Q_{0}^{2}) \times \\ \times \exp\left\{\tilde{K}(b_{\mathrm{T}};\mu_{Q_{0}})\ln\left(\frac{Q^{2}}{Q_{0}^{2}}\right) + \int_{\mu_{Q_{0}}}^{\mu_{Q}} \frac{d\mu'}{\mu'} \left[2\gamma(\alpha_{s}(\mu');1) - \ln\left(\frac{Q^{2}}{\mu'^{2}}\right)\gamma_{K}(\alpha_{s}(\mu'))\right]\right\} + (a \longleftrightarrow b)$$

We build models in transverse momentum space.

$$\begin{split} f_{\text{operator}}(x,k_{\text{T}};\mu_{Q_0},Q_0^2) \implies f_{\text{inpt}}(x,k_{\text{T}};\mu_{Q_0},Q_0^2) & \begin{array}{c} \text{input} \\ \text{scale} \end{array} \\ \\ \text{Abstract} & \text{Pheno} \end{split}$$

Special role of input scale:

- Larger values: factorization/pQCD works better
- Small values: more prominent intrinsic kT

We build models in transverse momentum space.

$$\begin{split} f_{\text{operator}}(x,k_{\text{T}};\mu_{Q_0},Q_0^2) \implies f_{\text{inpt}}(x,k_{\text{T}};\mu_{Q_0},Q_0^2) & \begin{array}{c} \text{input} \\ \text{scale} \end{array} \\ \\ \text{Abstract} & \text{Pheno} \end{split}$$

Must preserve fundamental properties of the operator definition in our models at the **input** scale.

 $f_{\text{inpt},i/p}(x, k_{\text{T}}; \mu_{Q_0}, Q_0^2) =$

 $C_{i/p} f_{\text{core},i/p}(x,k_{\text{T}};Q_0^2) +$

Start with a "core" model/parametrization for intrinsic $k_{\mbox{\tiny T}}$

 $f_{\text{inpt},i/p}(x, k_{\text{T}}; \mu_{Q_0}, Q_0^2) =$

 $C_{i/p} f_{\text{core},i/p}(x,k_{\text{T}};Q_0^2) +$

Make sure the model has the large $k_{\rm T}$ behavior of the TMD in the $k_{\rm T}$ ~ Q_0 approximation

$$f_{i/p}^{\text{operator}}(x, k_{\text{T}} \sim Q_0; \mu_{Q_0}, Q_0^2) = f_{i/p}^{\text{pert}}(x, k_{\text{T}}; \mu_{Q_0}, Q_0^2)$$
$$= \frac{1}{2\pi} \frac{1}{k_{\text{T}}^2} \left[A_{i/p}(x; \mu_{Q_0}) + B_{i/p}(x; \mu_{Q_0}) \ln\left(\frac{Q_0^2}{k_{\text{T}}^2}\right) + A_{i/p}^g(x; \mu_{Q_0}) \right]$$

pQCD tail, related to OPE in b_T space

$$f_{\text{inpt},i/p}(x, k_{\text{T}}; \mu_{Q_0}, Q_0^2) =$$

model masses

$$C_{i/p} f_{\text{core},i/p}(x, k_{\text{T}}; Q_0^2) + \frac{1}{2\pi} \frac{1}{k_{\text{T}}^2 + m_{i,p,A}^2} A_{i/p}(x; \mu_{Q_0}) + \frac{1}{2\pi} \frac{1}{k_{\text{T}}^2 + m_{i,p,B}^2} B_{i/p}(x; \mu_{Q_0}) \ln \left(\frac{Q_0^2}{k_{\text{T}}^2 + m_{i,p,L}^2} \right) + \frac{1}{2\pi} \frac{1}{k_{\text{T}}^2 + m_{g,p}^2} A_{i/p}^g(x; \mu_{Q_0})$$

Make sure the model has the large $k_{\rm T}$ behavior of the TMD in the $k_{\rm T}$ ~ Q_0 approximation

$$f_{i/p}^{\text{operator}}(x, k_{\text{T}} \sim Q_0; \mu_{Q_0}, Q_0^2) = f_{i/p}^{\text{pert}}(x, k_{\text{T}}; \mu_{Q_0}, Q_0^2)$$
$$= \frac{1}{2\pi} \frac{1}{k_{\text{T}}^2} \left[A_{i/p}(x; \mu_{Q_0}) + B_{i/p}(x; \mu_{Q_0}) \ln\left(\frac{Q_0^2}{k_{\text{T}}^2}\right) + A_{i/p}^g(x; \mu_{Q_0}) \right]$$

$$f_{\text{inpt},i/p}(x, k_{\text{T}}; \mu_{Q_0}, Q_0^2) =$$

$$C_{i/p} f_{\text{core},i/p}(x,k_{\text{T}};Q_{0}^{2}) + \frac{1}{2\pi} \frac{1}{k_{\text{T}}^{2} + m_{i,p,A}^{2}} A_{i/p}(x;\mu_{Q_{0}}) + \frac{1}{2\pi} \frac{1}{k_{\text{T}}^{2} + m_{i,p,B}^{2}} B_{i/p}(x;\mu_{Q_{0}}) \ln\left(\frac{Q_{0}^{2}}{k_{\text{T}}^{2} + m_{i,p,L}^{2}}\right) + \frac{1}{2\pi} \frac{1}{k_{\text{T}}^{2} + m_{g,p}^{2}} A_{i/p}^{g}(x;\mu_{Q_{0}})$$

Impose the QCD integral relation

$$2\pi \int_{0}^{\mu_{Q_0}} \mathrm{d}k_{\mathrm{T}} \, k_{\mathrm{T}} f_{i/p}^{\mathrm{operator}}(x, \boldsymbol{k}_{\mathrm{T}}; \mu_{Q_0}, \mu_{Q_0}^2) = f_{i/p}^{\overline{\mathrm{MS}}}(x; \mu_{Q_0}) + \Delta_{i/p}(\alpha_s(\mu_{Q_0})) + O\left(\frac{m^2}{\mu_{Q_0}^2}\right)$$

Determines the normalization of the core function

$$\begin{split} \text{In } \mathbf{b}_{\mathrm{T}} \text{ space} & \text{Bessel "K"} \\ \tilde{f}_{\mathrm{inpt},j/p}(x, \boldsymbol{b}_{\mathrm{T}}; \mu_{Q_0}, Q_0^2) = & K_0 \\ & + K_0 \\ & (m_{i,p}b_{\mathrm{T}}) A_{i/p}(x; \mu_{Q_0}) + K_0 (m_{i,p}b_{\mathrm{T}}) \ln \left(\frac{Q_0^2 b_{\mathrm{T}}}{2m_{i,p}e^{-\gamma_E}}\right) B_{i/p}(x; \mu_{Q_0}) \\ & + K_0 \\ & (m_{g,p}b_{\mathrm{T}}) A_{i/p}^g(x; \mu_{Q_0}) + C_{i/p} \tilde{f}_{\mathrm{core},i/p}(x, b_{\mathrm{T}}; Q_0^2) \,, \end{split}$$

$$\tilde{f}_{\text{inpt},j/p}(x, \boldsymbol{b}_{\text{T}}; \mu_{Q_0}, Q_0^2) \to \tilde{f}_{\text{OPE},j/p}(x, \boldsymbol{b}_{\text{T}}; \mu_{Q_0}, Q_0^2) \qquad (b_{\text{T}} \to 0)$$

$$\begin{split} \text{In } \mathbf{b}_{\mathrm{T}} \text{ space} & \text{Bessel "K"} \\ \tilde{f}_{\mathrm{inpt},j/p}(x, \boldsymbol{b}_{\mathrm{T}}; \mu_{Q_0}, Q_0^2) = & K_0 \\ & + K_0 (m_{i,p} b_{\mathrm{T}}) A_{i/p}(x; \mu_{Q_0}) + K_0 (m_{i,p} b_{\mathrm{T}}) \ln \left(\frac{Q_0^2 b_{\mathrm{T}}}{2m_{i,p} e^{-\gamma_E}}\right) B_{i/p}(x; \mu_{Q_0}) \\ & + K_0 (m_{g,p} b_{\mathrm{T}}) A_{i/p}^g(x; \mu_{Q_0}) + C_{i/p} \tilde{f}_{\mathrm{core},i/p}(x, b_{\mathrm{T}}; Q_0^2) \,, \end{split}$$

$$\tilde{f}_{inpt,j/p}(x, \boldsymbol{b}_{T}; \mu_{Q_0}, Q_0^2) \to \tilde{f}_{OPE,j/p}(x, \boldsymbol{b}_{T}; \mu_{Q_0}, Q_0^2) \qquad (b_T \to 0)$$

Note, it does not necessarily work the other way around: starting from the OPE and multiplying by a model does not guarantee the constraints to hold. $f_{\text{inpt},i/p}(x, k_{\text{T}}; \mu_{Q_0}, Q_0^2) =$

$$C_{i/p} f_{\text{core},i/p}(x,k_{\text{T}};Q_{0}^{2}) + \frac{1}{2\pi} \frac{1}{k_{\text{T}}^{2} + m_{i,p,A}^{2}} A_{i/p}(x;\mu_{Q_{0}}) + \frac{1}{2\pi} \frac{1}{k_{\text{T}}^{2} + m_{i,p,B}^{2}} B_{i/p}(x;\mu_{Q_{0}}) \ln\left(\frac{Q_{0}^{2}}{k_{\text{T}}^{2} + m_{i,p,L}^{2}}\right) + \frac{1}{2\pi} \frac{1}{k_{\text{T}}^{2} + m_{g,p}^{2}} A_{i/p}^{g}(x;\mu_{Q_{0}})$$

In b_T space

$$\tilde{f}_{inpt,j/p}(x, \boldsymbol{b}_{T}; \mu_{Q_{0}}, Q_{0}^{2}) = K_{0} (m_{i,p}b_{T}) A_{i/p}(x; \mu_{Q_{0}}) + K_{0} (m_{i,p}b_{T}) \ln\left(\frac{Q_{0}^{2}b_{T}}{2m_{i,p}e^{-\gamma_{E}}}\right) B_{i/p}(x; \mu_{Q_{0}}) + K_{0} (m_{g,p}b_{T}) A_{i/p}^{g}(x; \mu_{Q_{0}}) + C_{i/p} \tilde{f}_{core,i/p}(x, b_{T}; Q_{0}^{2}),$$

Bessel "K"

SIMILAR STEPS FOR THE KERNEL

Model in the HSO approach: CS kernel

Expressions useful for pheno at
$$Q \approx Q_0$$

*HSO Strategy

HSO Strategy.

-Use theoretical constraints, don't trust the fit will do this job by itself.

-Check/improve constraints

-Prioritize the role of lower scale data (more information about intrinsic kT)

-Emphasize the predictive aspect of factorization theorems

Emphasize the predictive aspect of factorization theorems

Plot from (MAP collaboration): *JHEP* 10 (2022) 127

* DY and Z⁰ production examples

(Produce errors with eigensets)

Fit only $q_{\rm T} \leq 0.2 \, Q \, ,$

Simple treatment of target

$$f_{i/t} = \frac{Z}{A} f_{i/p} + \frac{A - Z}{A} f_{i/n},$$

Example I: fit E288 (only) vs fit E605 (only)

Models for core functions

$$f_{\text{core},i/p}^{\text{Gauss}}(x, \mathbf{k}_{\text{T}}; Q_0^2) = \frac{e^{-k_{\text{T}}^2/M_{\text{F}}^2}}{\pi M_{\text{F}}^2}$$
$$K_{\text{core}}(k_{\text{T}}) = \frac{b_K}{4\pi m_K^2} e^{-\frac{k_{\text{T}}^2}{4m_K^2}}$$

 $M_{\rm F} \to M_0 + M_1 \log(1/x) \,,$

Free parameters M_0 , M_1 , b_k

Other small model masses fixed to $0.3\,{
m GeV}$

Example I: fit E288 (only) vs fit E605 (only)

Gaussian fits			
E288 (130 pts.)	E605 (52 pts.)		
1.04	1.68		
0.0576	0.404		
0.403	0.290		
2.12	0.744		
1.29	1.28		
	E288 (130 pts.) 1.04 0.0576 0.403 2.12		

Plot from (MAP collaboration): *JHEP* 10 (2022) 127

Saturate to keep consistency with pQCD tail

fit E288 (only)

E605 only one energy beam. Not likely to determine both TMD and kernel from this set alone.

Example II: fit E288 (only). Gaussian vs spectator

Models for TMD core functions (same kernel as before)

$$f_{\text{core},i/p}^{\text{Gauss}}(x, \mathbf{k}_{\text{T}}; Q_0^2) = \frac{e^{-k_{\text{T}}^2/M_{\text{F}}^2}}{\pi M_{\text{F}}^2} \qquad M_{\text{F}} \to M_0 + M_1 \log(1/x) \,,$$

Free parameters M_0 , M_1 , b_k

Same number of parameters

$$f_{\text{core},i/p}^{\text{Spect}}(x, \boldsymbol{k}_{\text{T}}; Q_0^2) = \frac{1}{\pi} \frac{6\,L^6}{L^2 + 2(m_q + x\,M_p)^2} \frac{k_{\text{T}}^2 + (m_q + x\,M_p)^2}{(k_{\text{T}}^2 + L^2)^4}$$

$$L^{2} = (1-x)\Lambda^{2} + xM_{X}^{2} - x(1-x)M_{p}^{2}$$

Free parameters Λ , M_x , b_k $m_q = 0$

Gauss	sian	Spectar	tor model fit
	E288 (130 pts.)		E288 (130 pts.)
$\overline{\chi^2_{ m dof}}$	1.04	$\chi^2_{ m dof}$	1.04
$M_0~({ m GeV})$	0.0576	$\Lambda ~({ m GeV})$	0.801
$M_1 \; ({\rm GeV})$	0.403	$M_X \; ({\rm GeV})$	0.438
b_K	2.12	b_K	1.90
N(nuisance)	1.29	N(nuisance $)$) 1.23

Same χ^2/dof

Same no. of parameters

Examples here somewhat qualitative

Examples TMDs Gaussian fit to E288

HSO Strategy (and final remarks)

-Use theoretical constraints, don't trust the fit will do this job by itself.

-Check/improve constraints

-Prioritize the role of lower scale data (more information about intrinsic kT)

-Emphasize the predictive aspect of factorization theorems

Thanks

$$\left[f_{j/p}, D_{h/j} \right] \to \int \frac{\mathrm{d}^2 \boldsymbol{b}_{\mathrm{T}}}{(2\pi)^2} \, e^{-i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \, \tilde{f}_{j/p}(x, \boldsymbol{b}_{\mathrm{T}}; \mu_{Q_0}, \mu_{Q_0}^2) \, \tilde{D}_{h/j}(z, \boldsymbol{b}_{\mathrm{T}}; \boldsymbol{b}_{\mathrm{T}}; \mu_{Q_0}, \mu_{Q_0}^2) \\ \times \exp\left\{ 2 \int_{\mu_{Q_0}}^{\mu_Q} \frac{d\mu'}{\mu'} \left[\gamma(\alpha_s(\mu'); 1) - \ln \frac{Q}{\mu'} \gamma_K(\alpha_s(\mu')) \right] + \ln \frac{Q^2}{Q_0^2} \tilde{K}(\boldsymbol{b}_{\mathrm{T}}; \mu_{Q_0}) \right\}$$

$$\begin{split} \left[f_{j/p}, D_{h/j} \right] &\to \int \frac{\mathrm{d}^2 \boldsymbol{b}_{\mathrm{T}}}{(2\pi)^2} \ e^{-i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \ \tilde{f}_{j/p}(x, \boldsymbol{b}_*; \mu_{b_*}, \mu_{b_*}^2) \ \tilde{D}_{h/j}(z, \boldsymbol{b}_*; \mu_{b_*}, \mu_{b_*}^2) \\ &\times \exp\left\{ 2 \int_{\mu_{b_*}}^{\mu_Q} \frac{d\mu'}{\mu'} \left[\gamma(\alpha_s(\mu'); 1) - \ln \frac{Q}{\mu'} \gamma_K(\alpha_s(\mu')) \right] + \ln \frac{Q^2}{\mu_{b_*}^2} \tilde{K}(b_*; \mu_{b_*}) \right\} \\ &\times \exp\left\{ -g_{j/p}(x, b_{\mathrm{T}}) - g_{h/j}(z, b_{\mathrm{T}}) - g_K(b_{\mathrm{T}}) \ln \left(\frac{Q^2}{Q_0^2}\right) \right\} \,. \end{split}$$

Same formula, just reorganized

$$-g_{j/p}(x,b_{\rm T}) \equiv \ln\left(\frac{\tilde{f}_{j/p}(x,\boldsymbol{b}_{\rm T};\mu_{Q_0},Q_0^2)}{\tilde{f}_{j/p}(x,\boldsymbol{b}_{*};\mu_{Q_0},Q_0^2)}\right), \qquad -g_{h/j}(z,b_{\rm T}) \equiv \ln\left(\frac{\tilde{D}_{h/j}(z,\boldsymbol{b}_{\rm T};\mu_{Q_0},Q_0^2)}{\tilde{D}_{h/j}(z,\boldsymbol{b}_{*};\mu_{Q_0},Q_0^2)}\right),$$

 $g_K(b_{\mathrm{T}}) \equiv \tilde{K}(b_*;\mu) - \tilde{K}(b_{\mathrm{T}};\mu).$

Precise definitions for g functions, $b_*(b_T)$ is a transition function bounded by some b_{max} . Note that b_* dependence cancels exactly. It is really unimportant which b_* we choose.

$$\begin{bmatrix} f_{j/p}, D_{h/j} \end{bmatrix} \to \int \frac{\mathrm{d}^2 \boldsymbol{b}_{\mathrm{T}}}{(2\pi)^2} \, e^{-i\boldsymbol{q}_{\mathrm{T}}\cdot\boldsymbol{b}_{\mathrm{T}}} \, \tilde{f}_{j/p}(x, \boldsymbol{b}_*; \mu_{b_*}, \mu_{b_*}^2) \, \tilde{D}_{h/j}(z, \boldsymbol{b}_*; \mu_{b_*}, \mu_{b_*}^2) \\ \times \exp\left\{ 2 \int_{\mu_{b_*}}^{\mu_Q} \frac{d\mu'}{\mu'} \left[\gamma(\alpha_s(\mu'); 1) - \ln \frac{Q}{\mu'} \gamma_K(\alpha_s(\mu')) \right] + \ln \frac{Q^2}{\mu_{b_*}^2} \tilde{K}(b_*; \mu_{b_*}) \right\} \\ \times \exp\left\{ -g_{j/p}(x, b_{\mathrm{T}}) - g_{h/j}(z, b_{\mathrm{T}}) - g_K(b_{\mathrm{T}}) \ln \left(\frac{Q^2}{Q_0^2}\right) \right\} \, .$$

Same formula, just reorganized

$$-g_{j/p}(x,b_{\rm T}) \equiv \ln\left(\frac{\tilde{f}_{j/p}(x,\boldsymbol{b}_{\rm T};\mu_{Q_0},Q_0^2)}{\tilde{f}_{j/p}(x,\boldsymbol{b}_{*};\mu_{Q_0},Q_0^2)}\right), \qquad -g_{h/j}(z,b_{\rm T}) \equiv \ln\left(\frac{\tilde{D}_{h/j}(z,\boldsymbol{b}_{\rm T};\mu_{Q_0},Q_0^2)}{\tilde{D}_{h/j}(z,\boldsymbol{b}_{*};\mu_{Q_0},Q_0^2)}\right),$$

 $g_K(b_{\mathrm{T}}) \equiv \tilde{K}(b_*;\mu) - \tilde{K}(b_{\mathrm{T}};\mu).$

$$m{b}_{*}(b_{\mathrm{T}}) = rac{m{b}_{\mathrm{T}}}{\sqrt{1+b_{\mathrm{T}}^{2}/b_{\mathrm{max}}^{2}}}\,,$$

Precise definitions for g functions, $b_*(b_T)$ is a transition function bounded by some b_{max} . Note that b_* dependence cancels exactly. High sensitivity to b_* or b_{max} signals an issue.

$$\begin{split} \left[f_{j/p}, D_{h/j} \right] &\to \int \frac{\mathrm{d}^2 \boldsymbol{b}_{\mathrm{T}}}{(2\pi)^2} \; e^{-i\boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \; \tilde{f}_{j/p}^{\mathrm{OPE}}(x, \boldsymbol{b}_*; \mu_{b_*}, \mu_{b_*}^2) \; \tilde{D}_{h/j}^{\mathrm{OPE}}(z, \boldsymbol{b}_*; \mu_{b_*}, \mu_{b_*}^2) \\ &\times \exp\left\{ 2 \int_{\mu_{b_*}}^{\mu_Q} \frac{d\mu'}{\mu'} \left[\gamma(\alpha_s(\mu'); 1) - \ln \frac{Q}{\mu'} \gamma_K(\alpha_s(\mu')) \right] + \ln \frac{Q^2}{\mu_{b_*}^2} \tilde{K}(b_*; \mu_{b_*}) \right\} \\ &\times \exp\left\{ -g_{j/p}(x, b_{\mathrm{T}}) - g_{h/j}(z, b_{\mathrm{T}}) - g_K(b_{\mathrm{T}}) \ln \left(\frac{Q^2}{Q_0^2}\right) \right\} + O(b_{\max} m) \end{split}$$

Use of OPE introduces errors. Must keep b_{max} reasonably small.

$$\frac{\mathrm{d}}{\mathrm{d}b_{\mathrm{max}}} \left[f_{j/p}, D_{h/j} \right] = O\left(m b_{\mathrm{max}} \right)$$

$$\begin{split} \left[f_{j/p}, D_{h/j} \right] & \to \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2\pi)^{2}} \ e^{-i\boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \ \tilde{f}_{j/p}^{\mathrm{OPE}}(x, \boldsymbol{b}_{*}; \mu_{b_{*}}, \mu_{b_{*}}^{2}) \ \tilde{D}_{h/j}^{\mathrm{OPE}}(z, \boldsymbol{b}_{*}; \mu_{b_{*}}, \mu_{b_{*}}^{2}) \\ & \times \exp\left\{ 2 \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d\mu'}{\mu'} \left[\gamma(\alpha_{s}(\mu'); 1) - \ln \frac{Q}{\mu'} \gamma_{K}(\alpha_{s}(\mu')) \right] + \ln \frac{Q^{2}}{\mu_{b_{*}}^{2}} \tilde{K}(b_{*}; \mu_{b_{*}}) \right\} \\ & \mathsf{Models} \quad \checkmark \\ \left\{ \exp\left\{ -g_{j/p}(x, b_{\mathrm{T}}) - g_{h/j}(z, b_{\mathrm{T}}) - g_{K}(b_{\mathrm{T}}) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right) \right\} + O(b_{\max} m) \end{split}$$

Definitions: Smooth transition to small- b_T region by construction

$$-g_{h/j}(z, b_{\rm T}) \equiv \ln\left(\frac{\tilde{D}_{h/j}(z, \boldsymbol{b}_{\rm T}; \mu_{Q_0}, Q_0^2)}{\tilde{D}_{h/j}(z, \boldsymbol{b}_*; \mu_{Q_0}, Q_0^2)}\right)$$
$$-g_{j/p}(x, b_{\rm T}) \equiv \ln\left(\frac{\tilde{f}_{j/p}(x, \boldsymbol{b}_{\rm T}; \mu_{Q_0}, Q_0^2)}{\tilde{f}_{j/p}(x, \boldsymbol{b}_*; \mu_{Q_0}, Q_0^2)}\right)$$

 $g_K(b_{\mathrm{T}}) \equiv \tilde{K}(b_*;\mu) - \tilde{K}(b_{\mathrm{T}};\mu).$

$$g_{h/j}(z, b_{\rm T}) = \frac{1}{4 z^2} M_D^2 b_{\rm T}^2$$

$$g_{j/p}(x, b_{\rm T}) = \frac{1}{4} M_F^2 b_{\rm T}^2$$

$$g_K(b_{\rm T}) = \frac{g_2}{2\,M_K^2} \ln\left(1 + M_K^2 b_{\rm T}^2\right)$$

Note the large-q_T (small-b_T) region should be determined by the OPE. Small mass parameters can't really compensate for this b_{max} dependence.

$$g_{h/j}(z, b_{\rm T}) = \frac{1}{4 z^2} M_D^2 b_{\rm T}^2$$

$$g_{j/p}(x, b_{\rm T}) = \frac{1}{4} M_F^2 b_{\rm T}^2$$

$$g_K(b_{\rm T}) = \frac{g_2}{2\,M_K^2} \ln\left(1 + M_K^2 b_{\rm T}^2\right)$$

$$g_{h/j}(z, b_{\rm T}) = \frac{1}{4 z^2} M_D^2 b_{\rm T}^2$$

$$g_{j/p}(x, b_{\rm T}) = \frac{1}{4} M_F^2 b_{\rm T}^2$$

$$g_K(b_{\rm T}) = \frac{g_2}{2\,M_K^2} \ln\left(1 + M_K^2 b_{\rm T}^2\right)$$

Asymptotic term does not approximate well the TMD term, even at a scale of $Q_0=20 \text{ GeV}$

$$g_{h/j}(z, b_{\rm T}) = \frac{1}{4 z^2} M_D^2 b_{\rm T}^2$$

$$g_{j/p}(x, b_{\rm T}) = \frac{1}{4} M_F^2 b_{\rm T}^2$$

$$g_K(b_{\rm T}) = \frac{g_2}{2M_K^2} \ln\left(1 + M_K^2 b_{\rm T}^2\right)$$

No region of "overlap" between TMD term and FO. This means smooth matching is not possible

$$g_{h/j}(z, b_{\rm T}) = \frac{1}{4 z^2} M_D^2 b_{\rm T}^2$$

$$g_{j/p}(x, b_{\rm T}) = \frac{1}{4} M_F^2 b_{\rm T}^2$$

$$g_K(b_{\rm T}) = \frac{g_2}{2\,M_K^2} \ln\left(1 + M_K^2 b_{\rm T}^2\right)$$

No region of "overlap" between TMD term and FO. This means smooth matching is not possible

$$g_{h/j}(z, b_{\rm T}) = \frac{1}{4 z^2} M_D^2 b_{\rm T}^2$$

$$g_{j/p}(x, b_{\rm T}) = \frac{1}{4} M_F^2 b_{\rm T}^2$$

$$g_K(b_{\rm T}) = \frac{g_2}{2\,M_K^2} \ln\left(1 + M_K^2 b_{\rm T}^2\right)$$

Scale setting for evolution to large Q

* goes as $1/b_T$ for small b_T * approaches input scale Q_0 at large b_T * analogous to b_* in usual treatment Model in the HSO approach

Need RG improvements for pheno at $Q >> Q_0$

$$\sim \alpha_s (Q_0)^n \ln^m \left(\frac{q_{\rm T}}{Q_0} \right) \quad \mbox{Wider range of qT available} \\ \mbox{upon evolution to large Q}$$

$$\begin{split} \tilde{f}_{i/p}(x, \boldsymbol{b}_{\mathrm{T}}; \mu_{Q_0}, Q_0^2) \\ &= \tilde{f}_{\mathrm{inpt}, i/p}(x, \boldsymbol{b}_{\mathrm{T}}; \mu_{\bar{Q}_0}, \bar{Q}_0^2) E(\bar{Q}_0/Q_0, b_{\mathrm{T}}) \quad \overline{Q}_0(b_{\mathrm{T}}) = Q_0 \text{ GeV} \left[1 - \left(1 - \frac{C_1}{Q_0 b_{\mathrm{T}}} \right) e^{-a^2 b_{\mathrm{T}}^2} \right] \end{split}$$

$$E(\bar{Q}_0/Q_0, b_{\rm T}) \equiv \exp\left\{\int_{\mu_{\bar{Q}_0}}^{\mu_{Q_0}} \frac{d\mu'}{\mu'} \left[\gamma(\alpha_s(\mu'); 1) - \ln\frac{Q_0}{\mu'}\gamma_K(\alpha_s(\mu'))\right] + \ln\frac{Q_0}{\bar{Q}_0}\tilde{K}_{\rm inpt}(b_{\rm T}; \mu_{\bar{Q}_0})\right\}.$$

The usual evolution factor

Scale transformation not really needed for pheno at $Q \approx Q_0$

Work with $Q=Q_0$ for now

q_T [GeV]

The usual asymptotic We compute instead term

 $\lim_{q_{\rm T}/Q\to 0} F^{\rm FO} \qquad \qquad \lim_{m/q_{\rm T}\to 0} F^{\rm TMD}$

$$\begin{bmatrix} \lim_{q_{\rm T}/Q \to 0} F^{\rm FO} \end{bmatrix}^{O(\alpha_s^n)} - \begin{bmatrix} \lim_{m/q_{\rm T} \to 0} F^{\rm TMD} \end{bmatrix}^{O(\alpha_s^n)} = O\left(\alpha_s^{n+1} m^2/Q^2\right)$$
If using different schemes for collinear functions

The usual asymptotic We compute instead term

 $\lim_{q_{\rm T}/Q\to 0} F^{\rm FO} \qquad \qquad \lim_{m/q_{\rm T}\to 0} F^{\rm TMD}$

$$\left[\lim_{q_{\rm T}/Q\to 0} F^{\rm FO}\right]^{O(\alpha_s^n)} - \left[\lim_{m/q_{\rm T}\to 0} F^{\rm TMD}\right]^{O(\alpha_s^n)} = O\left(\alpha_s^{n+1}, m^2/Q^2\right)$$

From two places (fixing the scheme for collinear functions)

20.0

4.0

5.0

$$f_{\text{core},i/p}^{\text{Gauss}}(x, \boldsymbol{k}_{\text{T}}; Q_0^2) = \frac{e^{-k_{\text{T}}^2/M_{\text{F}}^2}}{\pi M_{\text{F}}^2} \qquad \qquad f_{\text{core},i/p}^{\text{Spect}}(x, \boldsymbol{k}_{\text{T}}; Q_0^2) = \frac{6M_{0\text{F}}^6}{\pi \left(2M_{\text{F}}^2 + M_{0\text{F}}^2\right)} \frac{M_{\text{F}}^2 + k_{\text{T}}^2}{\left(M_{0\text{F}}^2 + k_{\text{T}}^2\right)^4}$$

Consistency of the band with the asymptotic term means the models for TMDs have been made consistent with collinear factorization. In the usual approach, this is the **aim** when embedding the OPE.

*Standard treatment vs HSO approach.

b_{max} sensitivity

b* prescription **not used** in HSO. It is instructive though to construct g-functions from HSO approach

$$-g_{j/p}(x,b_{\rm T}) \equiv \ln\left(\frac{\tilde{f}_{j/p}(x,\boldsymbol{b}_{\rm T};\mu_{Q_0},Q_0^2)}{\tilde{f}_{j/p}(x,\boldsymbol{b}_*;\mu_{Q_0},Q_0^2)}\right), \qquad -g_{h/j}(z,b_{\rm T}) \equiv \ln\left(\frac{\tilde{D}_{h/j}(z,\boldsymbol{b}_{\rm T};\mu_{Q_0},Q_0^2)}{\tilde{D}_{h/j}(z,\boldsymbol{b}_*;\mu_{Q_0},Q_0^2)}\right),$$

$$g_K(b_{\mathrm{T}}) \equiv \tilde{K}(b_*;\mu) - \tilde{K}(b_{\mathrm{T}};\mu).$$

b_{max} sensitivity

b* prescription **not used** in HSO. It is instructive though to construct g-functions from HSO approach

