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B. Structure function decomposition

In terms of Xµ and Zµ, the unpolarized parts of the hadronic tensor can be decomposed into the following conven-
tional unpolarized structure functions,

Wµ⌫ =

✓
�gµ⌫ +

qµq⌫

Q2
� ZµZ⌫

◆
F 1

UU + ZµZ⌫F 2

UU

� (XµZ⌫ + ZµX⌫) F cos�
UU +

✓
�gµ⌫ +

qµq⌫

Q2
� 2XµX⌫

� ZµZ⌫

◆
F cos 2�

UU + pol. dep. , (21)

The cross section in Eq. (7) becomes

l0l
0
0

d�

d3l d3l0
=

↵2
em

sQ2

n
(1 + cos2 ✓)F 1

UU + (1� cos2 ✓)F 2

UU + sin 2✓ cos �F cos�
UU + sin2 ✓ cos 2�F cos 2�

UU

o
, (22)

where ✓ and � are the polar and azimuthal angles respectively of lepton l in the Collins-Soper frame. The structure
functions are conveniently obtained from the hadronic tensor with the projection tensors,

Pµ⌫
1

= �
1

2
(gµ⌫ + ZµZ⌫) , (23)

Pµ⌫
2

= ZµZ⌫ , (24)

Pµ⌫
� = �

1

2
(XµZ⌫ + ZµX⌫) (25)

Pµ⌫
2� = �

1

2
(gµ⌫ + ZµZ⌫)�XµX⌫ . (26)

Changing variables so that the cross section is di↵erential in photon 4-momentum q,

d�

d4q d⌦
=

↵2
em

2sQ2

n
(1 + cos2 ✓)F 1

UU + (1� cos2 ✓)F 2

UU + sin 2✓ cos �F cos�
UU + sin2 ✓ cos 2�F cos 2�

UU

o
, (27)

where ⌦ is the lepton solid angle. Integrating over all lepton angles gives the spin/polarization independent part of
the cross section di↵erential in Q2, q2hT, and yh in the hadron frame,

d�

d2qhT dQ2 dyh
=

2⇡↵2
em

3sQ2

�
2F 1

UU + F 2

UU

�
. (28)

or,

d�

dq2hT dQ2 dyh
=

2⇡2↵2
em

3sQ2

�
2F 1

UU + F 2

UU

�
. (29)

C. TMD factorization for Drell-Yan scattering

The usual TMD-factorization expression for the hadronic tensor is

Wµ⌫(xa, xb, Q, qhT)

=
X

j

Hµ⌫
j|̄

Z
d2kaT d2kbT fj/ha

(xa,kaT; µQ, Q2)f|̄/hb
(xb,kbT; µQ, Q2)�(2)(qhT � kaT � kbT) + (a ! b)

=
X

j

Hµ⌫
j|̄

Z
d2bT
(2⇡)2

eiqhT·bT f̃j/ha
(xa, bT; µQ, Q2) f̃|̄/hb

(xb, bT; µQ, Q2) + (a ! b)

=
X

j

Hµ⌫
j|̄

�⇥
fj/ha

, f|̄/hb

⇤
+
⇥
fj/hb

, f|̄/ha

⇤ 
, (30)

where on the last line we have used the common bracket notation for abbreviating the transverse convolution integrals.
The hard part in (30) reads,

Hµ⌫
j|̄ =

e2j
2Q2Nc

Tr
h
/̂ka�µ/̂kb�

⌫
i
|Hj|̄(↵s(µ), µ/Q)|2 . (31)
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II. UNPOLARIZED DRELL-YAN SCATTERING

The process involves a collision between two hadrons with the inclusive production of a lepton-antilepton pair in
the final state as shown in Fig. 2:

pa + pb ! l + l0 + X . (5)

We will label the momenta of the incoming hadrons (which could be nucleons, pions, nuclei, etc) by pa and pb

respectively, l and l0 are the final state lepton and antilepton momenta respectively, and X is the unobserved integrated
part of the final state. The four-momentum of the final state virtual photon is

q ⌘ l + l0 with q2 = Q2 = (l + l0)2 . (6)

l0

l
pa

pb

q

x

y

z

Hadron plane

Lepton plane

FIG. 2: Kinematic configuration of Drell-Yan process

In setting up Drell-Yan and W±/Z0 production cross sections, we follow standard steps [18]. The unpolarized Drell-
Yan cross section is, following [19], decomposable into four structure functions that describe the angular dependence
of the dilepton pair. It is first separated into leptonic and hadronic tensors,

l0l
0
0

d�

d3l d3l0
=

↵2
em

4
p

(pa · pb)2 � M2
aM2

b Q4
Lµ⌫Wµ⌫ (7)

where Ma and Mb are the masses of the colliding hadrons. The hadronic tensor is

Wµ⌫(pa, pb) =
1

(2⇡)4

Z
d4z eiq·z

hpa, pb|j
µ(0)j⌫(z)|pa, pbi , (8)

and the lowest order leptonic tensor is

Lµ⌫ = 4(lµl0⌫ + l0µl⌫ � l · l0gµ⌫) . (9)

For simplicity we only deal with the electromagnetic case here. See below for the extension to electroweak bosons.
We use the usual kinematical variables,

xa ⌘
Q2

2pa · q
, xb ⌘

Q2

2pb · q
, s = (pa + pb)

2 . (10)

Throughout the rest of this paper, we will use the approximation that the colliding hadron masses are negligible,
M2

a,b ⌧ Q2.
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A. The reference frames

We will use the following two reference frames:

1. The hadron frame

The hadron frame is the specific center-of-mass frame in which the incoming hadrons both have exactly zero
transverse momentum. In light-cone variables,

pa,h =
�
p+a , 0,0T

�
=
⇣p

s/2, 0,0T

⌘
, (11)

pb,h =
�
0, p�

b ,0T

�
=
⇣
0,
p

s/2,0T

⌘
, (12)

with p+a = p�
b . As usual, we work in the massless hadron approximation. The virtual photon has momentum

qh =

 
eyh

r
Q2 + q2hT

2
, e�yh

r
Q2 + q2hT

2
, qhT

!
, (13)

where yh is the hadron frame rapidity. The hadron-frame transverse momentum in terms of Lorentz invariants is

q2hT =
2pa · q pb · q

pa · pb
� Q2 . (14)

Also,

s = 2pa · pb =
Q2

xaxb

⇣
1 +

q2
hT
Q2

⌘ , yh =
1

2
ln

✓
xa

xb

◆
, (15)

and in the hadron frame xa/xb = q+h /q�
h . Other commonly used variables are Feynman xF and ⌧ ,

xF ⌘ xa � xb =
2qz

h
p

s
⇣
1 +

q2
hT
Q2

⌘ , ⌧ ⌘
Q2

s
= xaxb

✓
1 +

q2hT
Q2

◆
. (16)

In the literature, the expressions for s, xF and ⌧ are frequently used only in their q2
T
/Q2

! 0 limit. Since we ultimately
wish to describe all qT we have kept their qT-sensitive forms.

2. The photon frame

A general photon frame is one where the virtual photon is at rest. Using Minkowski coordinates and (as usual)
neglecting hadron masses, the hadron momenta in a photon frame are

qµ
� = (Q,0) , (17a)

pµ
a,� = |pa,� | (1,na,�) , (17b)

pµ
b,� = |pb,� | (1,nb,�) . (17c)

It is convenient to define unit 3-vectors na,� and nb,� that point along the incoming hadron momenta. Following
steps similar to the e+e�-annihilation case [20], we define unit four-vectors

Zµ
� =

(0,na,� � nb,�)

|na,� � nb,� |
, Xµ

� =
(0,na,� + nb,�)

|na,� + nb,� |
. (18)

The Collins-Soper frame is a particular photon frame wherein the z-axis is fixed to align along the spatial components
of Zµ

� and the x-axis along the spatial components of Xµ
� . The z-axis then bisects the angle between pa,� and �pb,� .

The lepton and antilepton momenta in the Collins-Soper frame are

l =
Q

2
(1, sin ✓ cos �, sin ✓ sin �, cos ✓) , (19)

l0 =
Q

2
(1, � sin ✓ cos �, � sin ✓ sin �, � cos ✓) . (20)
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The basics of the TMD factorization theorem originate in the Collins-Soper-Sterman (CSS) formalism [21–23] and its
updated forms [20, 24]. See Ref. [25] for a review that includes a detailed list of references. The k̂a and k̂b partonic
momenta are the hard approximate momenta in the Collins-Soper frame,

k̂a,� =
⇣
Q/
p

2, 0,0T

⌘
, (32)

k̂b,� =
⇣
0, Q/

p
2,0T

⌘
. (33)

We have already fixed the auxiliary renormalization group (RG) and rapidity scales, µ and ⇣, to µQ = C2Q and
⇣ = Q2 respectively in Eq. (30) to optimize perturbation theory. We will use C2 = 1 throughout this paper. The hard
vertex factor for Drell-Yan scattering is [24, 26]

|Hj|̄(↵s(µQ), µQ/Q)|2 = 1 +
1X

n=1

✓
↵s(µQ)

4⇡

◆n

Ĥ(n)
j|̄ (34)

with the lowest order,

H(1)

j|̄ = �j|̄CF

✓
�16 +

7⇡2

3

◆
. (35)

Here and throughout the rest of this paper we will keep O (↵s) in perturbative expressions. However, most ↵2
s

contributions are available and we list them in Appendix A for future use.
The projection tensors in Eqs. (23)–(26) give the TMD factorization formula in terms of the unpolarized structure

functions,

F 1

UU =
X

j

e2j
|Hj|̄|

2

4⇡2Nc

Z
d2bT eiqhT·bT f̃j/ha

(xa, bT; µQ, Q2) f̃|̄/hb
(xb, bT; µQ, Q2) + (a ! b) (36)

=
X

j

e2j
|Hj|̄|

2

Nc

Z
d2kaT d2kbT fj/ha

(xa,kaT; µQ, Q2)f|̄/hb
(xb,kbT; µQ, Q2)�(2)(qhT � kaT � kbT) + (a ! b) ,

F 2

UU = 0 . (37)

D. Z
0 boson production

For the calculation of cross sections at scales around the Z0 boson mass, we will consider all contributions, namely,
the photon, Z0 and interference channels.

To obtain expressions for the structure functions F 1,Z
UU and F 2,Z

UU in the Z0
! e+e� channel, one may replace in

Eqs. (36)–(37)

e2j !
Q4

(Q2 �M2

Z)
2

+ M2

Z �2

Z

 
1 +

⇥
1� 4 sin2 ✓w

⇤2

16 cos2 ✓w sin2 ✓w

! 
1 +

⇥
1� 4|ej | sin

2 ✓w

⇤2

16 cos2 ✓w sin2 ✓w

!
, (38)

with MZ , �Z the mass and the width of the Z0 boson, respectively, and where ✓w is the Weinberg angle in the MS
renormalization scheme and at µ = Mz. The contributions from the interference of intermediate photon and Z0 boson
can be obtained similarly, by the replacement

e2j !�
Q2(Q2

�M2

Z)

(Q2 �M2

Z)2 + M2

Z�2

Z

|ej | (1� 4 sin2 ✓W )(1� 4 |ej | sin2 ✓W )

8 sin2 ✓W cos2 ✓W
. (39)

Note that, at these scales, the running of the QED coupling is relevant. We will use the value reported in Ref. [27],
↵em(MZ) = 1/127.951.

E. Evolution

The treatment of evolution for the TMD pdfs is entirely within the now standard approach. For a review with a
list of references see, for instance, Ref. [25]. A useful summary of the general logic of the evolution equations is also
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VI. EXAMPLE INPUT SCALE TREATMENT

Now we turn to demonstrating how the HSO treatment described in Secs. (II)–(IV) works in practice with explicit
numerical implementations. Our purpose here is to compare the HSO treatment described thus far with the conven-
tional steps for constructing phenomenological parametrizations, and to illustrate the improvements that are gained
from using the former.

In Sec. VIA below, we will summarize the basic formulas and in Sec. VIB we will review the usual decomposition of
a transverse momentum dependent cross section into a TMD term, an asymptotic term, and a Y -term. In Sec. VIC,
we will review the conventional style of implementing TMD factorization and show examples of the complications
that can arise, some of which were already mentioned in the introduction, and in Sec. VID we show how these are
solved within the HSO approach.

In our calculations, we focus on the TMD pdfs and ↵s parametrized at an initial scale Q = Q0, a scenario previously
addressed in [10]. Estimating the lowest Q0 for which TMD factorization remains valid is rather non-trivial [16], and
we leave it as an open question. For purposes of illustration, we will try two values in sections VIC and VID below,
from the relatively low (and reasonable) Q0 = 4.0 GeV, to the (far too conservative) Q0 = 20.0 GeV, to demonstrate
how the procedure works for both a small and a large choices of Q0.

A. Basic setup

The standard expression for the SIDIS di↵erential cross section in terms of the structure functions F1 and F2 is

d�

dx dy dz dq2T
=

⇡2↵2
emz

Q2 x y

⇥
F1 x y2 + F2 (1� y)

⇤
, (64)

where the F structure functions are the usual ones obtained by contracting the projectors in Eq. (13) with the hadronic
tensor. In the small-qT approximation, the structure functions are expressed in terms of TMD pdfs and ↵s,

F = FTMD +O (m/Q, qT/Q) , (65)

FTMD
1 ⌘ 2 z

X

j

|H|2
j

⇥
fj/p, Dh/j

⇤
, FTMD

2 ⌘ 4 z x
X

j

|H|2
j

⇥
fj/p, Dh/j

⇤
, (66)

where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (66) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2

j
from Eq. (11) in any calculations below. Calculating Eq. (66) in

a specific phenomenological implementation involves making choices about how to parametrize the TMD functions
fi/p and Dh/j , including choices about nonperturbative models and/or calculations at the input scale, the order of
precision in perturbative parts, and any other approximations or assumptions used in the construction of a specific
set of parametrizations.

B. Combining large (FFO) and small (FTMD) transverse momentum calculations

Before we contrast the FTMD calculations in the conventional and HSO styles, let us review the usual steps for
merging calculations done with TMDs with purely collinear factorization calculations designed for the qT ⇡ Q region.

In the region where qT ⇡ Q, the approximations in Eq. (66) fail. However, this is the region where fixed-order
collinear factorization calculations, which use ordinary collinear pdfs and ↵s, are most reliable. We express the large-qT
fixed-order collinear approximation to the structure functions as

F = FFO +O (m/qT) , FFO =
X

i,j

dB/i ⌦ F̂ij ⌦ fj/p , (67)

where the indices i, j run over parton flavors, and the FO superscript stands for “fixed-order.” A choice must be
made for the UV scheme that defines the collinear functions fi/p and Dh/j . The most common is renormalization in

the MS scheme. The F̂ij are the partonic versions of the structure functions, and they have been calculated up to at
least O(↵2

s
) [52–54]. In our calculations, we will use O(↵s) results [9, 11, 55].

errors
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B. The hadron frame

In the following, we will frequently use the massless target approximation without explicitly acknowledging it. That
is,

m
2
/Q

2
, m

2
/s ⇡ 0.

The hadron frame is the center-of-mass frame where the incoming hadrons each have exactly zero transverse momen-
tum. In light-cone variables,

pa,h =
�
p
+
a , 0,0T

�
=
⇣p

s/2, 0,0T

⌘
, (19)

pb,h =
�
0, p�b ,0T

�
=
⇣
0,
p
s/2,0T

⌘
, (20)

with p
+
a = p

�
b . The virtual photon has momentum

qh =

 
e
yh

r
Q2 + q2hT

2
, e

�yh

r
Q2 + q2hT

2
, qhT

!
, (21)

where y is its rapidity. The hadron-frame transverse momentum can be expressed in terms of Lorentz invariants,

q
2
hT =

2pa · q pb · q

pa · pb
�Q

2
. (22)

Also,

s = 2pa · pb =
Q

2

xaxb

⇣
1 +

q2hT
Q2

⌘ . (23)

The virtual photon rapidity is

yh =
1

2
ln

✓
xa

xb

◆
. (24)

Other commonly used variables are Feynman xF ,

xF ⌘ xa � xb =
2qzh

p
s

⇣
1 +

q2hT
Q2

⌘ (25)

and

⌧ ⌘
Q

2

s
= xaxb

✓
1 +

q
2
hT

Q2

◆
. (26)

And,

xa =
Qe

yh

r
s

⇣
1 +

q2T
Q2

⌘ , xb =
Qe

�yh

r
s

⇣
1 +

q2T
Q2

⌘ . (27)

For some computations it is useful to write explicit expressions for the allowed ranges of yh and xF, for fixed values
of s, Q and qT. When working with yh one has

|yh|  arccosh

 �
s+Q

2
�

2
p
s
p

Q2 + q2T

!
. (28)

When writing the DY cross section in terms of xF one has

|xF| 

✓
1�

Q
2

s

◆
Q

2

Q2 + q2T

s

1�
4 q2T s

(s�Q2)2
. (29)

Both Eq. (28) and Eq. (29) can be readily obtained by noting that the particles recoiling against the lepton pair must
have squared mass M2

X � 0.
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II. UNPOLARIZED DRELL-YAN SCATTERING

The process involves a collision between two hadrons with the inclusive production of a lepton-antilepton pair in
the final state as shown in Fig. 2:

pa + pb ! l + l0 + X . (5)

We will label the momenta of the incoming hadrons (which could be nucleons, pions, nuclei, etc) by pa and pb

respectively, l and l0 are the final state lepton and antilepton momenta respectively, and X is the unobserved integrated
part of the final state. The four-momentum of the final state virtual photon is

q ⌘ l + l0 with q2 = Q2 = (l + l0)2 . (6)

l0

l
pa

pb

q

x

y

z

Hadron plane

Lepton plane

FIG. 2: Kinematic configuration of Drell-Yan process

In setting up Drell-Yan and W±/Z0 production cross sections, we follow standard steps [18]. The unpolarized Drell-
Yan cross section is, following [19], decomposable into four structure functions that describe the angular dependence
of the dilepton pair. It is first separated into leptonic and hadronic tensors,

l0l
0
0

d�

d3l d3l0
=

↵2
em

4
p

(pa · pb)2 � M2
aM2

b Q4
Lµ⌫Wµ⌫ (7)

where Ma and Mb are the masses of the colliding hadrons. The hadronic tensor is

Wµ⌫(pa, pb) =
1

(2⇡)4

Z
d4z eiq·z

hpa, pb|j
µ(0)j⌫(z)|pa, pbi , (8)

and the lowest order leptonic tensor is

Lµ⌫ = 4(lµl0⌫ + l0µl⌫ � l · l0gµ⌫) . (9)

For simplicity we only deal with the electromagnetic case here. See below for the extension to electroweak bosons.
We use the usual kinematical variables,

xa ⌘
Q2

2pa · q
, xb ⌘

Q2

2pb · q
, s = (pa + pb)

2 . (10)

Throughout the rest of this paper, we will use the approximation that the colliding hadron masses are negligible,
M2

a,b ⌧ Q2.
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The basics of the TMD factorization theorem originate in the Collins-Soper-Sterman (CSS) formalism [21–23] and its
updated forms [20, 24]. See Ref. [25] for a review that includes a detailed list of references. The k̂a and k̂b partonic
momenta are the hard approximate momenta in the Collins-Soper frame,

k̂a,� =
⇣
Q/
p

2, 0,0T

⌘
, (32)

k̂b,� =
⇣
0, Q/

p
2,0T

⌘
. (33)

We have already fixed the auxiliary renormalization group (RG) and rapidity scales, µ and ⇣, to µQ = C2Q and
⇣ = Q2 respectively in Eq. (30) to optimize perturbation theory. We will use C2 = 1 throughout this paper. The hard
vertex factor for Drell-Yan scattering is [24, 26]

|Hj|̄(↵s(µQ), µQ/Q)|2 = 1 +
1X

n=1

✓
↵s(µQ)

4⇡

◆n

Ĥ(n)
j|̄ (34)

with the lowest order,

H(1)

j|̄ = �j|̄CF

✓
�16 +

7⇡2

3

◆
. (35)

Here and throughout the rest of this paper we will keep O (↵s) in perturbative expressions. However, most ↵2
s

contributions are available and we list them in Appendix A for future use.
The projection tensors in Eqs. (23)–(26) give the TMD factorization formula in terms of the unpolarized structure

functions,

F 1

UU =
X

j

e2j
|Hj|̄|

2

4⇡2Nc

Z
d2bT eiqhT·bT f̃j/ha

(xa, bT; µQ, Q2) f̃|̄/hb
(xb, bT; µQ, Q2) + (a ! b) (36)

=
X

j

e2j
|Hj|̄|

2

Nc

Z
d2kaT d2kbT fj/ha

(xa,kaT; µQ, Q2)f|̄/hb
(xb,kbT; µQ, Q2)�(2)(qhT � kaT � kbT) + (a ! b) ,

F 2

UU = 0 . (37)

D. Z
0 boson production

For the calculation of cross sections at scales around the Z0 boson mass, we will consider all contributions, namely,
the photon, Z0 and interference channels.

To obtain expressions for the structure functions F 1,Z
UU and F 2,Z

UU in the Z0
! e+e� channel, one may replace in

Eqs. (36)–(37)

e2j !
Q4

(Q2 �M2

Z)
2

+ M2

Z �2

Z

 
1 +

⇥
1� 4 sin2 ✓w

⇤2

16 cos2 ✓w sin2 ✓w

! 
1 +

⇥
1� 4|ej | sin

2 ✓w

⇤2

16 cos2 ✓w sin2 ✓w

!
, (38)

with MZ , �Z the mass and the width of the Z0 boson, respectively, and where ✓w is the Weinberg angle in the MS
renormalization scheme and at µ = Mz. The contributions from the interference of intermediate photon and Z0 boson
can be obtained similarly, by the replacement

e2j !�
Q2(Q2

�M2

Z)

(Q2 �M2

Z)2 + M2

Z�2

Z

|ej | (1� 4 sin2 ✓W )(1� 4 |ej | sin2 ✓W )

8 sin2 ✓W cos2 ✓W
. (39)

Note that, at these scales, the running of the QED coupling is relevant. We will use the value reported in Ref. [27],
↵em(MZ) = 1/127.951.

E. Evolution

The treatment of evolution for the TMD pdfs is entirely within the now standard approach. For a review with a
list of references see, for instance, Ref. [25]. A useful summary of the general logic of the evolution equations is also
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VI. EXAMPLE INPUT SCALE TREATMENT

Now we turn to demonstrating how the HSO treatment described in Secs. (II)–(IV) works in practice with explicit
numerical implementations. Our purpose here is to compare the HSO treatment described thus far with the conven-
tional steps for constructing phenomenological parametrizations, and to illustrate the improvements that are gained
from using the former.

In Sec. VIA below, we will summarize the basic formulas and in Sec. VIB we will review the usual decomposition of
a transverse momentum dependent cross section into a TMD term, an asymptotic term, and a Y -term. In Sec. VIC,
we will review the conventional style of implementing TMD factorization and show examples of the complications
that can arise, some of which were already mentioned in the introduction, and in Sec. VID we show how these are
solved within the HSO approach.

In our calculations, we focus on the TMD pdfs and ↵s parametrized at an initial scale Q = Q0, a scenario previously
addressed in [10]. Estimating the lowest Q0 for which TMD factorization remains valid is rather non-trivial [16], and
we leave it as an open question. For purposes of illustration, we will try two values in sections VIC and VID below,
from the relatively low (and reasonable) Q0 = 4.0 GeV, to the (far too conservative) Q0 = 20.0 GeV, to demonstrate
how the procedure works for both a small and a large choices of Q0.

A. Basic setup

The standard expression for the SIDIS di↵erential cross section in terms of the structure functions F1 and F2 is

d�

dx dy dz dq2T
=

⇡2↵2
emz

Q2 x y

⇥
F1 x y2 + F2 (1� y)

⇤
, (64)

where the F structure functions are the usual ones obtained by contracting the projectors in Eq. (13) with the hadronic
tensor. In the small-qT approximation, the structure functions are expressed in terms of TMD pdfs and ↵s,

F = FTMD +O (m/Q, qT/Q) , (65)

FTMD
1 ⌘ 2 z

X

j

|H|2
j

⇥
fj/p, Dh/j

⇤
, FTMD

2 ⌘ 4 z x
X

j

|H|2
j

⇥
fj/p, Dh/j

⇤
, (66)

where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (66) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2

j
from Eq. (11) in any calculations below. Calculating Eq. (66) in

a specific phenomenological implementation involves making choices about how to parametrize the TMD functions
fi/p and Dh/j , including choices about nonperturbative models and/or calculations at the input scale, the order of
precision in perturbative parts, and any other approximations or assumptions used in the construction of a specific
set of parametrizations.

B. Combining large (FFO) and small (FTMD) transverse momentum calculations

Before we contrast the FTMD calculations in the conventional and HSO styles, let us review the usual steps for
merging calculations done with TMDs with purely collinear factorization calculations designed for the qT ⇡ Q region.

In the region where qT ⇡ Q, the approximations in Eq. (66) fail. However, this is the region where fixed-order
collinear factorization calculations, which use ordinary collinear pdfs and ↵s, are most reliable. We express the large-qT
fixed-order collinear approximation to the structure functions as

F = FFO +O (m/qT) , FFO =
X

i,j

dB/i ⌦ F̂ij ⌦ fj/p , (67)

where the indices i, j run over parton flavors, and the FO superscript stands for “fixed-order.” A choice must be
made for the UV scheme that defines the collinear functions fi/p and Dh/j . The most common is renormalization in

the MS scheme. The F̂ij are the partonic versions of the structure functions, and they have been calculated up to at
least O(↵2

s
) [52–54]. In our calculations, we will use O(↵s) results [9, 11, 55].
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to be found in [28]. The TMD pdfs exactly satisfy the following evolution equations in coordinate space,

@ ln f̃j/p(x, bT; µ, ⇣)

@ ln
p

⇣
= K̃(bT; µ) , (40)

dK̃(bT; µ)

d ln µ
= � �K(↵s(µ)) , (41)

d ln f̃j/p(x, bT; µ, ⇣)

d ln µ
= �(↵s(µ); ⇣/µ2) = �(↵s(µ); 1)� �K(↵s(µ))

1

2
ln

✓
⇣

µ2

◆
, (42)

where K̃ is the Collins-Soper kernel, �K is its anomalous dimension and � the TMD anomalous dimension. After
TMD evolution from an initially low input scale Q0 to an arbitrary higher scale Q, Eq. (36) becomes

F 1

UU =
X

j

e2j
|Hj|̄|

2

4⇡2Nc

Z
d2bT eiqhT·bT f̃j/ha

(xa, bT; µQ0 , Q
2

0
) f̃|̄/hb

(xb, bT; µQ0 , Q
2

0
)⇥

⇥ exp

(
K̃(bT; µQ0) ln

✓
Q2

Q2
0

◆
+

Z µQ

µQ0

dµ0

µ0


2�(↵s(µ

0); 1)� ln

✓
Q2

µ02

◆
�K(↵s(µ

0))

�)
+ (a ! b) . (43)

We take Q0 to be the lowest scale for which TMD factorization is to be considered trustworthy. All perturbatively
calculable quantities will be kept through O (↵s).

Within the HSO approach, the strategy is to construct parametrizations of fj/h(x,kT; µQ0 , Q
2
0
) and K̃(bT; µQ0)

that simultaneously: 1.) are phenomenologically successful in the Q0 regime, 2.) recover the perturbative expression
for kT ⇡ Q, and 3.) obey the appropriate evolution equations when evolving to Q� Q0.

The implementation of Eqs. (40)–(43) in this paper will make use of results for the anomalous dimensions and
evolution kernels that were originally calculated in a range of di↵erent formalisms, some of whose connection to the
basic TMD factorization in Eq. (43) is not immediately obvious. Some translation is required, and for that we refer
the reader to Ref. [24]. For example, expressions for K̃, �, and �K are from [29], and extensions up to O

�
↵3

s

�
can be

obtained in, for example, Ref. [26, 30].

III. CUTOFF COLLINEAR PDFS AND THE LARGE TRANSVERSE MOMENTUM ASYMPTOTE

As explained in Sec. I, the HSO approach preserves the integral normalizations that relate TMD and collinear
correlation functions, and ensures that TMD pdfs match the large transverse momentum asymptotic behavior dictated
by the operator definitions. It is useful, therefore, to define a collinear pdf obtained by integrating the TMD pdf over
kT,

f c
i/p(x; µQ; µc) ⌘ 2⇡

Z µc

0

dkT kTfi/p(x,kT; µQ, Q2) , (44)

where µc = µc(µQ) is a cuto↵ on kT. It coincides with the literal probability density interpretation that one has in
the parton model, and it equals the MS definition up to calculable O (↵s) corrections and corrections suppressed by
powers of 1/µ,

f c
i/p(x; µQ; µc) = fMS

i/p (x; µQ) + �i/p(↵s(µQ), µc/µQ) + O

 
m2

µ2

Q

!
(45)

where � is the correction, see Sec. III of [1] for the equivalent expression for fragmentation functions. 1 For our
applications, we will set µc = µQ and drop the O (m/µQ) errors in Eq. (45) and express the cuto↵ definition (Eq. (58)
in Ref. [1]) as

f c
i/p(x; µQ) = lim

m
µQ

!0

f c
i/p(x; µQ; µQ) , (46)

1 m represents any mass scale that may be considered small relative to the hard scale, such as ⇤QCD, a light quark mass, or a small
hadronic mass. The subleading errors in expressions like Eq. (45) need not in general be exactly quadratic, but we will retain this
notation for simplicity since the exact power is irrelevant for our purposes.
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II. UNPOLARIZED DRELL-YAN SCATTERING

The process involves a collision between two hadrons with the inclusive production of a lepton-antilepton pair in
the final state as shown in Fig. 2:

pa + pb ! l + l0 + X . (5)

We will label the momenta of the incoming hadrons (which could be nucleons, pions, nuclei, etc) by pa and pb

respectively, l and l0 are the final state lepton and antilepton momenta respectively, and X is the unobserved integrated
part of the final state. The four-momentum of the final state virtual photon is

q ⌘ l + l0 with q2 = Q2 = (l + l0)2 . (6)

l0

l
pa

pb

q

x

y

z

Hadron plane

Lepton plane

FIG. 2: Kinematic configuration of Drell-Yan process

In setting up Drell-Yan and W±/Z0 production cross sections, we follow standard steps [18]. The unpolarized Drell-
Yan cross section is, following [19], decomposable into four structure functions that describe the angular dependence
of the dilepton pair. It is first separated into leptonic and hadronic tensors,

l0l
0
0

d�

d3l d3l0
=

↵2
em

4
p

(pa · pb)2 � M2
aM2

b Q4
Lµ⌫Wµ⌫ (7)

where Ma and Mb are the masses of the colliding hadrons. The hadronic tensor is

Wµ⌫(pa, pb) =
1

(2⇡)4

Z
d4z eiq·z

hpa, pb|j
µ(0)j⌫(z)|pa, pbi , (8)

and the lowest order leptonic tensor is

Lµ⌫ = 4(lµl0⌫ + l0µl⌫ � l · l0gµ⌫) . (9)

For simplicity we only deal with the electromagnetic case here. See below for the extension to electroweak bosons.
We use the usual kinematical variables,

xa ⌘
Q2

2pa · q
, xb ⌘

Q2

2pb · q
, s = (pa + pb)

2 . (10)

Throughout the rest of this paper, we will use the approximation that the colliding hadron masses are negligible,
M2

a,b ⌧ Q2.
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to be found in [28]. The TMD pdfs exactly satisfy the following evolution equations in coordinate space,

@ ln f̃j/p(x, bT; µ, ⇣)

@ ln
p

⇣
= K̃(bT; µ) , (40)

dK̃(bT; µ)

d ln µ
= � �K(↵s(µ)) , (41)

d ln f̃j/p(x, bT; µ, ⇣)

d ln µ
= �(↵s(µ); ⇣/µ2) = �(↵s(µ); 1)� �K(↵s(µ))

1

2
ln

✓
⇣

µ2

◆
, (42)

where K̃ is the Collins-Soper kernel, �K is its anomalous dimension and � the TMD anomalous dimension. After
TMD evolution from an initially low input scale Q0 to an arbitrary higher scale Q, Eq. (36) becomes

F 1

UU =
X

j

e2j
|Hj|̄|

2

4⇡2Nc

Z
d2bT eiqhT·bT f̃j/ha

(xa, bT; µQ0 , Q
2

0
) f̃|̄/hb

(xb, bT; µQ0 , Q
2

0
)⇥

⇥ exp

(
K̃(bT; µQ0) ln

✓
Q2

Q2
0

◆
+

Z µQ

µQ0

dµ0

µ0


2�(↵s(µ

0); 1)� ln

✓
Q2

µ02

◆
�K(↵s(µ

0))

�)
+ (a ! b) . (43)

We take Q0 to be the lowest scale for which TMD factorization is to be considered trustworthy. All perturbatively
calculable quantities will be kept through O (↵s).

Within the HSO approach, the strategy is to construct parametrizations of fj/h(x,kT; µQ0 , Q
2
0
) and K̃(bT; µQ0)

that simultaneously: 1.) are phenomenologically successful in the Q0 regime, 2.) recover the perturbative expression
for kT ⇡ Q, and 3.) obey the appropriate evolution equations when evolving to Q� Q0.

The implementation of Eqs. (40)–(43) in this paper will make use of results for the anomalous dimensions and
evolution kernels that were originally calculated in a range of di↵erent formalisms, some of whose connection to the
basic TMD factorization in Eq. (43) is not immediately obvious. Some translation is required, and for that we refer
the reader to Ref. [24]. For example, expressions for K̃, �, and �K are from [29], and extensions up to O

�
↵3

s

�
can be

obtained in, for example, Ref. [26, 30].

III. CUTOFF COLLINEAR PDFS AND THE LARGE TRANSVERSE MOMENTUM ASYMPTOTE

As explained in Sec. I, the HSO approach preserves the integral normalizations that relate TMD and collinear
correlation functions, and ensures that TMD pdfs match the large transverse momentum asymptotic behavior dictated
by the operator definitions. It is useful, therefore, to define a collinear pdf obtained by integrating the TMD pdf over
kT,

f c
i/p(x; µQ; µc) ⌘ 2⇡

Z µc

0

dkT kTfi/p(x,kT; µQ, Q2) , (44)

where µc = µc(µQ) is a cuto↵ on kT. It coincides with the literal probability density interpretation that one has in
the parton model, and it equals the MS definition up to calculable O (↵s) corrections and corrections suppressed by
powers of 1/µ,

f c
i/p(x; µQ; µc) = fMS

i/p (x; µQ) + �i/p(↵s(µQ), µc/µQ) + O

 
m2

µ2

Q

!
(45)

where � is the correction, see Sec. III of [1] for the equivalent expression for fragmentation functions. 1 For our
applications, we will set µc = µQ and drop the O (m/µQ) errors in Eq. (45) and express the cuto↵ definition (Eq. (58)
in Ref. [1]) as

f c
i/p(x; µQ) = lim

m
µQ

!0

f c
i/p(x; µQ; µQ) , (46)

1 m represents any mass scale that may be considered small relative to the hard scale, such as ⇤QCD, a light quark mass, or a small
hadronic mass. The subleading errors in expressions like Eq. (45) need not in general be exactly quadratic, but we will retain this
notation for simplicity since the exact power is irrelevant for our purposes.
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to be found in [28]. The TMD pdfs exactly satisfy the following evolution equations in coordinate space,

@ ln f̃j/p(x, bT; µ, ⇣)

@ ln
p

⇣
= K̃(bT; µ) , (40)

dK̃(bT; µ)

d ln µ
= � �K(↵s(µ)) , (41)

d ln f̃j/p(x, bT; µ, ⇣)

d ln µ
= �(↵s(µ); ⇣/µ2) = �(↵s(µ); 1)� �K(↵s(µ))
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⇣
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◆
, (42)

where K̃ is the Collins-Soper kernel, �K is its anomalous dimension and � the TMD anomalous dimension. After
TMD evolution from an initially low input scale Q0 to an arbitrary higher scale Q, Eq. (36) becomes
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We take Q0 to be the lowest scale for which TMD factorization is to be considered trustworthy. All perturbatively
calculable quantities will be kept through O (↵s).

Within the HSO approach, the strategy is to construct parametrizations of fj/h(x,kT; µQ0 , Q
2
0
) and K̃(bT; µQ0)

that simultaneously: 1.) are phenomenologically successful in the Q0 regime, 2.) recover the perturbative expression
for kT ⇡ Q, and 3.) obey the appropriate evolution equations when evolving to Q� Q0.

The implementation of Eqs. (40)–(43) in this paper will make use of results for the anomalous dimensions and
evolution kernels that were originally calculated in a range of di↵erent formalisms, some of whose connection to the
basic TMD factorization in Eq. (43) is not immediately obvious. Some translation is required, and for that we refer
the reader to Ref. [24]. For example, expressions for K̃, �, and �K are from [29], and extensions up to O

�
↵3
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�
can be

obtained in, for example, Ref. [26, 30].

III. CUTOFF COLLINEAR PDFS AND THE LARGE TRANSVERSE MOMENTUM ASYMPTOTE

As explained in Sec. I, the HSO approach preserves the integral normalizations that relate TMD and collinear
correlation functions, and ensures that TMD pdfs match the large transverse momentum asymptotic behavior dictated
by the operator definitions. It is useful, therefore, to define a collinear pdf obtained by integrating the TMD pdf over
kT,

f c
i/p(x; µQ; µc) ⌘ 2⇡

Z µc

0

dkT kTfi/p(x,kT; µQ, Q2) , (44)

where µc = µc(µQ) is a cuto↵ on kT. It coincides with the literal probability density interpretation that one has in
the parton model, and it equals the MS definition up to calculable O (↵s) corrections and corrections suppressed by
powers of 1/µ,

f c
i/p(x; µQ; µc) = fMS

i/p (x; µQ) + �i/p(↵s(µQ), µc/µQ) + O
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where � is the correction, see Sec. III of [1] for the equivalent expression for fragmentation functions. 1 For our
applications, we will set µc = µQ and drop the O (m/µQ) errors in Eq. (45) and express the cuto↵ definition (Eq. (58)
in Ref. [1]) as

f c
i/p(x; µQ) = lim

m
µQ

!0

f c
i/p(x; µQ; µQ) , (46)

1 m represents any mass scale that may be considered small relative to the hard scale, such as ⇤QCD, a light quark mass, or a small
hadronic mass. The subleading errors in expressions like Eq. (45) need not in general be exactly quadratic, but we will retain this
notation for simplicity since the exact power is irrelevant for our purposes.

Solve evolution equations  and write in terms of input scale
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to be found in [28]. The TMD pdfs exactly satisfy the following evolution equations in coordinate space,
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where K̃ is the Collins-Soper kernel, �K is its anomalous dimension and � the TMD anomalous dimension. After
TMD evolution from an initially low input scale Q0 to an arbitrary higher scale Q, Eq. (36) becomes
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We take Q0 to be the lowest scale for which TMD factorization is to be considered trustworthy. All perturbatively
calculable quantities will be kept through O (↵s).

Within the HSO approach, the strategy is to construct parametrizations of fj/h(x,kT; µQ0 , Q
2
0
) and K̃(bT; µQ0)

that simultaneously: 1.) are phenomenologically successful in the Q0 regime, 2.) recover the perturbative expression
for kT ⇡ Q, and 3.) obey the appropriate evolution equations when evolving to Q� Q0.

The implementation of Eqs. (40)–(43) in this paper will make use of results for the anomalous dimensions and
evolution kernels that were originally calculated in a range of di↵erent formalisms, some of whose connection to the
basic TMD factorization in Eq. (43) is not immediately obvious. Some translation is required, and for that we refer
the reader to Ref. [24]. For example, expressions for K̃, �, and �K are from [29], and extensions up to O
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obtained in, for example, Ref. [26, 30].

III. CUTOFF COLLINEAR PDFS AND THE LARGE TRANSVERSE MOMENTUM ASYMPTOTE

As explained in Sec. I, the HSO approach preserves the integral normalizations that relate TMD and collinear
correlation functions, and ensures that TMD pdfs match the large transverse momentum asymptotic behavior dictated
by the operator definitions. It is useful, therefore, to define a collinear pdf obtained by integrating the TMD pdf over
kT,

f c
i/p(x; µQ; µc) ⌘ 2⇡

Z µc

0

dkT kTfi/p(x,kT; µQ, Q2) , (44)

where µc = µc(µQ) is a cuto↵ on kT. It coincides with the literal probability density interpretation that one has in
the parton model, and it equals the MS definition up to calculable O (↵s) corrections and corrections suppressed by
powers of 1/µ,

f c
i/p(x; µQ; µc) = fMS
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where � is the correction, see Sec. III of [1] for the equivalent expression for fragmentation functions. 1 For our
applications, we will set µc = µQ and drop the O (m/µQ) errors in Eq. (45) and express the cuto↵ definition (Eq. (58)
in Ref. [1]) as

f c
i/p(x; µQ) = lim

m
µQ

!0

f c
i/p(x; µQ; µQ) , (46)

1 m represents any mass scale that may be considered small relative to the hard scale, such as ⇤QCD, a light quark mass, or a small
hadronic mass. The subleading errors in expressions like Eq. (45) need not in general be exactly quadratic, but we will retain this
notation for simplicity since the exact power is irrelevant for our purposes.

Usually, here one rearranges the expression to take advantage 
of the small-bT OPE. We depart from this, but one can see a 
correspondence with the usual treatment (later). 
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the TMD fragmentation functions (↵s), while strictly adhering to the logic of the TMD factorization and evolution
derivations at each stage in the process. The purpose of the present paper is to begin the processes of putting these
steps into practice.

The basic expression of TMD factorization for a process like Drell-Yan scattering valid in the small transverse
momentum limit is

d�

d4qT d⌦
⇠

XZ
d2kaT d2kbT fj/ha

(xa,kaT; µQ, Q2)f|̄/hb
(xb,kbT; µQ, Q2)�(2)(qT � kaT � kbT) , (1)

which exactly matches a TMD parton model description (e.g., Refs. [3, 4]), except with evolution scales Q and µQ

as explicit auxiliary arguments of the TMD pdfs. The partons of flavor j and |̄ are carried inside hadrons ha and hb

with collinear momentum fractions xa(xb) and transverse momenta kaT(kbT). The coordinate space solution to the
evolution equations for each of the TMD correlation functions is rather simple and takes the form

f̃j/h(x, bT; µQ, Q2) = f̃j/h(x, bT; µQ0 , Q
2

0
)E(bT, Q/Q0) , (2)

foperator(x, kT; µQ0 , Q
2

0
) =) finpt(x, kT; µQ0 , Q

2

0
) (3)

where Q0 is an input scale and E(bT, Q/Q0) is a collection of well-known exponential factors that implement evolution
and whose only bT-dependence resides in the Collins-Soper (CS) kernel. Therefore, once a parametrization of a TMD
pdf has been established at an input scale Q0 and for all bT, evolving it to a higher Q and using Eq. (1) becomes in
principle very simple. By comparison, the role of nonperturbative input parametrizations is somewhat obscured in the
more complicated ways that evolved Drell-Yan cross sections are typically expressed. Maintaining the factorization
formula in the straightforward form in Eqs. (1)–(2) allows one to deal directly with issues related to the input
parametrization that are often overlooked.

The HSO approach simultaneously addresses a number of long-standing issues including:

1) The need to preserve the integral normalizations that connect TMD and collinear correlation functions

fi/h(x) ⇡

Z
d2kT fi/h(x,kT) , (4)

which map to an approximate probability interpretation, even at moderate Q. More traditional TMD
parametrizations either lack this constraint, or they express it in a naive parton model form that does not
include evolution.

2) The need to match to a fixed order perturbative tail when transverse momentum is comparable to the hard
scale. The parametrizations of TMD pdfs and ↵s should match the large transverse momentum asymptotic
behavior that is dictated by their operator definitions.

3) The need to deal with a backwards evolution problem in TMD factorization. Specifically, data from high scale
processes tend to have weak sensitivity to the nonperturbative parts in TMD parametrizations in comparison to
what one finds at lower Q. As such, extractions of nonperturbative transverse momentum dependence obtained
from very large Q measurements have errors that are amplified, and eventually blow up, as one evolves downward
in Q. (We do emphasize, however, that understanding the nonperturbative contributions is relevant to reaching
desired levels of precision at quite large scales. See, for example, [5, 6].)

4) The need for direct control, in the parametrizations themselves, over the transition between perturbative and
nonperturbative descriptions of transverse momentum dependence as one moves from small to large transverse
momentum. This is important for e↵orts to map out the regions in transverse momentum where di↵erent
physical mechanisms dominate. The transition is smooth in the HSO approach, and it eliminates the arbitrary
“bmax” (and “bmin”) that appears in many standard high energy applications. Specifically, the scale at which
a bTQ0 ! 0 renormalization group improvement approach is imposed has been separated from the physical
description of the transition between perturbative and truly nonperturbative regions. See Appendix B and
Sec. IV C below for a discussion of how these descriptions are connected.

5) The need for a recipe that maps any given model (say, from lattice QCD or other nonperturbative techniques)
of TMD functions to the nonperturbative input of TMD factorization and evolution, and allows the predictive
power of di↵erent models to be compared.

input 
scale

Abstract Pheno

Special role of input scale: 
- Larger values: factorization/pQCD works better
- Small values: more prominent intrinsic kT 



We build models in transverse momentum space.

2

the TMD fragmentation functions (↵s), while strictly adhering to the logic of the TMD factorization and evolution
derivations at each stage in the process. The purpose of the present paper is to begin the processes of putting these
steps into practice.

The basic expression of TMD factorization for a process like Drell-Yan scattering valid in the small transverse
momentum limit is

d�

d4qT d⌦
⇠

XZ
d2kaT d2kbT fj/ha

(xa,kaT; µQ, Q2)f|̄/hb
(xb,kbT; µQ, Q2)�(2)(qT � kaT � kbT) , (1)

which exactly matches a TMD parton model description (e.g., Refs. [3, 4]), except with evolution scales Q and µQ

as explicit auxiliary arguments of the TMD pdfs. The partons of flavor j and |̄ are carried inside hadrons ha and hb

with collinear momentum fractions xa(xb) and transverse momenta kaT(kbT). The coordinate space solution to the
evolution equations for each of the TMD correlation functions is rather simple and takes the form

f̃j/h(x, bT; µQ, Q2) = f̃j/h(x, bT; µQ0 , Q
2

0
)E(bT, Q/Q0) , (2)

foperator(x, kT; µQ0 , Q
2

0
) =) finpt(x, kT; µQ0 , Q

2

0
) (3)

where Q0 is an input scale and E(bT, Q/Q0) is a collection of well-known exponential factors that implement evolution
and whose only bT-dependence resides in the Collins-Soper (CS) kernel. Therefore, once a parametrization of a TMD
pdf has been established at an input scale Q0 and for all bT, evolving it to a higher Q and using Eq. (1) becomes in
principle very simple. By comparison, the role of nonperturbative input parametrizations is somewhat obscured in the
more complicated ways that evolved Drell-Yan cross sections are typically expressed. Maintaining the factorization
formula in the straightforward form in Eqs. (1)–(2) allows one to deal directly with issues related to the input
parametrization that are often overlooked.

The HSO approach simultaneously addresses a number of long-standing issues including:

1) The need to preserve the integral normalizations that connect TMD and collinear correlation functions

fi/h(x) ⇡

Z
d2kT fi/h(x,kT) , (4)

which map to an approximate probability interpretation, even at moderate Q. More traditional TMD
parametrizations either lack this constraint, or they express it in a naive parton model form that does not
include evolution.

2) The need to match to a fixed order perturbative tail when transverse momentum is comparable to the hard
scale. The parametrizations of TMD pdfs and ↵s should match the large transverse momentum asymptotic
behavior that is dictated by their operator definitions.

3) The need to deal with a backwards evolution problem in TMD factorization. Specifically, data from high scale
processes tend to have weak sensitivity to the nonperturbative parts in TMD parametrizations in comparison to
what one finds at lower Q. As such, extractions of nonperturbative transverse momentum dependence obtained
from very large Q measurements have errors that are amplified, and eventually blow up, as one evolves downward
in Q. (We do emphasize, however, that understanding the nonperturbative contributions is relevant to reaching
desired levels of precision at quite large scales. See, for example, [5, 6].)

4) The need for direct control, in the parametrizations themselves, over the transition between perturbative and
nonperturbative descriptions of transverse momentum dependence as one moves from small to large transverse
momentum. This is important for e↵orts to map out the regions in transverse momentum where di↵erent
physical mechanisms dominate. The transition is smooth in the HSO approach, and it eliminates the arbitrary
“bmax” (and “bmin”) that appears in many standard high energy applications. Specifically, the scale at which
a bTQ0 ! 0 renormalization group improvement approach is imposed has been separated from the physical
description of the transition between perturbative and truly nonperturbative regions. See Appendix B and
Sec. IV C below for a discussion of how these descriptions are connected.

5) The need for a recipe that maps any given model (say, from lattice QCD or other nonperturbative techniques)
of TMD functions to the nonperturbative input of TMD factorization and evolution, and allows the predictive
power of di↵erent models to be compared.

input 
scale

Abstract Pheno

Must preserve fundamental properties of the 
operator definition in our models at the input 
scale.
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
1

2⇡

1

k2

T


Ai/p(x; µQ) + Bi/p(x; µQ) ln

✓
Q2

k2

T

◆
+ Ag

i/p(x; µQ)

�
. (47)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (48)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (48) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (47), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert

b (x, qT; µQ; Q2)f c
a(x; µQ)

+

Z
d2kT

�
fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x,kT + qT/2; µQ; Q2)

�fpert

a (x, qT; µQ; Q2)fpert

b (x,kT + qT/2; µQ; Q2)⇥(µQ � |kT + qT/2|)

�fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
 

+ O

✓
m2

q2
T

◆

= [fa, fb]ASY
+ O

✓
m2

q2
T

◆
. (49)

The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2

0
) =

1

2⇡

1

k2

T
+ m2

i,p,A

Ai/p(x; µQ0) +
1

2⇡

1

k2

T
+ m2

i,p,B

Bi/p(x; µQ0) ln

 
Q2

0

k2

T
+ m2

i,p,L

!

+
1

2⇡

1

k2

T
+ m2

g,p

Ag
i/p(x; µQ0)

+ Ci/p fcore,i/p(x, kT; Q2

0
) . (50)

We do it additively (other options allowed)
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The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is
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foperator
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The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms
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◆
. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is
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2

0
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2⇡
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+ Ci/p fcore,i/p(x, kT; Q2

0
) . (52)

Start with a “core” model/parametrization for intrinsic kT
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to sections V and VI of Ref. [2] for more details.
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The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.
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Make sure the model has the large kT behavior of the 
TMD in the kT ~ Q0 approximation 
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The convolution product that appears in the TMD factorization formula is
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◆
. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.
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The convolution product that appears in the TMD factorization formula is
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In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms
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b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
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+ O

✓
m2

q2
T

◆
. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2
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) . (52)
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is
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i/p (x, kT; µQ, Q) =
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
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. (48)

foperator
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(49)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms
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b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
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= [fa, fb]ASY
+ O

✓
m2

q2
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◆
. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2

0
) =
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) . (52)
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
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foperator
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(49)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert

b (x, qT; µQ; Q2)f c
a(x; µQ)

+
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b (x,kT + qT/2; µQ; Q2)

�fpert
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b (x,kT + qT/2; µQ; Q2)⇥(µQ � |kT + qT/2|)

�fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
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= [fa, fb]ASY
+ O

✓
m2

q2
T

◆
. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2

0
) =

1

2⇡

1
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T
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i,p,A
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) . (52)

pQCD tail, related to OPE in bT space
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is
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i/p (x, kT; µQ, Q) =
1

2⇡
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
Ai/p(x; µQ) + Bi/p(x; µQ) ln

✓
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�
. (47)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (48)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (48) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (47), up to power suppressed terms

[fa, fb] = fpert
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b (x; µQ) + fpert
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+
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b (x,kT + qT/2; µQ; Q2)⇥(µQ � |kT + qT/2|)
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a (x, �kT + qT/2; µQ; Q2)fpert

b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
 

+ O

✓
m2

q2
T

◆

= [fa, fb]ASY
+ O

✓
m2

q2
T

◆
. (49)

The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2

0
) =

1
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1
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T
+ m2

i,p,A
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+ Ci/p fcore,i/p(x, kT; Q2

0
) . (50)

We do it additively (other options allowed)
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
1

2⇡

1

k2

T


Ai/p(x; µQ) + Bi/p(x; µQ) ln

✓
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◆
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i/p(x; µQ)

�
. (47)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (48)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (48) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (47), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert

b (x, qT; µQ; Q2)f c
a(x; µQ)

+
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�fpert
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b (x,kT + qT/2; µQ; Q2)⇥(µQ � |kT + qT/2|)

�fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
 

+ O

✓
m2

q2
T

◆

= [fa, fb]ASY
+ O

✓
m2

q2
T

◆
. (49)

The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2

0
) =

1

2⇡

1
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T
+ m2

i,p,A
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1
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) . (50)

Make sure the model has the large kT behavior of the 
TMD in the kT ~ Q0 approximation 
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
1

2⇡

1
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T


Ai/p(x; µQ) + Bi/p(x; µQ) ln
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. (48)

foperator
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) =
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
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(49)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert

b (x, qT; µQ; Q2)f c
a(x; µQ)

+
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�fpert
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b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
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◆
. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2
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) =
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) . (52)
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is
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i/p (x, kT; µQ, Q) =
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(49)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert

b (x, qT; µQ; Q2)f c
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+
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. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is
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2
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is
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(49)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms

[fa, fb] = fpert
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+
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The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
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
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✓
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�
. (47)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (48)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (48) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (47), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert
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b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
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✓
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= [fa, fb]ASY
+ O

✓
m2

q2
T

◆
. (49)

The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2
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) =
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) . (50)
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
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
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✓
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. (47)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (48)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (48) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (47), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert
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+
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b (x,kT + qT/2; µQ; Q2)⇥(µQ � |kT + qT/2|)

�fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
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= [fa, fb]ASY
+ O
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◆
. (49)

The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2

0
) =

1

2⇡

1
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T
+ m2

i,p,A
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1
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1
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) . (50)
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
1

2⇡

1
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T


Ai/p(x; µQ) + Bi/p(x; µQ) ln
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. (48)

foperator

i/p (x, kT ⇠ Q0; µQ0 , Q
2

0
) = fpert

i/p (x, kT; µQ0 , Q
2

0
) =

1

2⇡

1

k2

T


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(49)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert

b (x, qT; µQ; Q2)f c
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+
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�fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
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◆
. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2

0
) =

1

2⇡

1
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T
+ m2

i,p,A

Ai/p(x; µQ0) +
1
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1
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) . (52)
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
1

2⇡

1
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
Ai/p(x; µQ) + Bi/p(x; µQ) ln
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�
. (48)

foperator
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2
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) = fpert
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(49)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert

b (x, qT; µQ; Q2)f c
a(x; µQ)

+
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b (x,kT + qT/2; µQ; Q2)

�fpert

a (x, qT; µQ; Q2)fpert

b (x,kT + qT/2; µQ; Q2)⇥(µQ � |kT + qT/2|)

�fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
 

+ O
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q2
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◆

= [fa, fb]ASY
+ O

✓
m2

q2
T

◆
. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2

0
) =

1

2⇡

1
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T
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i,p,A
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1
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) . (52)
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
1

2⇡
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
Ai/p(x; µQ) + Bi/p(x; µQ) ln
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. (47)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (48)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (48) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (47), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert

b (x, qT; µQ; Q2)f c
a(x; µQ)

+
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b (x,kT + qT/2; µQ; Q2)

�fpert

a (x, qT; µQ; Q2)fpert

b (x,kT + qT/2; µQ; Q2)⇥(µQ � |kT + qT/2|)

�fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
 

+ O

✓
m2

q2
T

◆

= [fa, fb]ASY
+ O

✓
m2

q2
T

◆
. (49)

The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2
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) =
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1
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) . (50)
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
1
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. (48)

foperator
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(49)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert

b (x, qT; µQ; Q2)f c
a(x; µQ)

+

Z
d2kT
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b (x,kT + qT/2; µQ; Q2)

�fpert
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b (x,kT + qT/2; µQ; Q2)⇥(µQ � |kT + qT/2|)

�fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
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◆
. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
1
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. (47)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (48)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (48) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (47), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert

b (x, qT; µQ; Q2)f c
a(x; µQ)

+
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�fpert
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b (x,kT + qT/2; µQ; Q2)⇥(µQ � |kT + qT/2|)

�fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
 

+ O
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= [fa, fb]ASY
+ O
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q2
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◆
. (49)

The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is
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2

0
) =

1

2⇡

1

k2

T
+ m2

i,p,A

Ai/p(x; µQ0) +
1

2⇡

1

k2

T
+ m2

i,p,B

Bi/p(x; µQ0) ln

 
Q2

0

k2

T
+ m2

i,p,L

!

+
1

2⇡

1

k2

T
+ m2

g,p

Ag
i/p(x; µQ0)

+ Ci/p fcore,i/p(x, kT; Q2

0
) . (50)
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
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. (47)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (48)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (48) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (47), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert

b (x, qT; µQ; Q2)f c
a(x; µQ)

+
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�fpert
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. (49)

The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is
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) . (50)

Impose the QCD integral relation 
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is
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
Ai/p(x; µQ) + Bi/p(x; µQ) ln

✓
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The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (48)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (48) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (47), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert
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◆
. (49)

The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
1
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1
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
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✓
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The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (48)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (48) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (47), up to power suppressed terms
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◆
. (49)

The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is
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2

0
) =

1
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1
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T
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
1

2⇡

1
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T


Ai/p(x; µQ) + Bi/p(x; µQ) ln
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�
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foperator
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) = fpert

i/p (x, kT; µQ0 , Q
2

0
) =

1

2⇡
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
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✓
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(49)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms

[fa, fb] = fpert
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b (x; µQ) + fpert
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+
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�fpert
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b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
 

+ O
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q2
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◆

= [fa, fb]ASY
+ O

✓
m2

q2
T

◆
. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2

0
) =

1

2⇡

1
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+ m2

i,p,A

Ai/p(x; µQ0) +
1

2⇡
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+ Ci/p fcore,i/p(x, kT; Q2

0
) . (52)
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
1

2⇡

1
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
Ai/p(x; µQ) + Bi/p(x; µQ) ln

✓
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T

◆
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i/p(x; µQ)

�
. (48)

foperator

i/p (x, kT ⇠ Q0; µQ0 , Q
2

0
) = fpert

i/p (x, kT; µQ0 , Q
2

0
) =
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2⇡
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T


Ai/p(x; µQ0) + Bi/p(x; µQ0) ln

✓
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i/p(x; µQ0)

�
.

(49)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert

b (x, qT; µQ; Q2)f c
a(x; µQ)

+
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b (x,kT + qT/2; µQ; Q2)

�fpert
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b (x,kT + qT/2; µQ; Q2)⇥(µQ � |kT + qT/2|)

�fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
 

+ O

✓
m2

q2
T

◆

= [fa, fb]ASY
+ O

✓
m2

q2
T

◆
. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2

0
) =

1

2⇡

1
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T
+ m2

i,p,A

Ai/p(x; µQ0) +
1

2⇡
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0
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) . (52)
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
1

2⇡

1

k2

T


Ai/p(x; µQ) + Bi/p(x; µQ) ln

✓
Q2
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◆
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i/p(x; µQ)

�
. (47)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (48)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (48) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (47), up to power suppressed terms
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b (x; µQ) + fpert
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b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
 

+ O

✓
m2

q2
T

◆

= [fa, fb]ASY
+ O

✓
m2

q2
T

◆
. (49)

The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is

finpt,i/p(x, kT; µQ0 , Q
2
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) =
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1
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
1

2⇡

1
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
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�
. (48)

foperator
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) =
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
Ai/p(x; µQ0) + Bi/p(x; µQ0) ln

✓
Q2

0

k2

T

◆
+ Ag

i/p(x; µQ0)

�
.

(49)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert

b (x, qT; µQ; Q2)f c
a(x; µQ)

+
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fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x,kT + qT/2; µQ; Q2)

�fpert

a (x, qT; µQ; Q2)fpert

b (x,kT + qT/2; µQ; Q2)⇥(µQ � |kT + qT/2|)

�fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
 

+ O

✓
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q2
T

◆

= [fa, fb]ASY
+ O

✓
m2

q2
T

◆
. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is
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2
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1
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1
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to be found in [28]. The TMD pdfs exactly satisfy the following evolution equations in coordinate space,

@ ln f̃j/p(x, bT; µ, ⇣)

@ ln
p

⇣
= K̃(bT; µ) , (41)

dK̃(bT; µ)

d ln µ
= � �K(↵s(µ)) , (42)

d ln f̃j/p(x, bT; µ, ⇣)

d ln µ
= �(↵s(µ); ⇣/µ2) = �(↵s(µ); 1)� �K(↵s(µ))

1

2
ln

✓
⇣

µ2

◆
, (43)

where K̃ is the Collins-Soper kernel, �K is its anomalous dimension and � the TMD anomalous dimension. After
TMD evolution from an initially low input scale Q0 to an arbitrary higher scale Q, Eq. (37) becomes

F 1

UU =
X

j

e2j
|Hj|̄|

2

4⇡2Nc

Z
d2bT eiqhT·bT f̃j/ha

(xa, bT; µQ0 , Q
2

0
) f̃|̄/hb

(xb, bT; µQ0 , Q
2

0
)⇥

⇥ exp

(
K̃(bT; µQ0) ln

✓
Q2

Q2
0

◆
+

Z µQ

µQ0

dµ0

µ0


2�(↵s(µ

0); 1)� ln

✓
Q2

µ02

◆
�K(↵s(µ

0))

�)
+ (a ! b) . (44)

We take Q0 to be the lowest scale for which TMD factorization is to be considered trustworthy. All perturbatively
calculable quantities will be kept through O (↵s).

Within the HSO approach, the strategy is to construct parametrizations of fj/h(x,kT; µQ0 , Q
2
0
) and K̃(bT; µQ0)

that simultaneously: 1.) are phenomenologically successful in the Q0 regime, 2.) recover the perturbative expression
for kT ⇡ Q, and 3.) obey the appropriate evolution equations when evolving to Q� Q0.

The implementation of Eqs. (41)–(44) in this paper will make use of results for the anomalous dimensions and
evolution kernels that were originally calculated in a range of di↵erent formalisms, some of whose connection to the
basic TMD factorization in Eq. (44) is not immediately obvious. Some translation is required, and for that we refer
the reader to Ref. [24]. For example, expressions for K̃, �, and �K are from [29], and extensions up to O

�
↵3

s

�
can be

obtained in, for example, Ref. [26, 30].

III. CUTOFF COLLINEAR PDFS AND THE LARGE TRANSVERSE MOMENTUM ASYMPTOTE

As explained in Sec. I, the HSO approach preserves the integral normalizations that relate TMD and collinear
correlation functions, and ensures that TMD pdfs match the large transverse momentum asymptotic behavior dictated
by the operator definitions. It is useful, therefore, to define a collinear pdf obtained by integrating the TMD pdf over
kT,

f c
i/p(x; µQ; µc) ⌘ 2⇡

Z µc

0

dkT kTfi/p(x,kT; µQ, Q2) , (45)

2⇡

Z µQ0

0

dkT kTfoperator

i/p (x,kT; µQ0 , µ
2

Q0
) = fMS

i/p (x; µQ0) + �i/p(↵s(µQ0)) + O

 
m2

µ2

Q0

!
(46)

where µc = µc(µQ) is a cuto↵ on kT. It coincides with the literal probability density interpretation that one has in
the parton model, and it equals the MS definition up to calculable O (↵s) corrections and corrections suppressed by
powers of 1/µ,

f c
i/p(x; µQ; µc) = fMS

i/p (x; µQ) + �i/p(↵s(µQ), µc/µQ) + O

 
m2

µ2

Q

!
(47)

where � is the correction, see Sec. III of [1] for the equivalent expression for fragmentation functions. 1 For our
applications, we will set µc = µQ and drop the O (m/µQ) errors in Eq. (47) and express the cuto↵ definition (Eq. (58)

1 m represents any mass scale that may be considered small relative to the hard scale, such as ⇤QCD, a light quark mass, or a small
hadronic mass. The subleading errors in expressions like Eq. (47) need not in general be exactly quadratic, but we will retain this
notation for simplicity since the exact power is irrelevant for our purposes.
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where the quantities mq, MX , ⇤ are model parameters and Mp is the proton mass. The overall factors in Eqs. (65)–(66)
are chosen so that the core functions are normalized to unity, i.e. Ni/p = 1.
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where K0, K2 and K3 are modified Bessel functions of the second kind.
As anticipated, Eq. (67) matches the O (↵s) operator product expansion (OPE) for small transverse sizes bT ! 0,
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where, crucially, all the dependence on the masses mi,p has been cancelled by the logarithms appearing in the
expression for the coe�cient Ci/p, defined in Eq. (57).
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where the quantities mq, MX , ⇤ are model parameters and Mp is the proton mass. The overall factors in Eqs. (65)–(66)
are chosen so that the core functions are normalized to unity, i.e. Ni/p = 1.
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where K0, K2 and K3 are modified Bessel functions of the second kind.
As anticipated, Eq. (67) matches the O (↵s) operator product expansion (OPE) for small transverse sizes bT ! 0,
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where, crucially, all the dependence on the masses mi,p has been cancelled by the logarithms appearing in the
expression for the coe�cient Ci/p, defined in Eq. (57).
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where K0, K2 and K3 are modified Bessel functions of the second kind.
As anticipated, Eq. (67) matches the O (↵s) operator product expansion (OPE) for small transverse sizes bT ! 0,
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where, crucially, all the dependence on the masses mi,p has been cancelled by the logarithms appearing in the
expression for the coe�cient Ci/p, defined in Eq. (57).
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where, crucially, all the dependence on the masses mi,p has been cancelled by the logarithms appearing in the
expression for the coe�cient Ci/p, defined in Eq. (57).
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where, crucially, all the dependence on the masses mi,p has been cancelled by the logarithms appearing in the
expression for the coe�cient Ci/p, defined in Eq. (57).
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include them in Appendix A for use in future work. The perturbative CS kernel in coordinate space is
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where MF is a model parameter. The second core parametrization is the spectator model in Eq. (44) of Ref. [31],
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where the quantities mq, MX , ⇤ are model parameters and Mp is the proton mass. The overall factors in Eqs. (65)–(66)
are chosen so that the core functions are normalized to unity, i.e. Ni/p = 1.

In the future, more sophisticated modeling may replace Eqs. (65)–(66). For example, the core models might be
guided by work in Refs. [31–34]. Developments in lattice QCD [35] may also soon provide guidance.

3. Coordinate space representation

Since TMD evolution is usually performed in coordinate space, it will be convenient to write the coordinate space
versions of the above parametrizations. They are,
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(69)

where K0, K2 and K3 are modified Bessel functions of the second kind.
As anticipated, Eq. (67) matches the O (↵s) operator product expansion (OPE) for small transverse sizes bT ! 0,

up to errors suppressed by powers of bT. Since K0(mbT ) = � ln (mbT /2e��E ) + O(b2T m2) and f̃core,i/p = 1 + O (ba
T )

for a > 0 (independently of which core parametrization is considered), the small-bT behavior of Eq. (67) is
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where, crucially, all the dependence on the masses mi,p has been cancelled by the logarithms appearing in the
expression for the coe�cient Ci/p, defined in Eq. (57).
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up to errors suppressed by powers of bT. Since K0(mbT ) = � ln (mbT /2e��E ) + O(b2T m2) and f̃core,i/p = 1 + O (ba
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where, crucially, all the dependence on the masses mi,p has been cancelled by the logarithms appearing in the
expression for the coe�cient Ci/p, defined in Eq. (57).

Note, it does not necessarily work the other way 
around: starting from the OPE and multiplying by a 
model does not guarantee the constraints to hold.
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is
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The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (48)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (48) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (47), up to power suppressed terms
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The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is
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We do it additively (other options allowed)
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
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The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is
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The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms
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The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.
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We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is
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The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert
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b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
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◆

= [fa, fb]ASY
+ O

✓
m2

q2
T

◆
. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is
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) . (52)
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is
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The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (48)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (48) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (47), up to power suppressed terms
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b (x, qT; µQ; Q2)f c
a(x; µQ)

+

Z
d2kT

�
fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x,kT + qT/2; µQ; Q2)

�fpert

a (x, qT; µQ; Q2)fpert

b (x,kT + qT/2; µQ; Q2)⇥(µQ � |kT + qT/2|)

�fpert

a (x, �kT + qT/2; µQ; Q2)fpert

b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
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. (49)

The term in Eq. (49) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is
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where we have dropped the underline on the right-hand side and the superscripts of Ref. [1].
When kT ⇡ µ ⇡ Q, the perturbative tail approximation to a single TMD pdf (through O (↵s)) is

fpert

i/p (x, kT; µQ, Q) =
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foperator
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(49)

The convolution product that appears in the TMD factorization formula is

[fa, fb] =

Z
d2kT fa(x, �kT + qT/2; µQ; Q2)fb(x,kT + qT/2; µQ; Q2) . (50)

In the limit qT ⇠ Q, Q ! 1, the bracket in Eq. (50) gives the so called “asymptotic term”. This can be calculated
entirely in collinear factorization, in terms of the perturbative tail of Eq. (48), up to power suppressed terms

[fa, fb] = fpert

a (x, qT; µQ; Q2)f c
b (x; µQ) + fpert
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+
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b (x,kT + qT/2; µQ; Q2)⇥(µQ � |kT + qT/2|)
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a (x, �kT + qT/2; µQ; Q2)fpert

b (x, qT; µQ; Q2)⇥(µQ � | � kT + qT/2|)
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+ O
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q2
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◆
. (51)

The term in Eq. (51) is useful to implement large-qT corrections to the TMD approximation. We refer the reader
to sections V and VI of Ref. [2] for more details.

IV. TMD PARTON DISTRIBUTION FUNCTIONS: PARAMETRIZATIONS

In this section, we summarize the steps for setting up the parametrizations that we will use in later sections.

A. The input scale TMD pdfs

1. Two component setup

We will use the same additive two component setup from [2] as the basic TMD parametrization. At an input scale
Q0 it is
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a Gaussian shape,

fGauss

core,i/p(x,kT; Q2

0
) =

e�k2
T/M2

F

⇡M2

F

, (65)

where MF is a model parameter. The second core parametrization is the spectator model in Eq. (44) of Ref. [31],

fSpect
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T
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4
, L2 = (1 � x)⇤2 + xM2

X � x(1 � x)M2

p , (66)

where the quantities mq, MX , ⇤ are model parameters and Mp is the proton mass. The overall factors in Eqs. (65)–(66)
are chosen so that the core functions are normalized to unity, i.e. Ni/p = 1.

In the future, more sophisticated modeling may replace Eqs. (65)–(66). For example, the core models might be
guided by work in Refs. [31–34]. Developments in lattice QCD [35] may also soon provide guidance.

3. Coordinate space representation

Since TMD evolution is usually performed in coordinate space, it will be convenient to write the coordinate space
versions of the above parametrizations. They are,

f̃inpt,j/p(x, bT; µQ0 , Q
2

0
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) , (67)

with
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(68)

where K0, K2 and K3 are modified Bessel functions of the second kind.
As anticipated, Eq. (67) matches the O (↵s) operator product expansion (OPE) for small transverse sizes bT ! 0,

up to errors suppressed by powers of bT. Since K0(mbT ) = � ln (mbT /2e��E ) + O(b2T m2) and f̃core,i/p = 1 + O (ba
T )

for a > 0 (independently of which core parametrization is considered), the small-bT behavior of Eq. (67) is
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where, crucially, all the dependence on the masses mi,p has been cancelled by the logarithms appearing in the
expression for the coe�cient Ci/p, defined in Eq. (57).

B. The CS kernel: input scale parametrization

Next, we discuss the parametrization that we will use for the CS kernel through O (↵s(µ)). The analogous O
�
↵s(µ)2

�

expressions are also straightforward to write down, but we will not use them for applications in this paper, so we
include them in Appendix A for use in future work. The perturbative CS kernel in coordinate space is

K̃(bT; µ) = �
2CF ↵s(µ)

⇡
ln

✓
bTµ

2e��E

◆
+ O(↵s(µ)2) , (70)
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where MF is a model parameter. The second core parametrization is the spectator model in Eq. (44) of Ref. [31],
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where the quantities mq, MX , ⇤ are model parameters and Mp is the proton mass. The overall factors in Eqs. (65)–(66)
are chosen so that the core functions are normalized to unity, i.e. Ni/p = 1.

In the future, more sophisticated modeling may replace Eqs. (65)–(66). For example, the core models might be
guided by work in Refs. [31–34]. Developments in lattice QCD [35] may also soon provide guidance.

3. Coordinate space representation

Since TMD evolution is usually performed in coordinate space, it will be convenient to write the coordinate space
versions of the above parametrizations. They are,
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where K0, K2 and K3 are modified Bessel functions of the second kind.
As anticipated, Eq. (67) matches the O (↵s) operator product expansion (OPE) for small transverse sizes bT ! 0,

up to errors suppressed by powers of bT. Since K0(mbT ) = � ln (mbT /2e��E ) + O(b2T m2) and f̃core,i/p = 1 + O (ba
T )

for a > 0 (independently of which core parametrization is considered), the small-bT behavior of Eq. (67) is
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where, crucially, all the dependence on the masses mi,p has been cancelled by the logarithms appearing in the
expression for the coe�cient Ci/p, defined in Eq. (57).

B. The CS kernel: input scale parametrization

Next, we discuss the parametrization that we will use for the CS kernel through O (↵s(µ)). The analogous O
�
↵s(µ)2

�

expressions are also straightforward to write down, but we will not use them for applications in this paper, so we
include them in Appendix A for use in future work. The perturbative CS kernel in coordinate space is

K̃(bT; µ) = �
2CF ↵s(µ)

⇡
ln
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2e��E
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+ O(↵s(µ)2) , (70)

In bT space

Bessel “K”
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to a Q-dependent normalization. Our task is to find a reasonable input K (kT;µQ0) parametrization that satisfies
Eq. (39) and also gives a good phenomenological description of cross sections in the region of Q ⇡ Q0 close to the input
scale. One way that K (kT;µ) can contribute to the evolution of W (Q ⇡ Q0, qT) is simply through a normalization.
To capture that behavior in Eq. (68), the model parametrization should include a term proportional to a �-function,

Kinput(kT;µQ0) / �(2)(kT) . (69)

This is an example of step A1 applied to K(kT;µQ0). But as step A2 prescribes, Kinput(kT;µQ0) also needs to match
the large kT perturbative description,

Kinput(kT;µQ0)
kT⇡Q0= K(1)(kT;µQ0) , (70)

where for now we work at order n = 1. We also know that

K(1)(kT;µQ0) =
↵s(µQ0)CF

⇡2

1

k2
T

. (71)

(For a textbook derivation of Eq. (71), see section 13.10.2 of [3]. Also see Ref. [90] for earlier calculations. For higher
order K̃ expressions, see also [91–94], and see Ref. [41] for translating between di↵erent notations. See also [95] for
more discussion of the operator definition.)

As kT decreases below Q0, Eq. (70) needs to transition into a nonperturbative eparametrization in a way that is still
phenemonologically successful at describing Q ⇡ Q0 behavior. Existing evidence, both theoretical and phenomeno-
logical [76, 77, 96] and from lattice calculations [97], points toward a shape for TMD pdfs and ↵s that varies only
very weakly with scale in the Q ⇡ Q0 region. Our trial parametrization will reproduce this behavior if it is fairly
sharply peaked around kT ⌧ Q0 and then falls o↵ rapidly for larger kT. Equation (68) with K(1)(kT;µQ0) captures
that general behavior if we make the replacement k2

T
! k2

T
+m2

K and keep the nonperturbative parameter mK small

relative to Q0. Thus, we obtain a reasonable candidate for a K(1)

input
(kT;µQ0) parametrization that satisfies Eq. (39)

if we combine the k2
T
! k2

T
+m2

K modification of Eq. (71) with Eq. (69):

K(1)

input
(kT;µQ0) =

↵s(µQ0)CF

⇡2

1

k2
T
+m2

K

+ CK�(2)(kT) . (72)

The transformation into coordinate space is

K̃(1)

input
(bT;µQ0) =

2↵s(µQ0)CF

⇡
K0(bTmK) + CK . (73)

Satisfying both Eq. (41) and Eq. (47) with the MS expression for �(1)

K requires

CK =
2↵s(µQ0)CF

⇡
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✓
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◆
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So the input CS kernel is just the single parameter function

K̃(1)
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
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✓
mK

µQ0

◆�
. (75)

Note that the same mass mK appears in Eq. (74) and the first term of Eq. (75) reproduces the known lowest order
coordinate space K̃(1)(bT;µQ0) in MS at small bT:

lim
bT!0
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. (76)
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K(n)
input

(kT;µQ0) ⌘

8
><

>:

K(n) (kT;µQ0) if kT & µQ0 ,

nonperturbative parametrization otherwise

. (39)

Now the “(n)” superscript on the left side of this equation refers to the perturbative order of the large kT tail in this
input nonperturbative parametrization. When we work with Eq. (20), we will need its coordinate space version of the
CS kernel,

K̃(n)
input

(bT;µQ0) ⌘
Z

d2kT eikTbTK(n)
input

(kT;µQ0) . (40)

The scale-dependence of the exact K̃ is exactly bT-independent by the RG equation Eq. (18), so we will enforce the
condition that an nth-order parametrization satisfies Eq. (18) to order ↵s(µ)n, with only O

�
↵s(µ)n+1

�
errors,

dK̃(n)
input

(bT;µ)

d lnµ
= ��(n)

K (↵s(µ)) +O
�
↵s(µ)

n+1
�
. (41)

In Sec. VIIA we will provide an example of a specific trial functional form for Eq. (39). In general, however, any
phenomenologically successful parametrization that satisfies Eq. (39) and Eq. (41) is allowed. The parametrizations
in Eq. (39) and Eq. (40) are appropriate specifically when Q ⇡ Q0 such that only the region of 0 < kT . Q0 is
important.

However, it is a poor approximation to the true K̃(bT;µQ0) in the kT � Q0 region, and this matters if we evolve
to large enough Q for contributions from kT � Q0 to become significant. In Eq. (40), the large errors manifest
themselves as higher order terms logarithmic in bTµQ0 , which diverge in the bT ! 0 limit. There needs to be a change
in renormalization scale. Thus, in coordinate space the more common choice for the RG scale is µ = C1/bT, with
C1 being an order unity proportionality constant. The truncated RG improved perturbation theory then increases in
accuracy as bT ! 0.

To obtain a K (kT;µQ0) parametrization that works well for all Q, we need steps that combine the stability of
fixed scale calculations in the Q ⇡ Q0, kT ⇡ Q0 region with the RG-improved calculations that optimize for the
bT ! 0 limit. Specifically, we need to perform a scale transformation on the above parametrization using the RG
equation at a bT somewhat below 1/Q0. If we implement this scale transformation at small enough bT, it will have a
negligible e↵ect on phenomenology that uses the above parametrization near Q ⇡ Q0 where the bT ⌧ 1/Q0 is strongly
suppressed. Therefore, fits that use Eq. (39) will be largely una↵ected. And, if the transformation takes place in a
range of bT at least comparable to . 1/Q0, then its overall e↵ect will only appear at order n + 1 or higher, so the
e↵ect of the transformation will always be one order higher in perturbation theory than the working order. So, the
transformation will ensure an accurate treatment of evolution to large Q in any subsequent steps. We will show how
this works in detail below.

The first step in implementing the scale transformation is to define a bT-dependent mass scale, which we will call
Q0(bT), that smoothly transitions between Q0 and a 1/bT-dependence in the region just below bT ⇡ 1/Q0. Specifically,

Q0(bT) =

⇢
C1/bT bT ⌧ C1/Q0 ,

Q0 otherwise ,
(42)

where C1 is an order unity numerical constant, typically taken to be C1 = 2e��E . When bT is comparable to C1/Q0,
the scales Q0 and C1/bT are numerically similar, so any sensitivity to the di↵erence between the two scale is a higher
order e↵ect that can be reduced by including higher orders in perturbation theory. Therefore, the exact form of
Q0(bT) is arbitrary so long as it provides a reasonably smooth interpolation between the Q0 and C1/bT behavior at
large and small bT. Some example suggestions for Q0(bT), which we will call the transformation function, are shown
in Appendix C.

Next, we need to combine this with the RG equation Eq. (18), whose exact solution is

K̃(bT;µ) = K̃(bT;µi)�
Z µ

µi

dµ0

µ0 �K(↵s(µ
0)) . (43)

Here, µi is an arbitrary initial scale. To make it useful in applications of Eq. (20), let us evolve from an initial scale
µi = µQ0

(where µQ0
= C2Q0) so that the right side contains K̃(bT;µQ0

):

K̃(bT;µ) = K̃(bT;µQ0
)�

Z µ

µQ0

dµ0

µ0 �K(↵s(µ
0)) . (44)

Expressions useful for pheno at Q ≈ Q0
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B. The CS kernel: input scale parametrization

Next, we discuss the parametrization that we will use for the CS kernel through O (↵s(µ)). The analogous O
�
↵s(µ)2

�

expressions are also straightforward to write down, but we will not use them for applications in this paper, so we
include them in Appendix A for use in future work. The perturbative CS kernel in coordinate space is

K̃(bT; µ) = �
2CF ↵s(µ)

⇡
ln

✓
bTµ

2e��E

◆
+ O(↵s(µ)2) , (72)

with anomalous dimension

�K(↵s(µ)) =
2CF ↵s

⇡
+ O

�
↵s(µ)2

�
. (73)

The HSO approach requires the renormalization group equation to be exactly satisfied through the working order of
↵s(µ) over the full range of 0 < bT < 1 (See Sec. IV, Eq.(41) of [1]). In our case, we work at O (↵s(µ)) so we need

d

d ln µ
K̃(bT; µ) = ��K(↵s(µ)) = �

2CF ↵s(µ)

⇡
+ O

�
↵s(µ)2

�
. (74)

The input transverse momentum space CS kernel is

Kinpt(kT; µQ0) = A(1)

K (µQ0)
1

k2

T
+ m2

K

+ Kcore(kT) + DK(µQ0)�
(2) (kT) , (75)

where

A(1)

K (µQ0) =
↵s(µQ0)CF

⇡2
. (76)

The function Kcore(kT) is analogous to fcore,i/p(x, kT; Q2
0
). It is used to describe the very large bT behavior, and it is

required to vanished like a power at small bT. It will generally introduce at least one extra parameter beyond mK . In
coordinate space, we will demand that K̃(bT; µQ0) approach a negative constant bK (up to perturbative corrections)
as bT ! 1 (see the discussion in Sec. VII of Ref. [36]). We will use a Gaussian for the core,

Kcore(kT) =
bK

4⇡m2

K

e
� k2

T
4m2

K . (77)

The last term in Eq. (75) has a DK(µQ0), which is

DK(µQ0) = �bK +
2↵s(µQ0)CF

⇡
ln

✓
mK

µQ0

◆
. (78)

Transforming Eq. (75) into coordinate space gives

K̃inpt(bT; µQ0) = 2⇡A(1)

K (µQ0)K0 (mKbT) + bKe�m2
Kb2T + DK(µQ0) . (79)

It is straightforward to verify that Eq. (79) equals Eq. (72) when mkbT ! 0. Using

dA(1)

K (µQ0)

d ln µQ0

= O
�
↵s(µQ0)

2
�

(80)

also confirms that it is consistent with Eq. (74) for all bT.
The large-bT limit of the CS kernel in Eq. (79) is

lim
bT!1

K̃inpt(bT; µQ0) = DK(µQ0) . (81)

The equations above that relate objects like K̃inpt(bT; µQ0) and �K(↵s(µ)) become exact if the O
�
↵s(µQ0)

2
�

correc-
tions are systematically dropped everywhere. It is noteworthy that the general behavior of this parametrization is
consistent with trends in recent lattice QCD calculations – see, for example, Fig. 7 of [37].

Perturbative tail Evolution equation valid 
Up to higher corrections

13

B. The CS kernel: input scale parametrization

Next, we discuss the parametrization that we will use for the CS kernel through O (↵s(µ)). The analogous O
�
↵s(µ)2

�

expressions are also straightforward to write down, but we will not use them for applications in this paper, so we
include them in Appendix A for use in future work. The perturbative CS kernel in coordinate space is

K̃(bT; µ) = �
2CF ↵s(µ)

⇡
ln

✓
bTµ

2e��E

◆
+ O(↵s(µ)2) , (72)

with anomalous dimension

�K(↵s(µ)) =
2CF ↵s

⇡
+ O

�
↵s(µ)2

�
. (73)

The HSO approach requires the renormalization group equation to be exactly satisfied through the working order of
↵s(µ) over the full range of 0 < bT < 1 (See Sec. IV, Eq.(41) of [1]). In our case, we work at O (↵s(µ)) so we need

d

d ln µ
K̃(bT; µ) = ��K(↵s(µ)) = �

2CF ↵s(µ)

⇡
+ O

�
↵s(µ)2

�
. (74)

The input transverse momentum space CS kernel is

Kinpt(kT; µQ0) = A(1)

K (µQ0)
1

k2

T
+ m2

K

+ Kcore(kT) + DK(µQ0)�
(2) (kT) , (75)

where

A(1)

K (µQ0) =
↵s(µQ0)CF

⇡2
. (76)

The function Kcore(kT) is analogous to fcore,i/p(x, kT; Q2
0
). It is used to describe the very large bT behavior, and it is

required to vanished like a power at small bT. It will generally introduce at least one extra parameter beyond mK . In
coordinate space, we will demand that K̃(bT; µQ0) approach a negative constant bK (up to perturbative corrections)
as bT ! 1 (see the discussion in Sec. VII of Ref. [36]). We will use a Gaussian for the core,

Kcore(kT) =
bK

4⇡m2

K

e
� k2

T
4m2

K . (77)

The last term in Eq. (75) has a DK(µQ0), which is

DK(µQ0) = �bK +
2↵s(µQ0)CF

⇡
ln

✓
mK

µQ0

◆
. (78)

Transforming Eq. (75) into coordinate space gives

K̃inpt(bT; µQ0) = 2⇡A(1)

K (µQ0)K0 (mKbT) + bKe�m2
Kb2T + DK(µQ0) . (79)

It is straightforward to verify that Eq. (79) equals Eq. (72) when mkbT ! 0. Using

dA(1)

K (µQ0)

d ln µQ0

= O
�
↵s(µQ0)

2
�

(80)

also confirms that it is consistent with Eq. (74) for all bT.
The large-bT limit of the CS kernel in Eq. (79) is

lim
bT!1

K̃inpt(bT; µQ0) = DK(µQ0) . (81)

The equations above that relate objects like K̃inpt(bT; µQ0) and �K(↵s(µ)) become exact if the O
�
↵s(µQ0)

2
�

correc-
tions are systematically dropped everywhere. It is noteworthy that the general behavior of this parametrization is
consistent with trends in recent lattice QCD calculations – see, for example, Fig. 7 of [37].



✴HSO Strategy 

18



19

HSO Strategy.

-Use theoretical constraints, don’t trust the 
 fit will do this job by itself.

-Check/improve constraints 

-Prioritize the role of lower scale data
 (more information about intrinsic kT)

-Emphasize the predictive aspect of factorization     
 theorems
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FIG. 3: The x vs. Q
2 coverage spanned by the experimental data considered in this analysis (see also Tab. II and

Tab. III).

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)

with fixed parameters c1 = 0.2, c2 = 0.5 and c3 = 0.3. This choice is more restrictive than a similar one made
in Ref. [5], but less restrictive than the one made in Ref. [22]. It allows for many data points with |PhT | ⌧ Q

but also with 0.2Q < |qT | < Q. In Sec. IV, we will discuss variations of the baseline SIDIS cut in Eq. (54) that
give phenomenological support to our choice.

As for the datasets included in the present analysis, the main di↵erence with Ref. [5] is that we include the
new release of COMPASS data [68]. In this dataset, the vector–boson contributions have been subtracted. For

Plot from (MAP collaboration): 
JHEP 10 (2022) 127
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Fit 
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(for now)

Emphasize the predictive aspect of factorization     
 theorems
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and with the O (↵s) evolution kernels. If the evolution kernels are expressed through order O (↵s(µ)) and Q0 is held
fixed, then the µQ0 and Q0 evolution in Eq. (85) is exact – there is no O

�
↵s(µQ0)

2
�

error term. A similar statement
applies to the evolution in Eq. (83).

The full kT-space parametrization follows from Fourier-Bessel transforming Eq. (85) into kT space. Evolving requires
the kernel �(↵s(µ); 1) in MS renormalization which is

�(↵s(µ); 1) =
3CF ↵s(µ)

2⇡
+ O

�
↵s(µ)2

�
. (86)

Notice that, having fixed the parametrizations Eq. (83) and Eq. (85) at the input scale, it becomes almost trivial
to evolve the structure functions like Eq. (44) to higher Q. This is the starting point for our implementation of
phenomenological applications. Although this presentation adheres very closely to a TMD parton model picture,
it has a somewhat di↵erent surface appearance relative to many typical CSS and related treatments as they are
applied in high energy applications. However, the translation between the two ways of organizing TMD factorization
is quite straightforward – see Appendix B for a review of the steps and for a set of formulas that translate the above
organization of expressions into the familiar “g-functions” of past implementations.

V. FITTING MODERATE Q DRELL-YAN MEASUREMENTS

In our first confrontation with data, we start by considering Drell-Yan scattering measurements at moderate hard
scales. We focus on the E288 [13] and E605 [14] experiments and perform independent fits. In each case, we use
Minuit2 [38] to minimize the quantity

�2 =
(1 � N)2

�2N
+

X

i

(di � ti/N)2

�2

i

, (87)

where di, �i are the data points and their (uncorrelated) uncertainties, ti is the corresponding theory calculation, and
N is an overall normalization, a nuisance parameter, common to all the points in a given experiment. The first term is
the usual penalty related to N(see for instance [39–41]), which depends on the normalization uncertainty �N reported
in each experiment. For all of our fits, we will calculate cross sections in the TMD approximation, neglecting for now
contributions of the so-called Y term. Thus, we will consistently impose the kinematical cut

qT  0.2 Q , (88)

which is typical of TMD analyses. We focus our attention to the region away from the ⌥ resonances, so we exclude
the data bins with 9 GeV < Q < 11 GeV for E288, and 9.5 GeV < Q < 10.5 GeV for E605.

Tables reporting the minimal values of our model parameters will be presented in the following sections, as well as
the reduced �2

�2

dof
=�2/(n � p � 1) , (89)

with n the number of fitted data points and p the number of free model parameters. The -1 in the denominator
of Eq. (89) accounts for the estimation of the nuisance parameter N . We will refrain from displaying correlation
matrices for the parameters, as they do not play a central role in our discussions. Instead, uncertainty bands in
the Hessian approximation will be shown in comparisons to data (see, for instance, [42]). For this, we determine
the p independent “directions” in parameter space that diagonalize the Hessian matrix to obtain p eigensets, and
compute asymmetric errors as in Eqs. (10-12) of Ref. [43]. In all fits, we will have p = 3, corresponding to 3 eigensets.
Furthermore, we choose ��2 = 3.53 which corresponds to a 1� confidence region for varying 3 parameters, under the
usual regularity conditions of Wilks’ theorem [44]. For the MS collinear pdfs, we use the NLO extraction MMHT2014

of Ref. [45], accessible through LHAPDF6 [43].

A. Fixed-target data sets

The E288 experiment [13] measures final-state muon pairs for the scattering of protons o↵ a fixed heavy target.
The relevant observable is the qT-dependent cross section in Eq. (30), integrated over intervals of Q. Data were taken

Simple minimization procure

(Produce errors with eigensets) 

Nuisance parameter 
for normalization 
uncertainty.
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of Ref. [45], accessible through LHAPDF6 [43].

A. Fixed-target data sets

The E288 experiment [13] measures final-state muon pairs for the scattering of protons o↵ a fixed heavy target.
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for three di↵erent values of the beam energy, Ebeam = 200, 300, 400 GeV. The experimental collaboration provides
the following information regarding kinematic variables:

qT : qmin

T
, qmax

T
, hqTi =

1

2

�
qmin

T
+ qmax

T

�
, �qT = 0.2 GeV

yh : hyhi (for each Ebeam) (90)

Q : Qmin, Qmax .

For this observable, we evaluate Eq. (30) at the experimental average values of the dimuon rapidity hyhi and hqTi,
and compute only the integral over Q2

OE288 =
1

⇡

Z
dQ2

d3�

dq2T dyh dQ2

�����yh=hyhi
qT=hqTi

, (91)

where the factor of 1/⇡ comes from averaging over the azimuthal angle of the dimuon’s momentum. The E605 [14]
experiment performs the same measurement with only a few di↵erences: i) Ebeam = 800 GeV, ii) large-Q bins are
wider with improved statistics, iii) instead of hyhi, there is one bin in xF

xF : xFmin = �0.1 , xFmax = 0.2 , hxFi = 0.1 ,

but otherwise, the same information as in Eq. (90) is provided. For the E605 experiment we compute

OE605 =
1

⇡

Z
dQ2

d3�

dq2
T

dyh dQ2

����� yh=yh
qT=hqTi

, with yh = arcsinh

 p
s
p

Q2 + hqTi2

2Q2
hxFi

!
. (92)

For our purposes, it is su�cient to work within the approximations of Eq. (91) and Eq. (92). Future refinements will
include the explicit calculation of over-the-bin averages by integrating numerically over each bin of yh(xF) and qT.

Both experiments provide the cross section per nucleon, so we have to consider this in our calculations. We use a
simplified model of the relationship between nuclear and proton TMD pdfs for a target with atomic number Z and
total nucleon number A

fi/t =
Z

A
fi/p +

A � Z

A
fi/n , (93)

where the neutron TMD fi/n is related to fi/p by isospin symmetry, as it is usually done (see for instance [46, 47]).
The simple treatment of Eq. (93) is a useful point of departure for future refinements.

For both data sets we will start by using Z = 29, A = 63 for a copper target. Note, however, that the E288
experiment also uses a platinum target, but the proportion of di↵erent nuclei, or its e↵ect on the observables, is not
clear2.

B. Gaussian fits

For the nonperturbative description of very small transverse momentum, we start with the Gaussian models of
Eq. (65) and set the nonperturbative masses to

MF ! M0 + M1 log(1/x) , mi,p,A = mi,p,B = mi,p,L = mg,p = 0.3 GeV , (94)

where M0, M1 are two free parameters of the fit. Our choice of logarithmic dependence on x is typical of some early
phenomenological analyses within the CSS formalism. (see, for instance, Ref. [48].) For the nonperturbative behavior
of the CS kernel we use Eq. (77). There, we set the mass parameter to mK = 0.3 GeV and fit only bK . In total
we have 3 free parameters and one additional nuisance normalization for each fit. In keeping with the recipe from
Sect. VI of [1], we compute the Q0 = 4GeV input scale cross section using the functions from Eq. (53) and Eq. (75),

2 One might consider di↵erent scenarios with either copper, platinum or both targets and perform tests as we propose here. However, for
this article we assume a copper target.

Simple treatment of target
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a Gaussian shape,

fGauss

core,i/p(x,kT; Q2

0
) =

e�k2
T/M2

F

⇡M2

F

, (65)

where MF is a model parameter. The second core parametrization is the spectator model in Eq. (44) of Ref. [31],

fSpect

core,i/p(x,kT; Q2

0
) =

1

⇡

6 L6

L2 + 2(mq + x Mp)2
k2

T
+ (mq + x Mp)2

(k2

T
+ L2)

4
, L2 = (1 � x)⇤2 + xM2

X � x(1 � x)M2

p , (66)

where the quantities mq, MX , ⇤ are model parameters and Mp is the proton mass. The overall factors in Eqs. (65)–(66)
are chosen so that the core functions are normalized to unity, i.e. Ni/p = 1.

In the future, more sophisticated modeling may replace Eqs. (65)–(66). For example, the core models might be
guided by work in Refs. [31–34]. Developments in lattice QCD [35] may also soon provide guidance.

3. Coordinate space representation

Since TMD evolution is usually performed in coordinate space, it will be convenient to write the coordinate space
versions of the above parametrizations. They are,

f̃inpt,j/p(x, bT; µQ0 , Q
2

0
) =

Z
d2kT e�ikT·bTfinpt,j/p(x,kT; µQ0 , Q

2

0
)

= K0 (mi,pbT) Ai/p(x; µQ0) + K0 (mi,pbT) ln

✓
Q2

0
bT

2mi,pe��E

◆
Bi/p(x; µQ0)

+ K0 (mg,pbT) Ag
i/p(x; µQ0) + Ci/p f̃core,i/p(x, bT; Q2

0
) , (67)

f̃inpt,j/p(x, bT; µQ0 , Q
2

0
) ! f̃OPE,j/p(x, bT; µQ0 , Q

2

0
) (68)

(bT ! 0) (69)

with

f̃Gauss

core,i/p(x, bT; Q2

0
) = e�b2TM2

F/4 ,

f̃Spectator

core,i/p (x, bT; Q2

0
) =

1

4

✓
(mq + xMp)2 � L2

2(mq + xMp)2 + L2

◆
(LbT)3 K3(LbT) +

3

2

✓
L2

2(mq + xMp)2 + L2

◆
(LbT)2 K2(LbT) ,

(70)

where K0, K2 and K3 are modified Bessel functions of the second kind.
As anticipated, Eq. (67) matches the O (↵s) operator product expansion (OPE) for small transverse sizes bT ! 0,

up to errors suppressed by powers of bT. Since K0(mbT ) = � ln (mbT /2e��E ) + O(b2T m2) and f̃core,i/p = 1 + O (ba
T )

for a > 0 (independently of which core parametrization is considered), the small-bT behavior of Eq. (67) is

f̃j/p(x, bT; µQ0 , Q
2

0
) ! fi/p(x; µQ0) �

⇣
Ai/p(x; µQ0) + Ag

i/p(x; µQ0)
⌘

ln

✓
bTµQ0

2e��E

◆

� Bi/p(x; µQ0)

"
ln2

✓
bTµQ0

2e��E

◆
+ ln

✓
bTµQ0

2e��E

◆
ln

 
Q2

0

µ2

Q0

!#

+

(
X

i0

�i0i[C
i/i0

�
⌦ fi0/p](x; µQ0) + [Ci/g

�
⌦ fg/p](x; µQ0)

)
+ O

�
b2
T
m2
�

, (71)

where, crucially, all the dependence on the masses mi,p has been cancelled by the logarithms appearing in the
expression for the coe�cient Ci/p, defined in Eq. (57).
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B. The CS kernel: input scale parametrization

Next, we discuss the parametrization that we will use for the CS kernel through O (↵s(µ)). The analogous O
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�

expressions are also straightforward to write down, but we will not use them for applications in this paper, so we
include them in Appendix A for use in future work. The perturbative CS kernel in coordinate space is

K̃(bT; µ) = �
2CF ↵s(µ)

⇡
ln

✓
bTµ

2e��E

◆
+ O(↵s(µ)2) , (72)

with anomalous dimension

�K(↵s(µ)) =
2CF ↵s

⇡
+ O

�
↵s(µ)2

�
. (73)

The HSO approach requires the renormalization group equation to be exactly satisfied through the working order of
↵s(µ) over the full range of 0 < bT < 1 (See Sec. IV, Eq.(41) of [1]). In our case, we work at O (↵s(µ)) so we need

d

d ln µ
K̃(bT; µ) = ��K(↵s(µ)) = �

2CF ↵s(µ)

⇡
+ O

�
↵s(µ)2

�
. (74)

The input transverse momentum space CS kernel is

Kinpt(kT; µQ0) = A(1)

K (µQ0)
1

k2

T
+ m2

K

+ Kcore(kT) + DK(µQ0)�
(2) (kT) , (75)

where

A(1)

K (µQ0) =
↵s(µQ0)CF

⇡2
. (76)

The function Kcore(kT) is analogous to fcore,i/p(x, kT; Q2
0
). It is used to describe the very large bT behavior, and it is

required to vanished like a power at small bT. It will generally introduce at least one extra parameter beyond mK . In
coordinate space, we will demand that K̃(bT; µQ0) approach a negative constant bK (up to perturbative corrections)
as bT ! 1 (see the discussion in Sec. VII of Ref. [36]). We will use a Gaussian for the core,

Kcore(kT) =
bK

4⇡m2

K

e
� k2

T
4m2

K . (77)

The last term in Eq. (75) has a DK(µQ0), which is

DK(µQ0) = �bK +
2↵s(µQ0)CF

⇡
ln

✓
mK

µQ0

◆
. (78)

Transforming Eq. (75) into coordinate space gives

K̃inpt(bT; µQ0) = 2⇡A(1)

K (µQ0)K0 (mKbT) + bKe�m2
Kb2T + DK(µQ0) . (79)

It is straightforward to verify that Eq. (79) equals Eq. (72) when mkbT ! 0. Using

dA(1)

K (µQ0)

d ln µQ0

= O
�
↵s(µQ0)

2
�

(80)

also confirms that it is consistent with Eq. (74) for all bT.
The large-bT limit of the CS kernel in Eq. (79) is

lim
bT!1

K̃inpt(bT; µQ0) = DK(µQ0) . (81)

The equations above that relate objects like K̃inpt(bT; µQ0) and �K(↵s(µ)) become exact if the O
�
↵s(µQ0)

2
�

correc-
tions are systematically dropped everywhere. It is noteworthy that the general behavior of this parametrization is
consistent with trends in recent lattice QCD calculations – see, for example, Fig. 7 of [37].
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for three di↵erent values of the beam energy, Ebeam = 200, 300, 400 GeV. The experimental collaboration provides
the following information regarding kinematic variables:

qT : qmin

T
, qmax

T
, hqTi =

1

2

�
qmin

T
+ qmax

T

�
, �qT = 0.2 GeV

yh : hyhi (for each Ebeam) (90)

Q : Qmin, Qmax .

For this observable, we evaluate Eq. (30) at the experimental average values of the dimuon rapidity hyhi and hqTi,
and compute only the integral over Q2

OE288 =
1

⇡

Z
dQ2

d3�

dq2T dyh dQ2

�����yh=hyhi
qT=hqTi

, (91)

where the factor of 1/⇡ comes from averaging over the azimuthal angle of the dimuon’s momentum. The E605 [14]
experiment performs the same measurement with only a few di↵erences: i) Ebeam = 800 GeV, ii) large-Q bins are
wider with improved statistics, iii) instead of hyhi, there is one bin in xF

xF : xFmin = �0.1 , xFmax = 0.2 , hxFi = 0.1 ,

but otherwise, the same information as in Eq. (90) is provided. For the E605 experiment we compute

OE605 =
1

⇡

Z
dQ2

d3�

dq2
T

dyh dQ2

����� yh=yh
qT=hqTi

, with yh = arcsinh

 p
s
p

Q2 + hqTi2

2Q2
hxFi

!
. (92)

For our purposes, it is su�cient to work within the approximations of Eq. (91) and Eq. (92). Future refinements will
include the explicit calculation of over-the-bin averages by integrating numerically over each bin of yh(xF) and qT.

Both experiments provide the cross section per nucleon, so we have to consider this in our calculations. We use a
simplified model of the relationship between nuclear and proton TMD pdfs for a target with atomic number Z and
total nucleon number A

fi/t =
Z

A
fi/p +

A � Z

A
fi/n , (93)

where the neutron TMD fi/n is related to fi/p by isospin symmetry, as it is usually done (see for instance [46, 47]).
The simple treatment of Eq. (93) is a useful point of departure for future refinements.

For both data sets we will start by using Z = 29, A = 63 for a copper target. Note, however, that the E288
experiment also uses a platinum target, but the proportion of di↵erent nuclei, or its e↵ect on the observables, is not
clear2.

B. Gaussian fits

For the nonperturbative description of very small transverse momentum, we start with the Gaussian models of
Eq. (65) and set the nonperturbative masses to

MF ! M0 + M1 log(1/x) , mi,p,A = mi,p,B = mi,p,L = mg,p = 0.3 GeV , (94)

where M0, M1 are two free parameters of the fit. Our choice of logarithmic dependence on x is typical of some early
phenomenological analyses within the CSS formalism. (see, for instance, Ref. [48].) For the nonperturbative behavior
of the CS kernel we use Eq. (77). There, we set the mass parameter to mK = 0.3 GeV and fit only bK . In total
we have 3 free parameters and one additional nuisance normalization for each fit. In keeping with the recipe from
Sect. VI of [1], we compute the Q0 = 4GeV input scale cross section using the functions from Eq. (53) and Eq. (75),

2 One might consider di↵erent scenarios with either copper, platinum or both targets and perform tests as we propose here. However, for
this article we assume a copper target.
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for three di↵erent values of the beam energy, Ebeam = 200, 300, 400 GeV. The experimental collaboration provides
the following information regarding kinematic variables:
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Q : Qmin, Qmax .

For this observable, we evaluate Eq. (30) at the experimental average values of the dimuon rapidity hyhi and hqTi,
and compute only the integral over Q2

OE288 =
1

⇡

Z
dQ2

d3�

dq2T dyh dQ2

�����yh=hyhi
qT=hqTi

, (91)

where the factor of 1/⇡ comes from averaging over the azimuthal angle of the dimuon’s momentum. The E605 [14]
experiment performs the same measurement with only a few di↵erences: i) Ebeam = 800 GeV, ii) large-Q bins are
wider with improved statistics, iii) instead of hyhi, there is one bin in xF

xF : xFmin = �0.1 , xFmax = 0.2 , hxFi = 0.1 ,

but otherwise, the same information as in Eq. (90) is provided. For the E605 experiment we compute

OE605 =
1

⇡

Z
dQ2

d3�

dq2
T

dyh dQ2

����� yh=yh
qT=hqTi

, with yh = arcsinh

 p
s
p

Q2 + hqTi2

2Q2
hxFi

!
. (92)

For our purposes, it is su�cient to work within the approximations of Eq. (91) and Eq. (92). Future refinements will
include the explicit calculation of over-the-bin averages by integrating numerically over each bin of yh(xF) and qT.

Both experiments provide the cross section per nucleon, so we have to consider this in our calculations. We use a
simplified model of the relationship between nuclear and proton TMD pdfs for a target with atomic number Z and
total nucleon number A

fi/t =
Z

A
fi/p +

A � Z

A
fi/n , (93)

where the neutron TMD fi/n is related to fi/p by isospin symmetry, as it is usually done (see for instance [46, 47]).
The simple treatment of Eq. (93) is a useful point of departure for future refinements.

For both data sets we will start by using Z = 29, A = 63 for a copper target. Note, however, that the E288
experiment also uses a platinum target, but the proportion of di↵erent nuclei, or its e↵ect on the observables, is not
clear2.

B. Gaussian fits

For the nonperturbative description of very small transverse momentum, we start with the Gaussian models of
Eq. (65) and set the nonperturbative masses to

MF ! M0 + M1 log(1/x) , mi,p,A = mi,p,B = mi,p,L = mg,p = 0.3 GeV , (94)

where M0, M1 are two free parameters of the fit. Our choice of logarithmic dependence on x is typical of some early
phenomenological analyses within the CSS formalism. (see, for instance, Ref. [48].) For the nonperturbative behavior
of the CS kernel we use Eq. (77). There, we set the mass parameter to mK = 0.3 GeV and fit only bK . In total
we have 3 free parameters and one additional nuisance normalization for each fit. In keeping with the recipe from
Sect. VI of [1], we compute the Q0 = 4GeV input scale cross section using the functions from Eq. (53) and Eq. (75),

2 One might consider di↵erent scenarios with either copper, platinum or both targets and perform tests as we propose here. However, for
this article we assume a copper target.

Other small model 
masses fixed to 

Free parameters M0, M1 , bk
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Example I: fit E288 (only)  vs  fit E605 (only)
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with perturbative parts at O(↵s), and refrain from implementing the RG improvements of Sec. IV C until a later
stage when we evolve to larger Q. Best-fit values of the parameters and �2 are reported in Table I. Comparisons
to fitted data are presented in Fig. ?? and Fig. ??, where both central lines and uncertainty bands are shown. We
have confirmed that switching from input to RG improved TMD pdfs is phenomenologically insignificant close to
the input scale, by refitting the �2 including RG improvements. Di↵erences in the minimal �2 is about 0.15 % and
parameter values are una↵ected. We also checked that refitting with RG improvements, but increasing a in the scale
transformation of Eq. (82) by a factor of 2, the e↵ect on the minimal �2 appears only in the fourth digit. See also
Fig. 8 of [1].

Gaussian fits

E288 (130 pts.) E605 (52 pts.)

�
2
dof 1.04 1.68

M0 (GeV) 0.0576 0.404

M1 (GeV) 0.403 0.290

bK 2.12 0.744

N(nuisance) 1.29 1.28

TABLE I: Minimal parameters obtained by fitting E288 and E605 data independently, using the models of Eq. (65) and Eq. (77).
Parameters are correlated, but we do not show correlation matrices. Uncertainties are calculated by varying parameters along
the “plus” and “minus” directions of the 3 eigensets in each case.

C. Spectator model fit

We now turn to the model of Eq. (66) for the TMD pdf core function. In contrast to the Gaussian case, this
model implies its own explicit x-dependence. In principle, Eq. (66) depends on 3 mass parameters, mq, ⇤ and MX .
But to make a more direct comparison to the Gaussian case, i.e. by keeping the same number of parameters, we set
the “quark” mass to mq = 0, and leave ⇤ and MX free in our fit. For the spectator model case, we present the fit
for the E288 set only, since we find that the E605 data alone are not su�cient to constrain both the CS kernel and
the TMD pdf. Apart from the use of the spectator model, all of our choices are the same as in the Gaussian case,
namely, we use Eq. (77) for the CS kernel with fixed mK = 0.3 GeV and with all other nonperturbative masses in
Eq. (53) also set to m = 0.3 GeV. Results are shown in Table II. We note that the minimal �2

dof
is the same as in

the Gaussian case to three significant figures. Although we do not show comparison to the fitted data, results are
essentially identical as in the Gaussian case, Fig. ??. Finally, using the parameter values of Table II, we have checked
that RG improvements are phenomenologically irrelevant, as for the Gaussian case. This time, the variation of the
minimal �2 is about 0.26 %.

Spectator model fit

E288 (130 pts.)

�
2
dof 1.04

⇤ (GeV) 0.801

MX (GeV) 0.438

bK 1.90

N(nuisance) 1.23

TABLE II: Minimal parameters obtained by fitting E288 data with the models of Eq. (66) and Eq. (77). Parameters are
correlated, but we do not show correlation matrices. Uncertainties are calculated by varying parameters along the “plus” and
“minus” directions of the 3 eigensets.

D. Results for TMD pdfs

The behavior of the TMD pdfs determined by our fit to E288 experimental data are shown in Fig. ??. Here we only
show results from the Gaussian model Eq. (65) and postpone comparisons to the spectator model until Sec. VIII. The
use of the HSO approach has guaranteed that the TMD pdf of Eq. (53) (without RG improvements) asymptotes to
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FIG. 4: Comparison of data from the E605 experiment [14] to best-fit central lines and hessian bands using the HSO approach
with a Gaussian core model. Vertical ranges are di↵erent for each panel, so tick marks are not shown. The vertical scale is
adjusted in each plot for better visibility. The model assumptions and calculation of bands are the same as in Fig. 3. Both
theory central lines and bands are multiplied by the corresponding minimal value for the nuisance parameter. For the central
line this is N = 1.28.

three significant figures. Although we do not show comparison to the fitted data, results are essentially identical as in
the Gaussian case, Fig. 3. Finally, using the parameter values of Table II, we have checked that RG improvements are
phenomenologically irrelevant, as for the Gaussian case. This time, the variation of the minimal �2 is about 0.26%.

Spectator model fit

E288 (130 pts.)

�
2
dof 1.04

⇤ (GeV) 0.801

MX (GeV) 0.438

bK 1.90

N(nuisance) 1.23

TABLE II: Minimal parameters obtained by fitting E288 data with the models of Eq. (63) and Eq. (72). Parameters are
correlated, but we do not show correlation matrices. Uncertainties are calculated by varying parameters along the “plus” and
“minus” directions of the 3 eigensets.

D. Results for TMD pdfs

The behavior of the TMD pdfs determined by our fit to E288 experimental data are shown in Fig. 5. Here we only
show results from the Gaussian model Eq. (62) and postpone comparisons to the spectator model until Sec. VIII. The
use of the HSO approach has guaranteed that the TMD pdf of Eq. (50) (without RG improvements) asymptotes to
the perturbative tail in Eq. (47) at the input scale. This feature is preserved after implementing the RG improvements
of Eq. (78), as seen in the di↵erent panels of Fig. 5 (blue lines). Upon evolution to larger scales, such agreement is
improved for smaller values of x (top panels), as evidenced by the general trend of the TMD lines when compared
to the perturbative tail (dot-dashed lines) and, in particular, the relative position of their nodes. Recall that the
perturbative tails are determined entirely within collinear factorization for k2

T
⇡ Q2, while the full TMD pdfs involve

evolution from the input scale, and as such the e↵ects of the CS kernel play a role in their profile. Therefore, the
observed agreement after evolution is not trivial. Note that for Q = 91GeV, in the top panels of Fig. 5, the solid lines
closely trace the behavior of the tail. At larger values of x (bottom panels), di↵erences between the TMD pdfs and
the perturbative tail are more visible, although still in reasonable agreement. Improvements to the parametrization
are certainly possible, e.g. by carefully tuning the parameter a in the scale transformation of Eq. (77) or by including
higher orders in ↵s, but we leave this for upcoming work. We stress that keeping track of how closely the extracted
TMD merges with the large-kT region is an important step in phenomenology. For instance, it can assist in preventing
the parametrizations from becoming excessively flexible.
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Gaussian fits

E288 (130 pts.) E605 (52 pts.)

�
2
dof 1.04 1.68

M0 (GeV) 0.0576 0.404

M1 (GeV) 0.403 0.290

bK 2.12 0.744

N(nuisance) 1.29 1.28

TABLE I: Minimal parameters obtained by fitting E288 and E605 data independently, using the models of Eq. (62) and Eq. (72).
Parameters are correlated, but we do not show correlation matrices. Uncertainties are calculated by varying parameters along
the “plus” and “minus” directions of the 3 eigensets in each case.
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FIG. 3: Comparison of data from the E288 Drell-Yan experiment [13] to the best-fit central lines using the HSO approach
with the Gaussian core model of Eq. (62). Vertical ranges are di↵erent for each panel, so tick marks are not shown. The
vertical scale is adjusted in each plot for better visibility. The nonperturbative x-dependence is parametrized by setting
MF ! M0 +M1 log(1/x) where both M0,M1 are free fit parameters. We have fixed the small masses in Eq. (50) to mi,p,A =
mi,p,B = mi,p,L = mg,p = 0.3GeV. The nonperturbative model for the large-bT CS-kernel is that of Eq. (72), for which we
fix mK = 0.3GeV and leave bK free. The perturbative coe�cients of Eqs. (34), (50) and (70) are calculated through O(↵s).
Uncertainty bands are calculated with 3 eigensets and with ��

2 = 3.53, as explained in the text. Both theory central lines and
bands are multiplied by the corresponding minimal value for the nuisance parameter. For the central line this is N = 1.29.

C. Spectator model fit

We now turn to the model of Eq. (63) for the TMD pdf core function. In contrast to the Gaussian case, this model
implies its own explicit x-dependence. In principle, Eq. (63) depends on 3 mass parameters, mq, ⇤ and MX . But
to make a more direct comparison to the Gaussian case, i.e. by keeping the same number of parameters, we set the
“quark” mass to mq = 0, and leave ⇤ and MX free in our fit. For the spectator model case, we present the fit for the
E288 set only, since we find that the E605 data alone are not su�cient to constrain both the CS kernel and the TMD
pdf. Apart from the use of the spectator model, all of our choices are the same as in the Gaussian case, namely, we
use Eq. (72) for the CS kernel with fixed mK = 0.3 GeV and with all other nonperturbative masses in Eq. (50) also set
to m = 0.3 GeV. Results are shown in Table II. We note that the minimal �2

dof
is the same as in the Gaussian case to

Example I: fit E288 (only)  vs  fit E605 (only)
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Example I: comparing postdictions
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FIG. 3: The x vs. Q
2 coverage spanned by the experimental data considered in this analysis (see also Tab. II and

Tab. III).

Table II summarizes all the DY datasets included in our analysis. For some DY datasets the experimental
observable is given within a fiducial region. This means that kinematic cuts on transverse momentum pT ` and
pseudo–rapidity ⌘` of the single final-state leptons are enforced (values reported in the next–to–last column
of Tab. II). For more details we refer the reader to Ref. [7]. The second column of Tab. II reports, for each
experiment, the number of data points (Ndat) that survive the kinematic cuts. The total number of DY data
points considered in this work is 484. Note that for E605 and E288 at 400 GeV we have excluded the bin in
Q containing the ⌥ resonance (Q ' 9.5 GeV).

As can be seen in Tab. II, the cross sections are released in di↵erent forms: some of them are normalized to the
total (fiducial) cross section while others are not. When necessary, the required total cross section � is computed
using the code DYNNLO [35, 36] with the MMHT14 collinear PDF set, consistently with the perturbative order
of the di↵erential cross section (see also Tab. I). More precisely, the total cross section is computed at NLO for
NNLL accuracy, and NNLO for N3LL� accuracy. The values of the total cross sections at di↵erent orders can
be found in Table 3 of Ref. [7]. For the ATLAS dataset at 13 TeV, the value of the fiducial cross section is
694.3 pb at NLO and 707.3 pb at NNLO.

B. SIDIS

The identification of the TMD region in SIDIS is not a trivial task and may be subject to revision as new
data appears and the theoretical description is improved, as discussed in dedicated studies [38, 94, 95].

First of all, a cut in the virtuality Q of the exchanged photon is necessary to respect the condition Q � ⇤QCD

needed for perturbation theory to be applicable. In this way also mass corrections and higher twist corrections
can be neglected. In this work, we require that Q > 1.4 GeV. Studies of SIDIS in collinear kinematics employ
similar cuts [29, 96].

In order to restrict ourselves to the SIDIS current fragmentation region and interpret the observables in terms
of parton distribution and fragmentation functions, we apply a cut in the kinematic variable z by requiring
0.2 < z < 0.7. The lower limit is the same used in the study of collinear fragmentation functions [29, 96]. We
used a slightly more restrictive upper limit, to avoid contributions from exclusive channels and to focus on a
region where the collinear fragmentation functions have small relative uncertainties.

For what concerns the cut on transverse momentum, our baseline choice is

|PhT | < min
⇥
min[c1 Q, c2 zQ] + c3 GeV, zQ

⇤
, (54)

with fixed parameters c1 = 0.2, c2 = 0.5 and c3 = 0.3. This choice is more restrictive than a similar one made
in Ref. [5], but less restrictive than the one made in Ref. [22]. It allows for many data points with |PhT | ⌧ Q

but also with 0.2Q < |qT | < Q. In Sec. IV, we will discuss variations of the baseline SIDIS cut in Eq. (54) that
give phenomenological support to our choice.

As for the datasets included in the present analysis, the main di↵erence with Ref. [5] is that we include the
new release of COMPASS data [68]. In this dataset, the vector–boson contributions have been subtracted. For

Plot from (MAP collaboration): 
JHEP 10 (2022) 127
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Example II: fit E288 (only). Gaussian vs spectator 

Models for TMD core functions 
(same kernel as before)

12

a Gaussian shape,

fGauss

core,i/p(x,kT; Q2

0
) =

e�k2
T/M2

F

⇡M2

F

, (65)

where MF is a model parameter. The second core parametrization is the spectator model in Eq. (44) of Ref. [31],

fSpect
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0
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L2 + 2(mq + x Mp)2
k2

T
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T
+ L2)

4
, L2 = (1 � x)⇤2 + xM2

X � x(1 � x)M2

p , (66)

where the quantities mq, MX , ⇤ are model parameters and Mp is the proton mass. The overall factors in Eqs. (65)–(66)
are chosen so that the core functions are normalized to unity, i.e. Ni/p = 1.

In the future, more sophisticated modeling may replace Eqs. (65)–(66). For example, the core models might be
guided by work in Refs. [31–34]. Developments in lattice QCD [35] may also soon provide guidance.

3. Coordinate space representation

Since TMD evolution is usually performed in coordinate space, it will be convenient to write the coordinate space
versions of the above parametrizations. They are,

f̃inpt,j/p(x, bT; µQ0 , Q
2

0
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2
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0
) , (67)
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2

0
) ! f̃OPE,j/p(x, bT; µQ0 , Q

2

0
) (68)

(bT ! 0) (69)

with
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0
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F/4 ,
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(70)

where K0, K2 and K3 are modified Bessel functions of the second kind.
As anticipated, Eq. (67) matches the O (↵s) operator product expansion (OPE) for small transverse sizes bT ! 0,

up to errors suppressed by powers of bT. Since K0(mbT ) = � ln (mbT /2e��E ) + O(b2T m2) and f̃core,i/p = 1 + O (ba
T )

for a > 0 (independently of which core parametrization is considered), the small-bT behavior of Eq. (67) is
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)
+ O

�
b2
T
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, (71)

where, crucially, all the dependence on the masses mi,p has been cancelled by the logarithms appearing in the
expression for the coe�cient Ci/p, defined in Eq. (57).
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for three di↵erent values of the beam energy, Ebeam = 200, 300, 400 GeV. The experimental collaboration provides
the following information regarding kinematic variables:

qT : qmin

T
, qmax

T
, hqTi =

1

2

�
qmin

T
+ qmax

T

�
, �qT = 0.2 GeV

yh : hyhi (for each Ebeam) (90)

Q : Qmin, Qmax .

For this observable, we evaluate Eq. (30) at the experimental average values of the dimuon rapidity hyhi and hqTi,
and compute only the integral over Q2

OE288 =
1

⇡

Z
dQ2

d3�

dq2T dyh dQ2

�����yh=hyhi
qT=hqTi

, (91)

where the factor of 1/⇡ comes from averaging over the azimuthal angle of the dimuon’s momentum. The E605 [14]
experiment performs the same measurement with only a few di↵erences: i) Ebeam = 800 GeV, ii) large-Q bins are
wider with improved statistics, iii) instead of hyhi, there is one bin in xF

xF : xFmin = �0.1 , xFmax = 0.2 , hxFi = 0.1 ,

but otherwise, the same information as in Eq. (90) is provided. For the E605 experiment we compute

OE605 =
1

⇡

Z
dQ2

d3�

dq2
T

dyh dQ2

����� yh=yh
qT=hqTi

, with yh = arcsinh

 p
s
p

Q2 + hqTi2

2Q2
hxFi

!
. (92)

For our purposes, it is su�cient to work within the approximations of Eq. (91) and Eq. (92). Future refinements will
include the explicit calculation of over-the-bin averages by integrating numerically over each bin of yh(xF) and qT.

Both experiments provide the cross section per nucleon, so we have to consider this in our calculations. We use a
simplified model of the relationship between nuclear and proton TMD pdfs for a target with atomic number Z and
total nucleon number A

fi/t =
Z

A
fi/p +

A � Z

A
fi/n , (93)

where the neutron TMD fi/n is related to fi/p by isospin symmetry, as it is usually done (see for instance [46, 47]).
The simple treatment of Eq. (93) is a useful point of departure for future refinements.

For both data sets we will start by using Z = 29, A = 63 for a copper target. Note, however, that the E288
experiment also uses a platinum target, but the proportion of di↵erent nuclei, or its e↵ect on the observables, is not
clear2.

B. Gaussian fits

For the nonperturbative description of very small transverse momentum, we start with the Gaussian models of
Eq. (65) and set the nonperturbative masses to

MF ! M0 + M1 log(1/x) , mi,p,A = mi,p,B = mi,p,L = mg,p = 0.3 GeV , (94)

where M0, M1 are two free parameters of the fit. Our choice of logarithmic dependence on x is typical of some early
phenomenological analyses within the CSS formalism. (see, for instance, Ref. [48].) For the nonperturbative behavior
of the CS kernel we use Eq. (77). There, we set the mass parameter to mK = 0.3 GeV and fit only bK . In total
we have 3 free parameters and one additional nuisance normalization for each fit. In keeping with the recipe from
Sect. VI of [1], we compute the Q0 = 4GeV input scale cross section using the functions from Eq. (53) and Eq. (75),

2 One might consider di↵erent scenarios with either copper, platinum or both targets and perform tests as we propose here. However, for
this article we assume a copper target.

Free parameters M0, M1 , bk
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a Gaussian shape,
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, (62)

where MF is a model parameter. The second core parametrization is the spectator model in Eq. (44) of Ref. [31],
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p , (63)

where the quantities mq, MX , ⇤ are model parameters and Mp is the proton mass. The overall factors in Eqs. (62)–(63)
are chosen so that the core functions are normalized to unity, i.e. Ni/p = 1.

In the future, more sophisticated modeling may replace Eqs. (62)–(63). For example, the core models might be
guided by work in Refs. [31–34]. Developments in lattice QCD [35] may also soon provide guidance.

3. Coordinate space representation

Since TMD evolution is usually performed in coordinate space, it will be convenient to write the coordinate space
versions of the above parametrizations. They are,
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with
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(65)

where K0, K2 and K3 are modified Bessel functions of the second kind.
As anticipated, Eq. (64) matches the O (↵s) operator product expansion (OPE) for small transverse sizes bT ! 0,

up to errors suppressed by powers of bT. Since K0(mbT ) = � ln (mbT /2e��E ) + O(b2T m2) and f̃core,i/p = 1 + O (ba
T )

for a > 0 (independently of which core parametrization is considered), the small-bT behavior of Eq. (64) is
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, (66)

where, crucially, all the dependence on the masses mi,p has been cancelled by the logarithms appearing in the
expression for the coe�cient Ci/p, defined in Eq. (54).

B. The CS kernel: input scale parametrization

Next, we discuss the parametrization that we will use for the CS kernel through O (↵s(µ)). The analogous O
�
↵s(µ)2

�

expressions are also straightforward to write down, but we will not use them for applications in this paper, so we
include them in Appendix A for use in future work. The perturbative CS kernel in coordinate space is

K̃(bT; µ) = �
2CF ↵s(µ)

⇡
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2e��E

◆
+ O(↵s(µ)2) , (67)
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where the quantities mq, MX , ⇤ are model parameters and Mp is the proton mass. The overall factors in Eqs. (62)–(63)
are chosen so that the core functions are normalized to unity, i.e. Ni/p = 1.
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where K0, K2 and K3 are modified Bessel functions of the second kind.
As anticipated, Eq. (64) matches the O (↵s) operator product expansion (OPE) for small transverse sizes bT ! 0,

up to errors suppressed by powers of bT. Since K0(mbT ) = � ln (mbT /2e��E ) + O(b2T m2) and f̃core,i/p = 1 + O (ba
T )

for a > 0 (independently of which core parametrization is considered), the small-bT behavior of Eq. (64) is
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where, crucially, all the dependence on the masses mi,p has been cancelled by the logarithms appearing in the
expression for the coe�cient Ci/p, defined in Eq. (54).

B. The CS kernel: input scale parametrization

Next, we discuss the parametrization that we will use for the CS kernel through O (↵s(µ)). The analogous O
�
↵s(µ)2

�

expressions are also straightforward to write down, but we will not use them for applications in this paper, so we
include them in Appendix A for use in future work. The perturbative CS kernel in coordinate space is

K̃(bT; µ) = �
2CF ↵s(µ)

⇡
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+ O(↵s(µ)2) , (67)

Free parameters Λ , MX , bk mq = 0

Same number
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with perturbative parts at O(↵s), and refrain from implementing the RG improvements of Sec. IV C until a later
stage when we evolve to larger Q. Best-fit values of the parameters and �2 are reported in Table I. Comparisons
to fitted data are presented in Fig. ?? and Fig. ??, where both central lines and uncertainty bands are shown. We
have confirmed that switching from input to RG improved TMD pdfs is phenomenologically insignificant close to
the input scale, by refitting the �2 including RG improvements. Di↵erences in the minimal �2 is about 0.15 % and
parameter values are una↵ected. We also checked that refitting with RG improvements, but increasing a in the scale
transformation of Eq. (82) by a factor of 2, the e↵ect on the minimal �2 appears only in the fourth digit. See also
Fig. 8 of [1].

Gaussian fits

E288 (130 pts.) E605 (52 pts.)

�
2
dof 1.04 1.68

M0 (GeV) 0.0576 0.404

M1 (GeV) 0.403 0.290

bK 2.12 0.744

N(nuisance) 1.29 1.28

TABLE I: Minimal parameters obtained by fitting E288 and E605 data independently, using the models of Eq. (65) and Eq. (77).
Parameters are correlated, but we do not show correlation matrices. Uncertainties are calculated by varying parameters along
the “plus” and “minus” directions of the 3 eigensets in each case.

C. Spectator model fit

We now turn to the model of Eq. (66) for the TMD pdf core function. In contrast to the Gaussian case, this
model implies its own explicit x-dependence. In principle, Eq. (66) depends on 3 mass parameters, mq, ⇤ and MX .
But to make a more direct comparison to the Gaussian case, i.e. by keeping the same number of parameters, we set
the “quark” mass to mq = 0, and leave ⇤ and MX free in our fit. For the spectator model case, we present the fit
for the E288 set only, since we find that the E605 data alone are not su�cient to constrain both the CS kernel and
the TMD pdf. Apart from the use of the spectator model, all of our choices are the same as in the Gaussian case,
namely, we use Eq. (77) for the CS kernel with fixed mK = 0.3 GeV and with all other nonperturbative masses in
Eq. (53) also set to m = 0.3 GeV. Results are shown in Table II. We note that the minimal �2

dof
is the same as in

the Gaussian case to three significant figures. Although we do not show comparison to the fitted data, results are
essentially identical as in the Gaussian case, Fig. ??. Finally, using the parameter values of Table II, we have checked
that RG improvements are phenomenologically irrelevant, as for the Gaussian case. This time, the variation of the
minimal �2 is about 0.26 %.

Spectator model fit

E288 (130 pts.)

�
2
dof 1.04

⇤ (GeV) 0.801

MX (GeV) 0.438

bK 1.90

N(nuisance) 1.23

TABLE II: Minimal parameters obtained by fitting E288 data with the models of Eq. (66) and Eq. (77). Parameters are
correlated, but we do not show correlation matrices. Uncertainties are calculated by varying parameters along the “plus” and
“minus” directions of the 3 eigensets.

D. Results for TMD pdfs

The behavior of the TMD pdfs determined by our fit to E288 experimental data are shown in Fig. ??. Here we only
show results from the Gaussian model Eq. (65) and postpone comparisons to the spectator model until Sec. VIII. The
use of the HSO approach has guaranteed that the TMD pdf of Eq. (53) (without RG improvements) asymptotes to
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FIG. 4: Comparison of data from the E605 experiment [14] to best-fit central lines and hessian bands using the HSO approach
with a Gaussian core model. Vertical ranges are di↵erent for each panel, so tick marks are not shown. The vertical scale is
adjusted in each plot for better visibility. The model assumptions and calculation of bands are the same as in Fig. 3. Both
theory central lines and bands are multiplied by the corresponding minimal value for the nuisance parameter. For the central
line this is N = 1.28.

three significant figures. Although we do not show comparison to the fitted data, results are essentially identical as in
the Gaussian case, Fig. 3. Finally, using the parameter values of Table II, we have checked that RG improvements are
phenomenologically irrelevant, as for the Gaussian case. This time, the variation of the minimal �2 is about 0.26%.

Spectator model fit

E288 (130 pts.)

�
2
dof 1.04

⇤ (GeV) 0.801

MX (GeV) 0.438

bK 1.90

N(nuisance) 1.23

TABLE II: Minimal parameters obtained by fitting E288 data with the models of Eq. (63) and Eq. (72). Parameters are
correlated, but we do not show correlation matrices. Uncertainties are calculated by varying parameters along the “plus” and
“minus” directions of the 3 eigensets.

D. Results for TMD pdfs

The behavior of the TMD pdfs determined by our fit to E288 experimental data are shown in Fig. 5. Here we only
show results from the Gaussian model Eq. (62) and postpone comparisons to the spectator model until Sec. VIII. The
use of the HSO approach has guaranteed that the TMD pdf of Eq. (50) (without RG improvements) asymptotes to
the perturbative tail in Eq. (47) at the input scale. This feature is preserved after implementing the RG improvements
of Eq. (78), as seen in the di↵erent panels of Fig. 5 (blue lines). Upon evolution to larger scales, such agreement is
improved for smaller values of x (top panels), as evidenced by the general trend of the TMD lines when compared
to the perturbative tail (dot-dashed lines) and, in particular, the relative position of their nodes. Recall that the
perturbative tails are determined entirely within collinear factorization for k2

T
⇡ Q2, while the full TMD pdfs involve

evolution from the input scale, and as such the e↵ects of the CS kernel play a role in their profile. Therefore, the
observed agreement after evolution is not trivial. Note that for Q = 91GeV, in the top panels of Fig. 5, the solid lines
closely trace the behavior of the tail. At larger values of x (bottom panels), di↵erences between the TMD pdfs and
the perturbative tail are more visible, although still in reasonable agreement. Improvements to the parametrization
are certainly possible, e.g. by carefully tuning the parameter a in the scale transformation of Eq. (77) or by including
higher orders in ↵s, but we leave this for upcoming work. We stress that keeping track of how closely the extracted
TMD merges with the large-kT region is an important step in phenomenology. For instance, it can assist in preventing
the parametrizations from becoming excessively flexible.

Same 𝛘2/dof
 
Same no. of parameters 
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Examples here somewhat qualitative 
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FIG. 5: TMD pdfs obtained from fitting E288 data, with the Gaussian model of Eq. (62), including RG improvements of
Eq. (78). The panels show values of x in the region of the data sets. We show central values (solid lines) and Hessian
uncertainty bands, as described in Sec. V, for three di↵erent values of the hard scale, Q = Q0 = 4GeV (blue), Q = 14GeV
(red), and Q = 91GeV (green). The TMD pdfs are compared to the perturbative tail of Eq. (47) (dot-dash lines).

VI. TESTING PREDICTIONS AT LARGER Q

Finally, we test the predictive power of the fits in the previous section. The steps are i) to extract the nonperturbative
behavior of TMD pdfs and the CS kernel at the moderate energies above where sensitivity to nonperturbative e↵ects
is large (this step was completed in the previous section) and then ii) to evolve these extracted TMDs to higher
energies and compare (postdict) higher energy data from the D0 and CDF experiments. This will test whether our
assumptions about the initial input parametrizations reasonably postdict experimental observations without any prior
consideration of the final predicted data. In addition, by considering two di↵erent sources of moderate Q data, one
may examine how accurately and precisely the input assumptions postdict higher energy data independently of the
initially fitted data. Our goal with this section is to illustrate how the predictive power of TMD factorization is
brought to the surface within the HSO approach to phenomenological implementations. It is a somewhat di↵erent
philosophy from many traditional global fitting frameworks, where there is generally no analogous postdiction stage.
Note that statistical techniques such as cross-validation usually treat all data in the same footing, while the above
emphasizes the special role of observables at low-to-moderate scales.

Specifically, we compute theory curves for Z0
! e+e� observables measured by the CDF I [49] and D0 I [50]

collaborations. In order to evolve to larger Q, close to the Z0 boson mass, we implement RG improvements as
discussed in Sec. IVC, following the recipe from Sect. VI of [1]. For the scale transformation of Eq. (77), we set a
value of a = Q0 = 4 GeV. Both the CDF and D0 data sets are singly di↵erential in qT, so one must integrate over
the kinematically allowed range of yh. This region maps values of x as small as 10�3. Since the fixed-target data
used in our fits only cover the region down to x ⇡ 0.1, in computing high energy observables we must extrapolate our
TMD pdf model into unconstrained x-kinematics. In the case of the Gaussian fits, we note that for x ⇡ 10�3, best
fit values for M0 and M1 imply values for the Gaussian mass MF ⇡ 3 GeV. This would result in a bad agreement
between the TMD pdf and its perturbative tail, close to the input scale Q0 = 4 GeV. To prevent this, we require

Examples TMDs Gaussian fit to  E288 
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HSO Strategy (and final remarks)

-Use theoretical constraints, don’t trust the 
 fit will do this job by itself.

-Check/improve constraints 

-Prioritize the role of lower scale data
 (more information about intrinsic kT)

-Emphasize the predictive aspect of factorization     
 theorems
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working order in ↵s. Therefore, one may consistently interchange cuto↵ and MS definitions, and we will use FFO
ST for

our calculation of the fixed order structure function. We will see in later sections that the e↵ect of switching between
the two is small relative to the overall improvements from using the HSO approach. An interesting question for the
future is whether calculations of FFO can be improved by switching to a cuto↵ scheme for the collinear functions, but
we leave this to future work.

C. The TMD term in the conventional treatment

The usual approach to applying TMD factorization to phenomenology has been reviewed in many places, so we
will not repeat the details here. Readers are referred to, for example, Refs. [3, 56, 57] and references therein. The
standard expression used in calculations follow from making the following replacement in Eqs. (66):
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The f̃OPE
j/p

and D̃OPE
h/j

on the first line are the TMD pdfs and ↵s in bT-space, expanded and truncated in an operator

product expansion. The �, �K and K̃ are the usual evolution kernels. The “b⇤” method has been used to regulate
f̃OPE
j/p

, D̃OPE
h/j

, and K̃ at large bT. (See reviews of the b⇤ method in Sec. IXA of [16] and in Sec. VIII of [58].) The
most common choice for a functional form for b⇤ is

b⇤(bT) =
bTp

1 + b2T/b
2
max

, (77)

where bmax is a transverse size scale that demarcates a separation between large and small transverse size regions. In
principle, both the functional form of Eq. (77) and the value of bmax are completely arbitrary, but a small bmax justifies
the use of the OPE on the first line of Eq. (74); the error term in the approximation in Eq. (74) is suppressed by
powers of mbmax. All of the nonperturbative transverse momentum dependence is contained in the bT-space functions
gj/p, gh/j , and gK , whose definitions in terms of the more fundamental correlation functions are
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and

gK(bT) ⌘ K̃(b⇤;µ)� K̃(bT;µ) . (79)
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principle, both the functional form of Eq. (77) and the value of bmax are completely arbitrary, but a small bmax justifies
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where bmax is a transverse size scale that demarcates a separation between large and small transverse size regions. In
principle, both the functional form of Eq. (77) and the value of bmax are completely arbitrary, but a small bmax justifies
the use of the OPE on the first line of Eq. (74); the error term in the approximation in Eq. (74) is suppressed by
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The f̃OPE
j/p

and D̃OPE
h/j

on the first line are the TMD pdfs and ↵s in bT-space, expanded and truncated in an operator

product expansion. The �, �K and K̃ are the usual evolution kernels. The “b⇤” method has been used to regulate
f̃OPE
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most common choice for a functional form for b⇤ is
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where bmax is a transverse size scale that demarcates a separation between large and small transverse size regions. In
principle, both the functional form of Eq. (77) and the value of bmax are completely arbitrary, but a small bmax justifies
the use of the OPE on the first line of Eq. (74); the error term in the approximation in Eq. (74) is suppressed by
powers of mbmax. All of the nonperturbative transverse momentum dependence is contained in the bT-space functions
gj/p, gh/j , and gK , whose definitions in terms of the more fundamental correlation functions are
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Precise definitions for g functions, b*(bT) is a transition 
function bounded by some bmax. Note that b* dependence cancels 
exactly. It is really unimportant which b* we choose.
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where bmax is a transverse size scale that demarcates a separation between large and small transverse size regions. In
principle, both the functional form of Eq. (77) and the value of bmax are completely arbitrary, but a small bmax justifies
the use of the OPE on the first line of Eq. (74); the error term in the approximation in Eq. (74) is suppressed by
powers of mbmax. All of the nonperturbative transverse momentum dependence is contained in the bT-space functions
gj/p, gh/j , and gK , whose definitions in terms of the more fundamental correlation functions are

�gj/p(x, bT) ⌘ ln

 
f̃j/p(x, bT;µQ0 , Q

2
0)

f̃j/p(x, b⇤;µQ0 , Q
2
0)

!
, �gh/j(z, bT) ⌘ ln

 
D̃h/j(z, bT;µQ0 , Q

2
0)

D̃h/j(z, b⇤;µQ0 , Q
2
0)

!
, (78)

and

gK(bT) ⌘ K̃(b⇤;µ)� K̃(bT;µ) . (79)

39



Precise definitions for g functions, b*(bT) is a transition 
function bounded by some bmax. Note that b* dependence cancels 
exactly. High sensitivity to b* or bmax signals an issue.
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errors

Use of OPE introduces errors. Must keep bmax reasonably small.
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powers of mbmax. All of the nonperturbative transverse momentum dependence is contained in the bT-space functions
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and

gK(bT) ⌘ K̃(b⇤;µ)� K̃(bT;µ) . (80)

Conventional methods replace each of the g-functions, gj/p, gh/j , and gK , by an ansatz, with parameters to be
fitted from measurements. The simplest and most common choices (e.g. [59–61]) are based on simple power laws like

gj/p(x, bT) =
1

4
M2

F
b2T , gh/j(z, bT) =
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4 z2
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D
b2T (81)

for the input nonperturbative functions, where MF and MD are fit parameters. For the CS kernel, common
parametrizations are
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where MK and g2 are fit parameters. The first of these functional forms is common in typical applications, but it
conflicts with the expectation that evolution is slow at moderate Q [62, 63]. As a result, it was suggested in Ref. [56]
that gK(bT) should exhibit very nearly constant behavior at large bT, a behavior closely modeled by a logarithmic
function. More complex fit parametrization ansatzes for all the g-functions have been introduced more recently (see
for instance Refs. [64, 65]), but the general approach of taking combinations of simple functional forms that reduce
to power law behavior at small bT is similar to the above.

Note that, in the b⇤-approach, before any truncation approximations are made, the product of TMD correlation
functions must satisfy

d

dbmax

⇥
fj/p, Dh/j

⇤
= O (mbmax) . (83)

That is, dependence on bmax or on the form of b⇤(bT) must be a negligible power correction for reasonably small
bmax.3 In calculations at a specific order in ↵s, violations of Eq. (83) may enter only through neglected higher orders
in ↵s. A significant violation of Eq. (83) in a TMD parametrization may indicate either that higher orders need to
be included, or that bmax has been chosen to be too large. A failure to find a negligible right side of Eq. (83) is thus
a useful diagnostic tool.

We will label structure functions calculated in the conventional approach by FTMD
ST , with “ST” for “standard,”

and we will use this notation regardless of whichever specific model is used for the g-functions. What makes an
approach “conventional” in the sense that we mean in this paper is that it imposes no extra, additional constraints
on the g-functions to ensure consistent matching with collinear factorization. Specifically, the ansatzes of traditional
approaches do not explicitly enforce the integral connection between collinear and TMD pdfs and ↵s in Eq. (2), or
guarantee a smooth interpolation to the large kT collinear factorization region.

In the following numerical examples, we will use CTEQ6.6 pdfs [66] (central values) and MAPFF1.0 ↵s for ⇡+ [67]
(avergage over replicas), implemented in LHAPDF6 [68]. We postpone a more detailed analysis that includes the
uncertainty associated with the chosen LHAPDF6 sets for a later publication. For the purpose of this paper, we
e↵ectively assume “complete knowledge” of the collinear pdfs and ↵s in the MS scheme stressing that our main
points, and the logic behind the HSO approach, are not a↵ected by such choices. The left-hand panels of Fig. 2
show the di↵erential SIDIS cross section for Q0 = 4.0 GeV within the various di↵erent approximations discussed in
Sec. VIA and Sec. VIB, including the FTMD

ST (the TMD approximation), the FFO
ST (qT ⇡ Q approximation), and the

3
The power-suppressed errors on the right side of Eq. (83) will typically be m2b2max, but the precise power of the suppression is not

important for our present discussion.

40



14

working order in ↵s. Therefore, one may consistently interchange cuto↵ and MS definitions, and we will use FFO
ST for

our calculation of the fixed order structure function. We will see in later sections that the e↵ect of switching between
the two is small relative to the overall improvements from using the HSO approach. An interesting question for the
future is whether calculations of FFO can be improved by switching to a cuto↵ scheme for the collinear functions, but
we leave this to future work.

C. The TMD term in the conventional treatment

The usual approach to applying TMD factorization to phenomenology has been reviewed in many places, so we
will not repeat the details here. Readers are referred to, for example, Refs. [3, 56, 57] and references therein. The
standard expression used in calculations follow from making the following replacement in Eqs. (66):
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The f̃OPE
j/p

and D̃OPE
h/j

on the first line are the TMD pdfs and ↵s in bT-space, expanded and truncated in an operator

product expansion. The �, �K and K̃ are the usual evolution kernels. The “b⇤” method has been used to regulate
f̃OPE
j/p

, D̃OPE
h/j

, and K̃ at large bT. (See reviews of the b⇤ method in Sec. IXA of [16] and in Sec. VIII of [58].) The
most common choice for a functional form for b⇤ is

b⇤(bT) =
bTp
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, (78)
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on the first line are the TMD pdfs and ↵s in bT-space, expanded and truncated in an operator

product expansion. The �, �K and K̃ are the usual evolution kernels. The “b⇤” method has been used to regulate
f̃OPE
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, D̃OPE
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where bmax is a transverse size scale that demarcates a separation between large and small transverse size regions. In
principle, both the functional form of Eq. (77) and the value of bmax are completely arbitrary, but a small bmax justifies
the use of the OPE on the first line of Eq. (74); the error term in the approximation in Eq. (74) is suppressed by
powers of mbmax. All of the nonperturbative transverse momentum dependence is contained in the bT-space functions
gj/p, gh/j , and gK , whose definitions in terms of the more fundamental correlation functions are
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where bmax is a transverse size scale that demarcates a separation between large and small transverse size regions. In
principle, both the functional form of Eq. (77) and the value of bmax are completely arbitrary, but a small bmax justifies
the use of the OPE on the first line of Eq. (74); the error term in the approximation in Eq. (74) is suppressed by
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the use of the OPE on the first line of Eq. (74); the error term in the approximation in Eq. (74) is suppressed by
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Conventional methods replace each of the g-functions, gj/p, gh/j , and gK , by an ansatz, with parameters to be
fitted from measurements. The simplest and most common choices (e.g. [59–61]) are based on simple power laws like
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for the input nonperturbative functions, where MF and MD are fit parameters. For the CS kernel, common
parametrizations are
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where MK and g2 are fit parameters. The first of these functional forms is common in typical applications, but it
conflicts with the expectation that evolution is slow at moderate Q [62, 63]. As a result, it was suggested in Ref. [56]
that gK(bT) should exhibit very nearly constant behavior at large bT, a behavior closely modeled by a logarithmic
function. More complex fit parametrization ansatzes for all the g-functions have been introduced more recently (see
for instance Refs. [64, 65]), but the general approach of taking combinations of simple functional forms that reduce
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(avergage over replicas), implemented in LHAPDF6 [68]. We postpone a more detailed analysis that includes the
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e↵ectively assume “complete knowledge” of the collinear pdfs and ↵s in the MS scheme stressing that our main
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conflicts with the expectation that evolution is slow at moderate Q [62, 63]. As a result, it was suggested in Ref. [56]
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Conventional methods replace each of the g-functions, gj/p, gh/j , and gK , by an ansatz, with parameters to be
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where MK and g2 are fit parameters. The first of these functional forms is common in typical applications, but it
conflicts with the expectation that evolution is slow at moderate Q [62, 63]. As a result, it was suggested in Ref. [56]
that gK(bT) should exhibit very nearly constant behavior at large bT, a behavior closely modeled by a logarithmic
function. More complex fit parametrization ansatzes for all the g-functions have been introduced more recently (see
for instance Refs. [64, 65]), but the general approach of taking combinations of simple functional forms that reduce
to power law behavior at small bT is similar to the above.

Note that, in the b⇤-approach, before any truncation approximations are made, the product of TMD correlation
functions must satisfy
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= O (mbmax) . (83)

That is, dependence on bmax or on the form of b⇤(bT) must be a negligible power correction for reasonably small
bmax.3 In calculations at a specific order in ↵s, violations of Eq. (83) may enter only through neglected higher orders
in ↵s. A significant violation of Eq. (83) in a TMD parametrization may indicate either that higher orders need to
be included, or that bmax has been chosen to be too large. A failure to find a negligible right side of Eq. (83) is thus
a useful diagnostic tool.

We will label structure functions calculated in the conventional approach by FTMD
ST , with “ST” for “standard,”

and we will use this notation regardless of whichever specific model is used for the g-functions. What makes an
approach “conventional” in the sense that we mean in this paper is that it imposes no extra, additional constraints
on the g-functions to ensure consistent matching with collinear factorization. Specifically, the ansatzes of traditional
approaches do not explicitly enforce the integral connection between collinear and TMD pdfs and ↵s in Eq. (2), or
guarantee a smooth interpolation to the large kT collinear factorization region.

In the following numerical examples, we will use CTEQ6.6 pdfs [66] (central values) and MAPFF1.0 ↵s for ⇡+ [67]
(avergage over replicas), implemented in LHAPDF6 [68]. We postpone a more detailed analysis that includes the
uncertainty associated with the chosen LHAPDF6 sets for a later publication. For the purpose of this paper, we
e↵ectively assume “complete knowledge” of the collinear pdfs and ↵s in the MS scheme stressing that our main
points, and the logic behind the HSO approach, are not a↵ected by such choices. The left-hand panels of Fig. 2
show the di↵erential SIDIS cross section for Q0 = 4.0 GeV within the various di↵erent approximations discussed in
Sec. VIA and Sec. VIB, including the FTMD

ST (the TMD approximation), the FFO
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where bmax is a transverse size scale that demarcates a separation between large and small transverse size regions. In
principle, both the functional form of Eq. (78) and the value of bmax are completely arbitrary, but a small bmax justifies
the use of the OPE on the first line of Eq. (74); the error term in the approximation in Eq. (74) is suppressed by
powers of mbmax. All of the nonperturbative transverse momentum dependence is contained in the bT-space functions
gj/p, gh/j , and gK , whose definitions in terms of the more fundamental correlation functions are
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and
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Conventional methods replace each of the g-functions, gj/p, gh/j , and gK , by an ansatz, with parameters to be
fitted from measurements. The simplest and most common choices (e.g. [59–61]) are based on simple power laws like
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where MK and g2 are fit parameters. The first of these functional forms is common in typical applications, but it
conflicts with the expectation that evolution is slow at moderate Q [62, 63]. As a result, it was suggested in Ref. [56]
that gK(bT) should exhibit very nearly constant behavior at large bT, a behavior closely modeled by a logarithmic
function. More complex fit parametrization ansatzes for all the g-functions have been introduced more recently (see
for instance Refs. [64, 65]), but the general approach of taking combinations of simple functional forms that reduce
to power law behavior at small bT is similar to the above.

Note that, in the b⇤-approach, before any truncation approximations are made, the product of TMD correlation
functions must satisfy
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That is, dependence on bmax or on the form of b⇤(bT) must be a negligible power correction for reasonably small
bmax.3 In calculations at a specific order in ↵s, violations of Eq. (83) may enter only through neglected higher orders
in ↵s. A significant violation of Eq. (83) in a TMD parametrization may indicate either that higher orders need to
be included, or that bmax has been chosen to be too large. A failure to find a negligible right side of Eq. (83) is thus
a useful diagnostic tool.

We will label structure functions calculated in the conventional approach by FTMD
ST , with “ST” for “standard,”

and we will use this notation regardless of whichever specific model is used for the g-functions. What makes an
approach “conventional” in the sense that we mean in this paper is that it imposes no extra, additional constraints
on the g-functions to ensure consistent matching with collinear factorization. Specifically, the ansatzes of traditional
approaches do not explicitly enforce the integral connection between collinear and TMD pdfs and ↵s in Eq. (2), or
guarantee a smooth interpolation to the large kT collinear factorization region.

In the following numerical examples, we will use CTEQ6.6 pdfs [66] (central values) and MAPFF1.0 ↵s for ⇡+ [67]
(avergage over replicas), implemented in LHAPDF6 [68]. We postpone a more detailed analysis that includes the
uncertainty associated with the chosen LHAPDF6 sets for a later publication. For the purpose of this paper, we
e↵ectively assume “complete knowledge” of the collinear pdfs and ↵s in the MS scheme stressing that our main
points, and the logic behind the HSO approach, are not a↵ected by such choices. The left-hand panels of Fig. 2
show the di↵erential SIDIS cross section for Q0 = 4.0 GeV within the various di↵erent approximations discussed in
Sec. VIA and Sec. VIB, including the FTMD
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where bmax is a transverse size scale that demarcates a separation between large and small transverse size regions. In
principle, both the functional form of Eq. (78) and the value of bmax are completely arbitrary, but a small bmax justifies
the use of the OPE on the first line of Eq. (74); the error term in the approximation in Eq. (74) is suppressed by
powers of mbmax. All of the nonperturbative transverse momentum dependence is contained in the bT-space functions
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where MK and g2 are fit parameters. The first of these functional forms is common in typical applications, but it
conflicts with the expectation that evolution is slow at moderate Q [62, 63]. As a result, it was suggested in Ref. [56]
that gK(bT) should exhibit very nearly constant behavior at large bT, a behavior closely modeled by a logarithmic
function. More complex fit parametrization ansatzes for all the g-functions have been introduced more recently (see
for instance Refs. [64, 65]), but the general approach of taking combinations of simple functional forms that reduce
to power law behavior at small bT is similar to the above.
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function. More complex fit parametrization ansatzes for all the g-functions have been introduced more recently (see
for instance Refs. [64, 65]), but the general approach of taking combinations of simple functional forms that reduce
to power law behavior at small bT is similar to the above.

Note that, in the b⇤-approach, before any truncation approximations are made, the product of TMD correlation
functions must satisfy

d

dbmax

⇥
fj/p, Dh/j

⇤
= O (mbmax) . (83)

That is, dependence on bmax or on the form of b⇤(bT) must be a negligible power correction for reasonably small
bmax.3 In calculations at a specific order in ↵s, violations of Eq. (83) may enter only through neglected higher orders
in ↵s. A significant violation of Eq. (83) in a TMD parametrization may indicate either that higher orders need to
be included, or that bmax has been chosen to be too large. A failure to find a negligible right side of Eq. (83) is thus
a useful diagnostic tool.

We will label structure functions calculated in the conventional approach by FTMD
ST , with “ST” for “standard,”

and we will use this notation regardless of whichever specific model is used for the g-functions. What makes an
approach “conventional” in the sense that we mean in this paper is that it imposes no extra, additional constraints
on the g-functions to ensure consistent matching with collinear factorization. Specifically, the ansatzes of traditional
approaches do not explicitly enforce the integral connection between collinear and TMD pdfs and ↵s in Eq. (2), or
guarantee a smooth interpolation to the large kT collinear factorization region.

In the following numerical examples, we will use CTEQ6.6 pdfs [66] (central values) and MAPFF1.0 ↵s for ⇡+ [67]
(avergage over replicas), implemented in LHAPDF6 [68]. We postpone a more detailed analysis that includes the
uncertainty associated with the chosen LHAPDF6 sets for a later publication. For the purpose of this paper, we
e↵ectively assume “complete knowledge” of the collinear pdfs and ↵s in the MS scheme stressing that our main
points, and the logic behind the HSO approach, are not a↵ected by such choices. The left-hand panels of Fig. 2
show the di↵erential SIDIS cross section for Q0 = 4.0 GeV within the various di↵erent approximations discussed in
Sec. VIA and Sec. VIB, including the FTMD

ST (the TMD approximation), the FFO
ST (qT ⇡ Q approximation), and the

3
The power-suppressed errors on the right side of Eq. (83) will typically be m2b2max, but the precise power of the suppression is not

important for our present discussion.
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Scale setting for evolution to large Q
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Then the task is to determine how to resum large logarithms of ln(kT/µQ) as kT gets small relative to Q, rather than
as kT gets large relative to Q0.

Appendix C: Scale transformation function

For the scale transition function in Eq. (42), we must arrange for the transition from ⇠ 1/bT to Q0 to occur at bT
somewhat smaller than 1/Q0 to avoid modifying the treatment of Eq. (20) in the Q ⇡ Q0 region. One choice that
satisfies this for a Q0 = 2 GeV is

Q0(bT) = Q0 GeV


1�

✓
1� C1

Q0bT

◆
e�a2 b2T

�
. (C1)

If we wish to adjust the exact shape in the ⇡ 1/Q0 transition region by adding a parameter as in Eq. (49), we may
modify Eq. (C1) by introducing a parameter a,

Q0(bT, a)

= 2.0 GeV


1�

✓
1� C1

(2.0 GeV)bT

◆
e�b2Ta2

�
. (C2)

Here the transition between the two RG scales takes place around bT ⇠ 1/a. We can use the Eq. (C2) form to check
approximate scale independence in the transition region by varying a slightly. C1 is the usual numerical constant,
C1 = 2e��E ⇡ 1.123.
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Model in the HSO approach

Need RG improvements for pheno at Q >> Q0
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429430 In Eq. (28), fcore;i=pðx; kT;Q 2
0Þ parametrizes the core peak

431 of the TMD pdf. (We remind the reader that it is to be

432understood that all explicit perturbative parts in this paper
433are calculated to lowest order in αs.)
434To extend the TMD pdf and ff parametrizations above to
435account for the bT ≪ 1=Q 0 region, we transform to trans-
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444 Once the numerical values of parameters in D̃h=jðz; bT;
445 μQ 0

; Q 2
0Þ and f̃i=pðx; bT; μQ 0

; Q 2
0Þ are determined and fixed

446 as above, the TMD term at any other larger scale Q is found
447 straightforwardly by substituting these into Eq. (15).
448 The scale Q̄ 0 is designed to be approximately Q 0 for
449 Q≈Q 0, where the only important range of bT is bT≳1=Q 0,
450 and the left-hand and right-hand sides of Eqs. (37) and (38)
451 are nearly equal. For large Q (Q ≫ Q 0), the UV bT≪1=Q 0

452 region starts to become important and cannot be ignored.
453 There, Q̄ 0 smoothly transitions into a∼1=bT behavior such
454 that RG improvement is implemented in the bT → 0T limit.
455 The left-hand sides of Eqs. (37) and (38) are the para-
456 metrizations that we labeled with underlines in Eq. (60) of
457 Ref. [16], while the “input” functions on the left-hand sides
458 are to be used for phenomenological fitting for Q ≈Q 0. By
459 construction, the left-hand and right-hand sides of Eqs. (37)
460 and (38), as well Q 0 and Q̄ 0, differ negligibly in the range

461of bT relevant to Q ≈Q 0 phenomenology—recall the
462discussion in Sec. V of [16].
463For the examples implementations we will perform in
464Sec. VI D, we will use the approximation
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465466and set Q̄ 0 → Q 0, since for this paper our main focus is on
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0Þ. At the end of Sec. VI D, we will restore the Q̄ 0

470treatment and confirm that its effect is negligible at Q ≈Q 0.
471It can be seen by inspection that the input parametriza-
472tions defined in Eqs. (18) and (28) are constrained to match
473the perturbative large-kT collinear factorization approxi-
474mations for the TMD pdfs and ffs,
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2

collinear factorization treatment. The challenge is then to describe the behavior as qT decreases relative to Q.
Term-by-term in fixed order calculations there are logarithms like

⇠ ↵s(Q)n lnm
✓
Q

qT

◆
, (1)

with integer m,n > 0, that grow until they spoil truncated perturbation theory. With this as the starting point,
the natural strategy is to try to resum as many such logarithms as possible. Most traditional TMD factorization
techniques [1–3], along with soft-collinear e↵ective theory (SCET)-based approaches [4–6], as well as approaches
that directly resum transverse momentum logarithms [7–11], e↵ectively account for these types of logarithms
while also allowing for at least some contribution from nonperturbative transverse momentum in the qT ⇡ ⇤QCD

region.

2. Hadron structure and moderate Q (Type I): TMD parton distribution functions (pdfs) and fragmentation func-
tions (↵s) also feature prominently in studies whose focus is more directly on the nonperturbative structure of
hadrons. In these types of applications, the relevant hard scales tend to be at much lower Q than in Type II situa-
tions, such as the Q ⇡ few GeVs common in many semi-inclusive deep inelastic scattering (SIDIS) measurements.
It is possible to trace the origin of many of the hadron-structure oriented approaches in Type I applications
to intuitive pictures of colliding hadrons in a parton model. The hadrons, in this view, are composed entirely
of nonperturbative quark and gluon constituents [12–15], and the earliest versions of phenomenological Type I
applications usually adopted the approximation that all transverse momentum dependence is nonperturbative
in origin. As such, they could mostly ignore the role of perturbative tails at large qT and of evolution [16–19].

The Type I and Type II classification roughly follows that at Feynman, Field and Fox [20, Fig. 6]. At a formal level,
it is now very well understood that approaches to Type I and type II observables can be made equivalent. And, of
course, there is no sharp distinction between what constitutes a Type I or a type II scenario. It is possible to merge
treatments of hadron structure with the evolution formulas that were traditionally applied at much larger Q [3, 21–
24], and indeed much activity over the past decade was devoted to implementing TMD evolution, in the context of
hadron structure studies, in ways that include nonperturbative parts [25–40]. (The versions of TMD factorization and
evolution that we will focus on in this paper are those rooted in, or very similar to, the CSS formalism as described
in Ref. [3] – see also Ref. [41] for translations to other approaches.)

There are, nevertheless, some remaining open issues related to the interpretation of intrinsic nonperturbative
transverse momentum dependence that is extracted pheomenologically and its role in cross section calculations, and
these can have practical consequences. We will explain what we mean here in much more detail in the main body of
this paper. For now, we will prepare the reader by noting how some of the remaining complications originate in a
clash between the natural phenomenological strategies that are often implicit in Type I and type II situations.

Starting from a typical Type II perspective, the main issue is that large transverse momentum perturbation theory
calculations (with very large Q) receive correction terms like Eq. (1) that diverge as qT approaches zero. So, the
natural strategy is to try to resum as many transverse momentum dependent logarithms as possible as qT decreases
until one is essentially forced to incorporate a nonperturbative transverse momentum dependent component. We call
this a “top-down” view because it starts by optimizing a large qT dependence at large qT ⇡ Q in collinear perturbation
theory and then it extends it via evolution and resummation downward to more moderate Q and qT ⇡ 0.

But, as an alternative strategy, one might instead start from the perspective more common in Type I scenarios.
That is, one may begin by considering a moderate input scale Q0, low enough so that the accessible range of qT is either
comparable to Q0 and is perturbative in origin, or is smaller than Q0 and is mostly nonperturbative.1 A TMD parton
model type of description is the most natural and appropriate approach here. There is no region within the range of
0 < qT . Q0 where calculations involve large logarithms analogous to Eq. (1). Thus, for Q ⇡ Q0, the need to resum
them does not arise. The only task then is to match a nonperturbative parametrization of transverse momentum
dependence to a fixed order qT ⇡ Q0 calculation of transverse momentum dependence in collinear factorization.

However, the diverging logarithms will reappear later if we evolve to large Q. In this case, the uncontrolled
perturbation theory errors will reappear at large qT once we consider Q � Q0 where the transverse momentum region
qT � Q0 becomes accessible. The problematic logarithms are in the correlation functions that were originally defined
at the input scale, and they take the form

⇠ ↵s(Q0)
n lnm

✓
qT
Q0

◆
. (2)

1 More specifically, there exists no significant transverse momentum region where m/qT and qT/Q0 are both simultaneously small, though
each is small in some region of qT. Note that it is possible for this to be the situation even if Q0 is large enough that ↵s(Q0) is small.

Wider range of qT available 
upon evolution to large Q
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Then the task is to determine how to resum large logarithms of ln(kT/µQ) as kT gets small relative to Q, rather than
as kT gets large relative to Q0.

Appendix C: Scale transformation function

For the scale transition function in Eq. (42), we must arrange for the transition from ⇠ 1/bT to Q0 to occur at bT
somewhat smaller than 1/Q0 to avoid modifying the treatment of Eq. (20) in the Q ⇡ Q0 region. One choice that
satisfies this for a Q0 = 2 GeV is

Q0(bT) = Q0 GeV


1�

✓
1� C1

Q0bT

◆
e�a2 b2T

�
. (C1)

If we wish to adjust the exact shape in the ⇡ 1/Q0 transition region by adding a parameter as in Eq. (49), we may
modify Eq. (C1) by introducing a parameter a,

Q0(bT, a)

= 2.0 GeV


1�

✓
1� C1

(2.0 GeV)bT

◆
e�b2Ta2

�
. (C2)

Here the transition between the two RG scales takes place around bT ⇠ 1/a. We can use the Eq. (C2) form to check
approximate scale independence in the transition region by varying a slightly. C1 is the usual numerical constant,
C1 = 2e��E ⇡ 1.123.

[1] J. C. Collins and D. E. Soper, Nucl. Phys. B193, 381 (1981), erratum: B213, 545 (1983).
[2] J. C. Collins, D. E. Soper, and G. Sterman, Nucl. Phys. B250, 199 (1985).
[3] J. C. Collins, Foundations of Perturbative QCD (Cambridge University Press, Cambridge, 2011).
[4] T. Becher, M. Neubert, and B. D. Pecjak, JHEP 01, 076 (2007), hep-ph/0607228.
[5] T. Becher and M. Neubert, Eur. Phys. J. C71, 1665 (2011), 1007.4005.
[6] M. G. Echevarŕıa, A. Idilbi, and I. Scimemi, JHEP 1207, 002 (2012), 1111.4996.
[7] R. K. Ellis, D. A. Ross, and S. Veseli, Nucl. Phys. B 503, 309 (1997), hep-ph/9704239.
[8] D. de Florian and M. Grazzini, Phys. Rev. Lett. 85, 4678 (2000), hep-ph/0008152.
[9] G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, Nucl. Phys. B737, 73 (2006), hep-ph/0508068.

[10] S. Catani, L. Cieri, D. de Florian, G. Ferrera, and M. Grazzini, Eur. Phys. J. C72, 2195 (2012), 1209.0158.
[11] S. Catani, L. Cieri, D. de Florian, G. Ferrera, and M. Grazzini, Nucl.Phys. B881, 414 (2014), 1311.1654.
[12] C. W. Gardiner and D. P. Majumdar, Phys. Rev. D 2, 2040 (1970).
[13] R. Tangerman and P. Mulders, Phys. Rev. D51, 3357 (1995), hep-ph/9403227.
[14] P. J. Mulders and R. D. Tangerman, Nucl. Phys. B461, 197 (1996), hep-ph/9510301.
[15] M. Anselmino, M. Boglione, and F. Murgia, Phys. Lett. B 362, 164 (1995), hep-ph/9503290.
[16] A. Bacchetta et al., JHEP 02, 093 (2007), hep-ph/0611265.
[17] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin, and C. Turk, Phys. Rev. D 75, 054032

(2007), hep-ph/0701006.
[18] P. Schweitzer, T. Teckentrup, and A. Metz, Phys. Rev. D81, 094019 (2010), 1003.2190.
[19] M. Anselmino, M. Boglione, and F. Murgia, Phys. Rev. D 60, 054027 (1999), hep-ph/9901442.
[20] R. P. Feynman, R. D. Field, and G. C. Fox, Phys. Rev. D18, 3320 (1978).
[21] X. Ji, J.-P. Ma, and F. Yuan, Phys. Rev. D71, 034005 (2005), hep-ph/0404183.
[22] X. Ji, J.-P. Ma, and F. Yuan, Phys. Lett. B597, 299 (2004), hep-ph/0405085.
[23] S. M. Aybat and T. C. Rogers, Phys. Rev. D83, 114042 (2011), 1101.5057.
[24] M. Anselmino, M. Boglione, and S. Melis, Phys. Rev. D86, 014028 (2012), 1204.1239.
[25] S. M. Aybat, J. C. Collins, J. Qiu, and T. C. Rogers, Phys. Rev. D85, 034043 (2012), 1110.6428.
[26] R. M. Godbole, A. Misra, A. Mukherjee, and V. S. Rawoot, Phys. Rev. D 88, 014029 (2013), 1304.2584.

The usual evolution factor

48



Scale transformation not really needed for pheno at Q ≈ Q0
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Asymptotic term
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where the F structure functions are the usual ones obtained by contracting the projectors in Eq. (13) with the hadronic
tensor. In the small-qT approximation, the structure functions are expressed in terms of TMD pdfs and ↵s,

F = FTMD +O (m/Q, qT/Q) , (68)

FTMD
1 ⌘ 2 z

X

j

|H|2
j

⇥
fj/p, Dh/j

⇤
, FTMD

2 ⌘ 4 z x
X

j

|H|2
j

⇥
fj/p, Dh/j

⇤
, (69)

where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (69) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2

j
from Eq. (11) in any calculations below. Calculating Eq. (69) in

a specific phenomenological implementation involves making choices about how to parametrize the TMD functions
fi/p and Dh/j , including choices about nonperturbative models and/or calculations at the input scale, the order of
precision in perturbative parts, and any other approximations or assumptions used in the construction of a specific
set of parametrizations.

B. Combining large (FFO) and small (FTMD) transverse momentum calculations

Before we contrast the FTMD calculations in the conventional and HSO styles, let us review the usual steps for
merging calculations done with TMDs with purely collinear factorization calculations designed for the qT ⇡ Q region.

In the region where qT ⇡ Q, the approximations in Eq. (69) fail. However, this is the region where fixed-order
collinear factorization calculations, which use ordinary collinear pdfs and ↵s, are most reliable. We express the large-qT
fixed-order collinear approximation to the structure functions as

F = FFO +O (m/qT) , FFO =
X

i,j

dB/i ⌦ F̂ij ⌦ fj/p , (70)

where the indices i, j run over parton flavors, and the FO superscript stands for “fixed-order.” A choice must be
made for the UV scheme that defines the collinear functions fi/p and Dh/j . The most common is renormalization in

the MS scheme. The F̂ij are the partonic versions of the structure functions, and they have been calculated up to at
least O(↵2

s
) [52–54]. In our calculations, we will use O(↵s) results [9, 11, 55].

Following standard conventions, we will use the phrase “fixed order cross section” as a short hand for Eq. (67)
calculated with the large-qT approximation in Eq. (70).2 While FTMD gives an accurate treatment of the qT ⇡ m
region, and FFO provides an accurate treatment of the qT ⇡ Q region, what is ultimately needed is a factorized
expression with only O

�
m2/Q2

�
-suppressed errors point-by-point in qT. To construct it systematically, one starts by

writing the structure functions in the TMD (low-qT) approximation with the error term made explicit,

F = FTMD +
⇥
F � FTMD

⇤
. (71)

The error term in braces is only unsuppressed when qT is large relative to m. Thus, it can be calculated in collinear
factorization with only m2/q2T-suppressed errors. Since the error term itself is O

�
q2T/Q

2
�
, the result is that the overall

error is m2/Q2-suppressed point-by-point in qT. Thus, we define

lim
m/qT!0

FTMD = FASY (72)

(jogh: other asy versions)

FASY = lim
m/qT!0

FTMD (73)

FASY = lim
qT/Q!0

FFO (74)

2
Note that the asymptotic term of Sec. V is also calculated in fixed order perturbation theory. However, in the terminology of this section

“fixed order term” applies specifically to calculations done using the non-asymptotic Eq. (70).

The usual asymptotic 
term
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where the F structure functions are the usual ones obtained by contracting the projectors in Eq. (13) with the hadronic
tensor. In the small-qT approximation, the structure functions are expressed in terms of TMD pdfs and ↵s,

F = FTMD +O (m/Q, qT/Q) , (68)
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where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (69) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2

j
from Eq. (11) in any calculations below. Calculating Eq. (69) in

a specific phenomenological implementation involves making choices about how to parametrize the TMD functions
fi/p and Dh/j , including choices about nonperturbative models and/or calculations at the input scale, the order of
precision in perturbative parts, and any other approximations or assumptions used in the construction of a specific
set of parametrizations.

B. Combining large (FFO) and small (FTMD) transverse momentum calculations

Before we contrast the FTMD calculations in the conventional and HSO styles, let us review the usual steps for
merging calculations done with TMDs with purely collinear factorization calculations designed for the qT ⇡ Q region.

In the region where qT ⇡ Q, the approximations in Eq. (69) fail. However, this is the region where fixed-order
collinear factorization calculations, which use ordinary collinear pdfs and ↵s, are most reliable. We express the large-qT
fixed-order collinear approximation to the structure functions as

F = FFO +O (m/qT) , FFO =
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i,j

dB/i ⌦ F̂ij ⌦ fj/p , (70)

where the indices i, j run over parton flavors, and the FO superscript stands for “fixed-order.” A choice must be
made for the UV scheme that defines the collinear functions fi/p and Dh/j . The most common is renormalization in

the MS scheme. The F̂ij are the partonic versions of the structure functions, and they have been calculated up to at
least O(↵2

s
) [52–54]. In our calculations, we will use O(↵s) results [9, 11, 55].

Following standard conventions, we will use the phrase “fixed order cross section” as a short hand for Eq. (67)
calculated with the large-qT approximation in Eq. (70).2 While FTMD gives an accurate treatment of the qT ⇡ m
region, and FFO provides an accurate treatment of the qT ⇡ Q region, what is ultimately needed is a factorized
expression with only O
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m2/Q2
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-suppressed errors point-by-point in qT. To construct it systematically, one starts by

writing the structure functions in the TMD (low-qT) approximation with the error term made explicit,
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The error term in braces is only unsuppressed when qT is large relative to m. Thus, it can be calculated in collinear
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where the F structure functions are the usual ones obtained by contracting the projectors in Eq. (13) with the hadronic
tensor. In the small-qT approximation, the structure functions are expressed in terms of TMD pdfs and ↵s,

F = FTMD +O (m/Q, qT/Q) , (68)
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where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (69) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2

j
from Eq. (11) in any calculations below. Calculating Eq. (69) in

a specific phenomenological implementation involves making choices about how to parametrize the TMD functions
fi/p and Dh/j , including choices about nonperturbative models and/or calculations at the input scale, the order of
precision in perturbative parts, and any other approximations or assumptions used in the construction of a specific
set of parametrizations.

B. Combining large (FFO) and small (FTMD) transverse momentum calculations

Before we contrast the FTMD calculations in the conventional and HSO styles, let us review the usual steps for
merging calculations done with TMDs with purely collinear factorization calculations designed for the qT ⇡ Q region.

In the region where qT ⇡ Q, the approximations in Eq. (69) fail. However, this is the region where fixed-order
collinear factorization calculations, which use ordinary collinear pdfs and ↵s, are most reliable. We express the large-qT
fixed-order collinear approximation to the structure functions as

F = FFO +O (m/qT) , FFO =
X

i,j

dB/i ⌦ F̂ij ⌦ fj/p , (70)

where the indices i, j run over parton flavors, and the FO superscript stands for “fixed-order.” A choice must be
made for the UV scheme that defines the collinear functions fi/p and Dh/j . The most common is renormalization in

the MS scheme. The F̂ij are the partonic versions of the structure functions, and they have been calculated up to at
least O(↵2

s
) [52–54]. In our calculations, we will use O(↵s) results [9, 11, 55].

Following standard conventions, we will use the phrase “fixed order cross section” as a short hand for Eq. (67)
calculated with the large-qT approximation in Eq. (70).2 While FTMD gives an accurate treatment of the qT ⇡ m
region, and FFO provides an accurate treatment of the qT ⇡ Q region, what is ultimately needed is a factorized
expression with only O

�
m2/Q2

�
-suppressed errors point-by-point in qT. To construct it systematically, one starts by

writing the structure functions in the TMD (low-qT) approximation with the error term made explicit,

F = FTMD +
⇥
F � FTMD

⇤
. (71)

The error term in braces is only unsuppressed when qT is large relative to m. Thus, it can be calculated in collinear
factorization with only m2/q2T-suppressed errors. Since the error term itself is O

�
q2T/Q

2
�
, the result is that the overall

error is m2/Q2-suppressed point-by-point in qT. Thus, we define

lim
m/qT!0

FTMD = FASY (72)

(jogh: other asy versions)

FASY = lim
m/qT!0

FTMD (73)

FASY = lim
qT/Q!0

FFO (74)

2
Note that the asymptotic term of Sec. V is also calculated in fixed order perturbation theory. However, in the terminology of this section

“fixed order term” applies specifically to calculations done using the non-asymptotic Eq. (70).
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where the F structure functions are the usual ones obtained by contracting the projectors in Eq. (13) with the hadronic
tensor. In the small-qT approximation, the structure functions are expressed in terms of TMD pdfs and ↵s,

F = FTMD +O (m/Q, qT/Q) , (68)
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where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (69) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2

j
from Eq. (11) in any calculations below. Calculating Eq. (69) in

a specific phenomenological implementation involves making choices about how to parametrize the TMD functions
fi/p and Dh/j , including choices about nonperturbative models and/or calculations at the input scale, the order of
precision in perturbative parts, and any other approximations or assumptions used in the construction of a specific
set of parametrizations.

B. Combining large (FFO) and small (FTMD) transverse momentum calculations

Before we contrast the FTMD calculations in the conventional and HSO styles, let us review the usual steps for
merging calculations done with TMDs with purely collinear factorization calculations designed for the qT ⇡ Q region.

In the region where qT ⇡ Q, the approximations in Eq. (69) fail. However, this is the region where fixed-order
collinear factorization calculations, which use ordinary collinear pdfs and ↵s, are most reliable. We express the large-qT
fixed-order collinear approximation to the structure functions as

F = FFO +O (m/qT) , FFO =
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i,j

dB/i ⌦ F̂ij ⌦ fj/p , (70)

where the indices i, j run over parton flavors, and the FO superscript stands for “fixed-order.” A choice must be
made for the UV scheme that defines the collinear functions fi/p and Dh/j . The most common is renormalization in

the MS scheme. The F̂ij are the partonic versions of the structure functions, and they have been calculated up to at
least O(↵2

s
) [52–54]. In our calculations, we will use O(↵s) results [9, 11, 55].

Following standard conventions, we will use the phrase “fixed order cross section” as a short hand for Eq. (67)
calculated with the large-qT approximation in Eq. (70).2 While FTMD gives an accurate treatment of the qT ⇡ m
region, and FFO provides an accurate treatment of the qT ⇡ Q region, what is ultimately needed is a factorized
expression with only O
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m2/Q2

�
-suppressed errors point-by-point in qT. To construct it systematically, one starts by

writing the structure functions in the TMD (low-qT) approximation with the error term made explicit,
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. (71)

The error term in braces is only unsuppressed when qT is large relative to m. Thus, it can be calculated in collinear
factorization with only m2/q2T-suppressed errors. Since the error term itself is O
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2
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, the result is that the overall
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Note that the asymptotic term of Sec. V is also calculated in fixed order perturbation theory. However, in the terminology of this section

“fixed order term” applies specifically to calculations done using the non-asymptotic Eq. (70).
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where the F structure functions are the usual ones obtained by contracting the projectors in Eq. (13) with the hadronic
tensor. In the small-qT approximation, the structure functions are expressed in terms of TMD pdfs and ↵s,
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where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (69) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2

j
from Eq. (11) in any calculations below. Calculating Eq. (69) in

a specific phenomenological implementation involves making choices about how to parametrize the TMD functions
fi/p and Dh/j , including choices about nonperturbative models and/or calculations at the input scale, the order of
precision in perturbative parts, and any other approximations or assumptions used in the construction of a specific
set of parametrizations.

B. Combining large (FFO) and small (FTMD) transverse momentum calculations

Before we contrast the FTMD calculations in the conventional and HSO styles, let us review the usual steps for
merging calculations done with TMDs with purely collinear factorization calculations designed for the qT ⇡ Q region.
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where the indices i, j run over parton flavors, and the FO superscript stands for “fixed-order.” A choice must be
made for the UV scheme that defines the collinear functions fi/p and Dh/j . The most common is renormalization in

the MS scheme. The F̂ij are the partonic versions of the structure functions, and they have been calculated up to at
least O(↵2
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Following standard conventions, we will use the phrase “fixed order cross section” as a short hand for Eq. (67)
calculated with the large-qT approximation in Eq. (70).2 While FTMD gives an accurate treatment of the qT ⇡ m
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writing the structure functions in the TMD (low-qT) approximation with the error term made explicit,

F = FTMD +
⇥
F � FTMD

⇤
. (71)

The error term in braces is only unsuppressed when qT is large relative to m. Thus, it can be calculated in collinear
factorization with only m2/q2T-suppressed errors. Since the error term itself is O

�
q2T/Q

2
�
, the result is that the overall

error is m2/Q2-suppressed point-by-point in qT. Thus, we define

lim
m/qT!0

FTMD = FASY (72)

(jogh: other asy versions)
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to be the qT ⇠ Q, Q ! 1 asymptote of the TMD approximation, as it is calculated in fixed order collinear
factorization. The “⇠” means the ratio q2T/Q

2 is to be held fixed as Q ! 1. Applied to Eq. (71), the structure
function becomes

F = FTMD +
⇥
FFO � FASY

⇤
+O

�
m2/Q2

�
. (75)

The asymptotic term is consctructed to accurately describe the m ⌧ qT ⌧ Q region – both qT ⌧ Q and m ⌧ qT
approximations have been applied simultaneously. For this paper, this is simply Eq. (66) applied to structure functions.

A minor subtlety is that the exact form of the asymptotic term FASY depends on the details of how collinear pdfs
and ↵s are defined and on how higher order corrections in the perturbative expansion are truncated. If, in an O (↵n

s
)

calculation, for example, the cuto↵-defined pdfs and ↵s of Eq. (66) are replaced by their corresponding MS definitions,
then the resulting asymptotic terms will generally di↵er by O

�
m2/Q2

�
-suppressed and O

�
↵n+1
s

�
-suppressed amounts.

Furthermore, while FASY is in principle equal to the low-qT limit of FFO as Q ! 1, generally this is only exactly
true in calculations at the working order of perturbation theory. In calculations at a fixed Q, the two asymptotic
terms will typically di↵er by higher-order ↵s and power-suppressed terms. In other words, if FASY is calculated to
O (↵n

s
) with the cuto↵ scheme for pdfs and ↵s, and FFO,r is calculated to the same order in some other scheme r,

then one will generally find


lim

qT/Q!0
FFO,r

�O(↵n
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�
⇥
FASY

⇤O(↵n
s ) = O

�
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,m2/Q2
�
. (76)

(jogh: other verions )
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m/qT!0
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�O(↵n
s )

=O
�
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s

�
. (78)

That is, there is a family of valid schemes for defining the exact asymptotic term at a given order, though some
schemes can be preferable to others in the context of minimizing errors. Indeed, it is the first term in Eq. (76), with
r = MS, that represents the most common approach used in the past for calculating the asymptotic term. We will
call the asymptotic term calculated using Eq. (66) FASY

HSO .
Together, the second two terms in Eq. (75) are often called the “Y -term,” and the structure function is written as

F = FTMD + Y +O (m/Q) . (79)

to emphasize the role of Y as a large-qT correction to calculations done with TMD pdfs and ↵s. Of course, the precise
value of the Y -term contribution depends on the specific version of the asymptotic term.

In conventional treatments, the fixed order term is calculated with collinear functions in the MS scheme. The
specific version of the asymptotic structure functions used is the first term in Eq. (76), so that

FFO
ST =FFO,MS, FASY

ST = lim
qT/Q!0

FFO,MS , (80)

with “ST” subscripts to indicate “standard.” We will call a calculation of the asymptotic term done in the style of
Sec. V FASY

HSO to distinguish it from Eq. (80). Since FASY
HSO is calculated with cuto↵ definitions for the collinear pdfs

and ↵s, this suggests that the cuto↵ definitions might be preferred as well for calculating FFO. However, switching
between the MS and cuto↵ schemes in FFO only produces power suppressed and perturbative errors beyond the
working order in ↵s. Therefore, one may consistently interchange cuto↵ and MS definitions, and we will use FFO

ST for
our calculation of the fixed order structure function. We will see in later sections that the e↵ect of switching between
the two is small relative to the overall improvements from using the HSO approach. An interesting question for the
future is whether calculations of FFO can be improved by switching to a cuto↵ scheme for the collinear functions, but
we leave this to future work.

C. The TMD term in the conventional treatment

The usual approach to applying TMD factorization to phenomenology has been reviewed in many places, so we
will not repeat the details here. Readers are referred to, for example, Refs. [3, 56, 57] and references therein. The
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where the F structure functions are the usual ones obtained by contracting the projectors in Eq. (13) with the hadronic
tensor. In the small-qT approximation, the structure functions are expressed in terms of TMD pdfs and ↵s,

F = FTMD +O (m/Q, qT/Q) , (68)
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j

|H|2
j

⇥
fj/p, Dh/j

⇤
, FTMD

2 ⌘ 4 z x
X

j

|H|2
j

⇥
fj/p, Dh/j

⇤
, (69)

where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (69) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2

j
from Eq. (11) in any calculations below. Calculating Eq. (69) in

a specific phenomenological implementation involves making choices about how to parametrize the TMD functions
fi/p and Dh/j , including choices about nonperturbative models and/or calculations at the input scale, the order of
precision in perturbative parts, and any other approximations or assumptions used in the construction of a specific
set of parametrizations.

B. Combining large (FFO) and small (FTMD) transverse momentum calculations

Before we contrast the FTMD calculations in the conventional and HSO styles, let us review the usual steps for
merging calculations done with TMDs with purely collinear factorization calculations designed for the qT ⇡ Q region.

In the region where qT ⇡ Q, the approximations in Eq. (69) fail. However, this is the region where fixed-order
collinear factorization calculations, which use ordinary collinear pdfs and ↵s, are most reliable. We express the large-qT
fixed-order collinear approximation to the structure functions as

F = FFO +O (m/qT) , FFO =
X

i,j

dB/i ⌦ F̂ij ⌦ fj/p , (70)

where the indices i, j run over parton flavors, and the FO superscript stands for “fixed-order.” A choice must be
made for the UV scheme that defines the collinear functions fi/p and Dh/j . The most common is renormalization in

the MS scheme. The F̂ij are the partonic versions of the structure functions, and they have been calculated up to at
least O(↵2

s
) [52–54]. In our calculations, we will use O(↵s) results [9, 11, 55].

Following standard conventions, we will use the phrase “fixed order cross section” as a short hand for Eq. (67)
calculated with the large-qT approximation in Eq. (70).2 While FTMD gives an accurate treatment of the qT ⇡ m
region, and FFO provides an accurate treatment of the qT ⇡ Q region, what is ultimately needed is a factorized
expression with only O

�
m2/Q2

�
-suppressed errors point-by-point in qT. To construct it systematically, one starts by

writing the structure functions in the TMD (low-qT) approximation with the error term made explicit,

F = FTMD +
⇥
F � FTMD

⇤
. (71)

The error term in braces is only unsuppressed when qT is large relative to m. Thus, it can be calculated in collinear
factorization with only m2/q2T-suppressed errors. Since the error term itself is O

�
q2T/Q

2
�
, the result is that the overall

error is m2/Q2-suppressed point-by-point in qT. Thus, we define

lim
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(jogh: other asy versions)
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where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (69) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2

j
from Eq. (11) in any calculations below. Calculating Eq. (69) in

a specific phenomenological implementation involves making choices about how to parametrize the TMD functions
fi/p and Dh/j , including choices about nonperturbative models and/or calculations at the input scale, the order of
precision in perturbative parts, and any other approximations or assumptions used in the construction of a specific
set of parametrizations.

B. Combining large (FFO) and small (FTMD) transverse momentum calculations

Before we contrast the FTMD calculations in the conventional and HSO styles, let us review the usual steps for
merging calculations done with TMDs with purely collinear factorization calculations designed for the qT ⇡ Q region.

In the region where qT ⇡ Q, the approximations in Eq. (69) fail. However, this is the region where fixed-order
collinear factorization calculations, which use ordinary collinear pdfs and ↵s, are most reliable. We express the large-qT
fixed-order collinear approximation to the structure functions as
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where the indices i, j run over parton flavors, and the FO superscript stands for “fixed-order.” A choice must be
made for the UV scheme that defines the collinear functions fi/p and Dh/j . The most common is renormalization in

the MS scheme. The F̂ij are the partonic versions of the structure functions, and they have been calculated up to at
least O(↵2
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) [52–54]. In our calculations, we will use O(↵s) results [9, 11, 55].

Following standard conventions, we will use the phrase “fixed order cross section” as a short hand for Eq. (67)
calculated with the large-qT approximation in Eq. (70).2 While FTMD gives an accurate treatment of the qT ⇡ m
region, and FFO provides an accurate treatment of the qT ⇡ Q region, what is ultimately needed is a factorized
expression with only O

�
m2/Q2

�
-suppressed errors point-by-point in qT. To construct it systematically, one starts by

writing the structure functions in the TMD (low-qT) approximation with the error term made explicit,

F = FTMD +
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. (71)

The error term in braces is only unsuppressed when qT is large relative to m. Thus, it can be calculated in collinear
factorization with only m2/q2T-suppressed errors. Since the error term itself is O
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, the result is that the overall
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to be the qT ⇠ Q, Q ! 1 asymptote of the TMD approximation, as it is calculated in fixed order collinear
factorization. The “⇠” means the ratio q2T/Q

2 is to be held fixed as Q ! 1. Applied to Eq. (71), the structure
function becomes

F = FTMD +
⇥
FFO � FASY

⇤
+O

�
m2/Q2

�
. (75)

The asymptotic term is consctructed to accurately describe the m ⌧ qT ⌧ Q region – both qT ⌧ Q and m ⌧ qT
approximations have been applied simultaneously. For this paper, this is simply Eq. (66) applied to structure functions.

A minor subtlety is that the exact form of the asymptotic term FASY depends on the details of how collinear pdfs
and ↵s are defined and on how higher order corrections in the perturbative expansion are truncated. If, in an O (↵n

s
)

calculation, for example, the cuto↵-defined pdfs and ↵s of Eq. (66) are replaced by their corresponding MS definitions,
then the resulting asymptotic terms will generally di↵er by O

�
m2/Q2

�
-suppressed and O

�
↵n+1
s

�
-suppressed amounts.

Furthermore, while FASY is in principle equal to the low-qT limit of FFO as Q ! 1, generally this is only exactly
true in calculations at the working order of perturbation theory. In calculations at a fixed Q, the two asymptotic
terms will typically di↵er by higher-order ↵s and power-suppressed terms. In other words, if FASY is calculated to
O (↵n

s
) with the cuto↵ scheme for pdfs and ↵s, and FFO,r is calculated to the same order in some other scheme r,

then one will generally find
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(jogh: other verions )
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That is, there is a family of valid schemes for defining the exact asymptotic term at a given order, though some
schemes can be preferable to others in the context of minimizing errors. Indeed, it is the first term in Eq. (76), with
r = MS, that represents the most common approach used in the past for calculating the asymptotic term. We will
call the asymptotic term calculated using Eq. (66) FASY

HSO .
Together, the second two terms in Eq. (75) are often called the “Y -term,” and the structure function is written as

F = FTMD + Y +O (m/Q) . (79)

to emphasize the role of Y as a large-qT correction to calculations done with TMD pdfs and ↵s. Of course, the precise
value of the Y -term contribution depends on the specific version of the asymptotic term.

In conventional treatments, the fixed order term is calculated with collinear functions in the MS scheme. The
specific version of the asymptotic structure functions used is the first term in Eq. (76), so that

FFO
ST =FFO,MS, FASY

ST = lim
qT/Q!0

FFO,MS , (80)

with “ST” subscripts to indicate “standard.” We will call a calculation of the asymptotic term done in the style of
Sec. V FASY

HSO to distinguish it from Eq. (80). Since FASY
HSO is calculated with cuto↵ definitions for the collinear pdfs

and ↵s, this suggests that the cuto↵ definitions might be preferred as well for calculating FFO. However, switching
between the MS and cuto↵ schemes in FFO only produces power suppressed and perturbative errors beyond the
working order in ↵s. Therefore, one may consistently interchange cuto↵ and MS definitions, and we will use FFO

ST for
our calculation of the fixed order structure function. We will see in later sections that the e↵ect of switching between
the two is small relative to the overall improvements from using the HSO approach. An interesting question for the
future is whether calculations of FFO can be improved by switching to a cuto↵ scheme for the collinear functions, but
we leave this to future work.

C. The TMD term in the conventional treatment

The usual approach to applying TMD factorization to phenomenology has been reviewed in many places, so we
will not repeat the details here. Readers are referred to, for example, Refs. [3, 56, 57] and references therein. The
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where the F structure functions are the usual ones obtained by contracting the projectors in Eq. (13) with the hadronic
tensor. In the small-qT approximation, the structure functions are expressed in terms of TMD pdfs and ↵s,

F = FTMD +O (m/Q, qT/Q) , (68)
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, (69)

where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (69) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2

j
from Eq. (11) in any calculations below. Calculating Eq. (69) in

a specific phenomenological implementation involves making choices about how to parametrize the TMD functions
fi/p and Dh/j , including choices about nonperturbative models and/or calculations at the input scale, the order of
precision in perturbative parts, and any other approximations or assumptions used in the construction of a specific
set of parametrizations.

B. Combining large (FFO) and small (FTMD) transverse momentum calculations

Before we contrast the FTMD calculations in the conventional and HSO styles, let us review the usual steps for
merging calculations done with TMDs with purely collinear factorization calculations designed for the qT ⇡ Q region.

In the region where qT ⇡ Q, the approximations in Eq. (69) fail. However, this is the region where fixed-order
collinear factorization calculations, which use ordinary collinear pdfs and ↵s, are most reliable. We express the large-qT
fixed-order collinear approximation to the structure functions as

F = FFO +O (m/qT) , FFO =
X

i,j

dB/i ⌦ F̂ij ⌦ fj/p , (70)

where the indices i, j run over parton flavors, and the FO superscript stands for “fixed-order.” A choice must be
made for the UV scheme that defines the collinear functions fi/p and Dh/j . The most common is renormalization in

the MS scheme. The F̂ij are the partonic versions of the structure functions, and they have been calculated up to at
least O(↵2

s
) [52–54]. In our calculations, we will use O(↵s) results [9, 11, 55].

Following standard conventions, we will use the phrase “fixed order cross section” as a short hand for Eq. (67)
calculated with the large-qT approximation in Eq. (70).2 While FTMD gives an accurate treatment of the qT ⇡ m
region, and FFO provides an accurate treatment of the qT ⇡ Q region, what is ultimately needed is a factorized
expression with only O

�
m2/Q2

�
-suppressed errors point-by-point in qT. To construct it systematically, one starts by

writing the structure functions in the TMD (low-qT) approximation with the error term made explicit,

F = FTMD +
⇥
F � FTMD

⇤
. (71)

The error term in braces is only unsuppressed when qT is large relative to m. Thus, it can be calculated in collinear
factorization with only m2/q2T-suppressed errors. Since the error term itself is O

�
q2T/Q

2
�
, the result is that the overall

error is m2/Q2-suppressed point-by-point in qT. Thus, we define
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(jogh: other asy versions)
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where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (69) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2

j
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a specific phenomenological implementation involves making choices about how to parametrize the TMD functions
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with only power suppressed corrections. We thus have

[f,D] = Dpert(z, zqT;µQ;Q
2)f c(x;µQ) +
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z2
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2)dc(z;µQ)

+

Z
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�
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◆

= [f,D]ASY +O

✓
m2

q2T

◆
(66)

Dropping the O
�
m2/q2T

�
errors gives the asymptotic term that we sought. We will denote this “asymptotic” approx-

imation by [f,D]ASY, as indicated on the last line. It is calculable entirely within collinear perturbation theory, and
it is an increasingly accurate approximate of the full cross section as qT / Q and Q ! 1. The derivation above of
Eq. (66) applies at any order of ↵s, although for this paper we will be mostly interested in O (↵s) expressions.

Notice that it is the cuto↵ definitions, Eqs. (49)–(50), for the collinear functions, and not the usual MS definitions,
that appear on the first line of Eq. (66). One recovers the full asymptotic term for the cross section by substituting
this into Eq. (8).

To specialize to the O (↵s) case at an input scale Q = Q0, with the parametrizations in Eqs. (18)–(28), one
substitutes the expressions from Eqs. (44)–(45). Equations (51) and (52) are to be used for the f c(x;µQ0) and
dc(z;µQ) on the first line of Eq. (66). If we drop O

�
↵2
s

�
and O

�
m2/Q2

�
errors, the first line then exactly matches

the more standard form of the O (↵s) asymptotic term (see, e.g., Ref. [11]).
The integral that starts on the second line of Eq. (66) is only non-zero at O

�
↵2
s

�
or higher, so it may be dropped

in a strictly O (↵s) treatment. However, there are several advantages to retaining it. One is simply that it guarantees
that, for Q = Q0, we recover the exact asymptotic kT ! Q0, m/Q0 ! 0 limit of the order-↵n

s
TMD-term. Another

is that it ensures cuto↵-invariance through the lowest non-trivial order. Recall that the cuto↵-defined pdfs and ↵s
can in general use a cuto↵ µf that di↵ers from µQ. In Eq. (66), µf dependence would appear in f c, dc, and the ⇥
functions in the integral of the last three lines. Dependence on µf enters the standard asymptotic term at order ↵2

s
,

but keeping the third term in Eq. (66) ensures that µf dependence enters [f,D]ASY only at order ↵3
s
.

VI. EXAMPLE INPUT SCALE TREATMENT

Now we turn to demonstrating how the HSO treatment described in Secs. (II)–(IV) works in practice with explicit
numerical implementations. Our purpose here is to compare the HSO treatment described thus far with the conven-
tional steps for constructing phenomenological parametrizations, and to illustrate the improvements that are gained
from using the former.

In Sec. VIA below, we will summarize the basic formulas and in Sec. VIB we will review the usual decomposition of
a transverse momentum dependent cross section into a TMD term, an asymptotic term, and a Y -term. In Sec. VIC,
we will review the conventional style of implementing TMD factorization and show examples of the complications
that can arise, some of which were already mentioned in the introduction, and in Sec. VID we show how these are
solved within the HSO approach.

In our calculations, we focus on the TMD pdfs and ↵s parametrized at an initial scale Q = Q0, a scenario previously
addressed in [10]. Estimating the lowest Q0 for which TMD factorization remains valid is rather non-trivial [16], and
we leave it as an open question. For purposes of illustration, we will try two values in sections VIC and VID below,
from the relatively low (and reasonable) Q0 = 4.0 GeV, to the (far too conservative) Q0 = 20.0 GeV, to demonstrate
how the procedure works for both a small and a large choices of Q0.

A. Basic setup

The standard expression for the SIDIS di↵erential cross section in terms of the structure functions F1 and F2 is

d�

dx dy dz dq2T
=

⇡2↵2
emz

Q2 x y

⇥
F1 x y2 + F2 (1� y)

⇤
, (67)
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to be the qT ⇠ Q, Q ! 1 asymptote of the TMD approximation, as it is calculated in fixed order collinear
factorization. The “⇠” means the ratio q2T/Q

2 is to be held fixed as Q ! 1. Applied to Eq. (71), the structure
function becomes

F = FTMD +
⇥
FFO � FASY

⇤
+O

�
m2/Q2

�
. (75)

The asymptotic term is consctructed to accurately describe the m ⌧ qT ⌧ Q region – both qT ⌧ Q and m ⌧ qT
approximations have been applied simultaneously. For this paper, this is simply Eq. (66) applied to structure functions.

A minor subtlety is that the exact form of the asymptotic term FASY depends on the details of how collinear pdfs
and ↵s are defined and on how higher order corrections in the perturbative expansion are truncated. If, in an O (↵n

s
)

calculation, for example, the cuto↵-defined pdfs and ↵s of Eq. (66) are replaced by their corresponding MS definitions,
then the resulting asymptotic terms will generally di↵er by O

�
m2/Q2

�
-suppressed and O

�
↵n+1
s

�
-suppressed amounts.

Furthermore, while FASY is in principle equal to the low-qT limit of FFO as Q ! 1, generally this is only exactly
true in calculations at the working order of perturbation theory. In calculations at a fixed Q, the two asymptotic
terms will typically di↵er by higher-order ↵s and power-suppressed terms. In other words, if FASY is calculated to
O (↵n

s
) with the cuto↵ scheme for pdfs and ↵s, and FFO,r is calculated to the same order in some other scheme r,

then one will generally find


lim

qT/Q!0
FFO,r

�O(↵n
s )

�
⇥
FASY

⇤O(↵n
s ) = O

�
↵n+1
s

,m2/Q2
�
. (76)

(jogh: other verions )


lim

qT/Q!0
FFO

�O(↵n
s )

�


lim
m/qT!0

FTMD

�O(↵n
s )

=O
�
↵n+1
s

,m2/Q2
�
.

(77)


lim
qT/Q!0

FFO

�O(↵n
s )

�


lim
m/qT!0

FTMD

�O(↵n
s )

=O
�
↵n+1
s

�
. (78)

That is, there is a family of valid schemes for defining the exact asymptotic term at a given order, though some
schemes can be preferable to others in the context of minimizing errors. Indeed, it is the first term in Eq. (76), with
r = MS, that represents the most common approach used in the past for calculating the asymptotic term. We will
call the asymptotic term calculated using Eq. (66) FASY

HSO .
Together, the second two terms in Eq. (75) are often called the “Y -term,” and the structure function is written as

F = FTMD + Y +O (m/Q) . (79)

to emphasize the role of Y as a large-qT correction to calculations done with TMD pdfs and ↵s. Of course, the precise
value of the Y -term contribution depends on the specific version of the asymptotic term.

In conventional treatments, the fixed order term is calculated with collinear functions in the MS scheme. The
specific version of the asymptotic structure functions used is the first term in Eq. (76), so that

FFO
ST =FFO,MS, FASY

ST = lim
qT/Q!0

FFO,MS , (80)

with “ST” subscripts to indicate “standard.” We will call a calculation of the asymptotic term done in the style of
Sec. V FASY

HSO to distinguish it from Eq. (80). Since FASY
HSO is calculated with cuto↵ definitions for the collinear pdfs

and ↵s, this suggests that the cuto↵ definitions might be preferred as well for calculating FFO. However, switching
between the MS and cuto↵ schemes in FFO only produces power suppressed and perturbative errors beyond the
working order in ↵s. Therefore, one may consistently interchange cuto↵ and MS definitions, and we will use FFO

ST for
our calculation of the fixed order structure function. We will see in later sections that the e↵ect of switching between
the two is small relative to the overall improvements from using the HSO approach. An interesting question for the
future is whether calculations of FFO can be improved by switching to a cuto↵ scheme for the collinear functions, but
we leave this to future work.

C. The TMD term in the conventional treatment

The usual approach to applying TMD factorization to phenomenology has been reviewed in many places, so we
will not repeat the details here. Readers are referred to, for example, Refs. [3, 56, 57] and references therein. The

1) Additional terms in the 
bracket

55
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where the F structure functions are the usual ones obtained by contracting the projectors in Eq. (13) with the hadronic
tensor. In the small-qT approximation, the structure functions are expressed in terms of TMD pdfs and ↵s,

F = FTMD +O (m/Q, qT/Q) , (68)

FTMD
1 ⌘ 2 z

X

j

|H|2
j

⇥
fj/p, Dh/j

⇤
, FTMD

2 ⌘ 4 z x
X

j

|H|2
j

⇥
fj/p, Dh/j

⇤
, (69)

where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (69) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2

j
from Eq. (11) in any calculations below. Calculating Eq. (69) in

a specific phenomenological implementation involves making choices about how to parametrize the TMD functions
fi/p and Dh/j , including choices about nonperturbative models and/or calculations at the input scale, the order of
precision in perturbative parts, and any other approximations or assumptions used in the construction of a specific
set of parametrizations.

B. Combining large (FFO) and small (FTMD) transverse momentum calculations

Before we contrast the FTMD calculations in the conventional and HSO styles, let us review the usual steps for
merging calculations done with TMDs with purely collinear factorization calculations designed for the qT ⇡ Q region.

In the region where qT ⇡ Q, the approximations in Eq. (69) fail. However, this is the region where fixed-order
collinear factorization calculations, which use ordinary collinear pdfs and ↵s, are most reliable. We express the large-qT
fixed-order collinear approximation to the structure functions as

F = FFO +O (m/qT) , FFO =
X

i,j

dB/i ⌦ F̂ij ⌦ fj/p , (70)

where the indices i, j run over parton flavors, and the FO superscript stands for “fixed-order.” A choice must be
made for the UV scheme that defines the collinear functions fi/p and Dh/j . The most common is renormalization in

the MS scheme. The F̂ij are the partonic versions of the structure functions, and they have been calculated up to at
least O(↵2

s
) [52–54]. In our calculations, we will use O(↵s) results [9, 11, 55].

Following standard conventions, we will use the phrase “fixed order cross section” as a short hand for Eq. (67)
calculated with the large-qT approximation in Eq. (70).2 While FTMD gives an accurate treatment of the qT ⇡ m
region, and FFO provides an accurate treatment of the qT ⇡ Q region, what is ultimately needed is a factorized
expression with only O

�
m2/Q2

�
-suppressed errors point-by-point in qT. To construct it systematically, one starts by

writing the structure functions in the TMD (low-qT) approximation with the error term made explicit,

F = FTMD +
⇥
F � FTMD

⇤
. (71)

The error term in braces is only unsuppressed when qT is large relative to m. Thus, it can be calculated in collinear
factorization with only m2/q2T-suppressed errors. Since the error term itself is O

�
q2T/Q

2
�
, the result is that the overall

error is m2/Q2-suppressed point-by-point in qT. Thus, we define

lim
m/qT!0

FTMD = FASY (72)

(jogh: other asy versions)

FASY = lim
m/qT!0

FTMD (73)

FASY = lim
qT/Q!0

FFO (74)

2
Note that the asymptotic term of Sec. V is also calculated in fixed order perturbation theory. However, in the terminology of this section

“fixed order term” applies specifically to calculations done using the non-asymptotic Eq. (70).
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where the F structure functions are the usual ones obtained by contracting the projectors in Eq. (13) with the hadronic
tensor. In the small-qT approximation, the structure functions are expressed in terms of TMD pdfs and ↵s,

F = FTMD +O (m/Q, qT/Q) , (68)
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where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (69) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2

j
from Eq. (11) in any calculations below. Calculating Eq. (69) in

a specific phenomenological implementation involves making choices about how to parametrize the TMD functions
fi/p and Dh/j , including choices about nonperturbative models and/or calculations at the input scale, the order of
precision in perturbative parts, and any other approximations or assumptions used in the construction of a specific
set of parametrizations.

B. Combining large (FFO) and small (FTMD) transverse momentum calculations

Before we contrast the FTMD calculations in the conventional and HSO styles, let us review the usual steps for
merging calculations done with TMDs with purely collinear factorization calculations designed for the qT ⇡ Q region.

In the region where qT ⇡ Q, the approximations in Eq. (69) fail. However, this is the region where fixed-order
collinear factorization calculations, which use ordinary collinear pdfs and ↵s, are most reliable. We express the large-qT
fixed-order collinear approximation to the structure functions as

F = FFO +O (m/qT) , FFO =
X

i,j

dB/i ⌦ F̂ij ⌦ fj/p , (70)

where the indices i, j run over parton flavors, and the FO superscript stands for “fixed-order.” A choice must be
made for the UV scheme that defines the collinear functions fi/p and Dh/j . The most common is renormalization in

the MS scheme. The F̂ij are the partonic versions of the structure functions, and they have been calculated up to at
least O(↵2

s
) [52–54]. In our calculations, we will use O(↵s) results [9, 11, 55].

Following standard conventions, we will use the phrase “fixed order cross section” as a short hand for Eq. (67)
calculated with the large-qT approximation in Eq. (70).2 While FTMD gives an accurate treatment of the qT ⇡ m
region, and FFO provides an accurate treatment of the qT ⇡ Q region, what is ultimately needed is a factorized
expression with only O

�
m2/Q2

�
-suppressed errors point-by-point in qT. To construct it systematically, one starts by

writing the structure functions in the TMD (low-qT) approximation with the error term made explicit,

F = FTMD +
⇥
F � FTMD

⇤
. (71)

The error term in braces is only unsuppressed when qT is large relative to m. Thus, it can be calculated in collinear
factorization with only m2/q2T-suppressed errors. Since the error term itself is O

�
q2T/Q

2
�
, the result is that the overall

error is m2/Q2-suppressed point-by-point in qT. Thus, we define

lim
m/qT!0

FTMD = FASY (72)

(jogh: other asy versions)

FASY = lim
m/qT!0

FTMD (73)

FASY = lim
qT/Q!0

FFO (74)

2
Note that the asymptotic term of Sec. V is also calculated in fixed order perturbation theory. However, in the terminology of this section

“fixed order term” applies specifically to calculations done using the non-asymptotic Eq. (70).

The usual asymptotic 
term

Asymptotic term
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to be the qT ⇠ Q, Q ! 1 asymptote of the TMD approximation, as it is calculated in fixed order collinear
factorization. The “⇠” means the ratio q2T/Q

2 is to be held fixed as Q ! 1. Applied to Eq. (71), the structure
function becomes

F = FTMD +
⇥
FFO � FASY

⇤
+O

�
m2/Q2

�
. (75)

The asymptotic term is consctructed to accurately describe the m ⌧ qT ⌧ Q region – both qT ⌧ Q and m ⌧ qT
approximations have been applied simultaneously. For this paper, this is simply Eq. (66) applied to structure functions.

A minor subtlety is that the exact form of the asymptotic term FASY depends on the details of how collinear pdfs
and ↵s are defined and on how higher order corrections in the perturbative expansion are truncated. If, in an O (↵n

s
)

calculation, for example, the cuto↵-defined pdfs and ↵s of Eq. (66) are replaced by their corresponding MS definitions,
then the resulting asymptotic terms will generally di↵er by O

�
m2/Q2

�
-suppressed and O

�
↵n+1
s

�
-suppressed amounts.

Furthermore, while FASY is in principle equal to the low-qT limit of FFO as Q ! 1, generally this is only exactly
true in calculations at the working order of perturbation theory. In calculations at a fixed Q, the two asymptotic
terms will typically di↵er by higher-order ↵s and power-suppressed terms. In other words, if FASY is calculated to
O (↵n

s
) with the cuto↵ scheme for pdfs and ↵s, and FFO,r is calculated to the same order in some other scheme r,

then one will generally find


lim

qT/Q!0
FFO,r

�O(↵n
s )

�
⇥
FASY

⇤O(↵n
s ) = O

�
↵n+1
s

,m2/Q2
�
. (76)

(jogh: other verions )
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FFO

�O(↵n
s )

�
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lim
m/qT!0

FTMD

�O(↵n
s )

=O
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s

,m2/Q2
�
.
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�O(↵n
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�
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lim
m/qT!0

FTMD

�O(↵n
s )

=O
�
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s

�
. (78)

That is, there is a family of valid schemes for defining the exact asymptotic term at a given order, though some
schemes can be preferable to others in the context of minimizing errors. Indeed, it is the first term in Eq. (76), with
r = MS, that represents the most common approach used in the past for calculating the asymptotic term. We will
call the asymptotic term calculated using Eq. (66) FASY

HSO .
Together, the second two terms in Eq. (75) are often called the “Y -term,” and the structure function is written as

F = FTMD + Y +O (m/Q) . (79)

to emphasize the role of Y as a large-qT correction to calculations done with TMD pdfs and ↵s. Of course, the precise
value of the Y -term contribution depends on the specific version of the asymptotic term.

In conventional treatments, the fixed order term is calculated with collinear functions in the MS scheme. The
specific version of the asymptotic structure functions used is the first term in Eq. (76), so that

FFO
ST =FFO,MS, FASY

ST = lim
qT/Q!0

FFO,MS , (80)

with “ST” subscripts to indicate “standard.” We will call a calculation of the asymptotic term done in the style of
Sec. V FASY

HSO to distinguish it from Eq. (80). Since FASY
HSO is calculated with cuto↵ definitions for the collinear pdfs

and ↵s, this suggests that the cuto↵ definitions might be preferred as well for calculating FFO. However, switching
between the MS and cuto↵ schemes in FFO only produces power suppressed and perturbative errors beyond the
working order in ↵s. Therefore, one may consistently interchange cuto↵ and MS definitions, and we will use FFO

ST for
our calculation of the fixed order structure function. We will see in later sections that the e↵ect of switching between
the two is small relative to the overall improvements from using the HSO approach. An interesting question for the
future is whether calculations of FFO can be improved by switching to a cuto↵ scheme for the collinear functions, but
we leave this to future work.

C. The TMD term in the conventional treatment

The usual approach to applying TMD factorization to phenomenology has been reviewed in many places, so we
will not repeat the details here. Readers are referred to, for example, Refs. [3, 56, 57] and references therein. The

2) Hard coefficient in TMD  
term
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where the F structure functions are the usual ones obtained by contracting the projectors in Eq. (13) with the hadronic
tensor. In the small-qT approximation, the structure functions are expressed in terms of TMD pdfs and ↵s,

F = FTMD +O (m/Q, qT/Q) , (68)

FTMD
1 ⌘ 2 z

X

j

|H|2
j

⇥
fj/p, Dh/j

⇤
, FTMD

2 ⌘ 4 z x
X

j

|H|2
j

⇥
fj/p, Dh/j

⇤
, (69)

where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (69) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2

j
from Eq. (11) in any calculations below. Calculating Eq. (69) in

a specific phenomenological implementation involves making choices about how to parametrize the TMD functions
fi/p and Dh/j , including choices about nonperturbative models and/or calculations at the input scale, the order of
precision in perturbative parts, and any other approximations or assumptions used in the construction of a specific
set of parametrizations.

B. Combining large (FFO) and small (FTMD) transverse momentum calculations

Before we contrast the FTMD calculations in the conventional and HSO styles, let us review the usual steps for
merging calculations done with TMDs with purely collinear factorization calculations designed for the qT ⇡ Q region.

In the region where qT ⇡ Q, the approximations in Eq. (69) fail. However, this is the region where fixed-order
collinear factorization calculations, which use ordinary collinear pdfs and ↵s, are most reliable. We express the large-qT
fixed-order collinear approximation to the structure functions as

F = FFO +O (m/qT) , FFO =
X

i,j

dB/i ⌦ F̂ij ⌦ fj/p , (70)

where the indices i, j run over parton flavors, and the FO superscript stands for “fixed-order.” A choice must be
made for the UV scheme that defines the collinear functions fi/p and Dh/j . The most common is renormalization in

the MS scheme. The F̂ij are the partonic versions of the structure functions, and they have been calculated up to at
least O(↵2

s
) [52–54]. In our calculations, we will use O(↵s) results [9, 11, 55].

Following standard conventions, we will use the phrase “fixed order cross section” as a short hand for Eq. (67)
calculated with the large-qT approximation in Eq. (70).2 While FTMD gives an accurate treatment of the qT ⇡ m
region, and FFO provides an accurate treatment of the qT ⇡ Q region, what is ultimately needed is a factorized
expression with only O

�
m2/Q2

�
-suppressed errors point-by-point in qT. To construct it systematically, one starts by

writing the structure functions in the TMD (low-qT) approximation with the error term made explicit,

F = FTMD +
⇥
F � FTMD

⇤
. (71)

The error term in braces is only unsuppressed when qT is large relative to m. Thus, it can be calculated in collinear
factorization with only m2/q2T-suppressed errors. Since the error term itself is O

�
q2T/Q

2
�
, the result is that the overall

error is m2/Q2-suppressed point-by-point in qT. Thus, we define

lim
m/qT!0

FTMD = FASY (72)

(jogh: other asy versions)

FASY = lim
m/qT!0

FTMD (73)

FASY = lim
qT/Q!0

FFO (74)

2
Note that the asymptotic term of Sec. V is also calculated in fixed order perturbation theory. However, in the terminology of this section

“fixed order term” applies specifically to calculations done using the non-asymptotic Eq. (70).
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where the “TMD” superscript denotes the small-qT approximation. Compare Eq. (69) with Eq. (8) for the hadronic
tensor. We will use the O(↵s) hard factor |H|2
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from Eq. (11) in any calculations below. Calculating Eq. (69) in
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the MS scheme. The F̂ij are the partonic versions of the structure functions, and they have been calculated up to at
least O(↵2
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) [52–54]. In our calculations, we will use O(↵s) results [9, 11, 55].

Following standard conventions, we will use the phrase “fixed order cross section” as a short hand for Eq. (67)
calculated with the large-qT approximation in Eq. (70).2 While FTMD gives an accurate treatment of the qT ⇡ m
region, and FFO provides an accurate treatment of the qT ⇡ Q region, what is ultimately needed is a factorized
expression with only O
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The error term in braces is only unsuppressed when qT is large relative to m. Thus, it can be calculated in collinear
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lim
m/qT!0

FTMD = FASY (72)

(jogh: other asy versions)

FASY = lim
m/qT!0

FTMD (73)

FASY = lim
qT/Q!0

FFO (74)

2
Note that the asymptotic term of Sec. V is also calculated in fixed order perturbation theory. However, in the terminology of this section

“fixed order term” applies specifically to calculations done using the non-asymptotic Eq. (70).
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with an evolution factor

E(Q0/Q0, bT) ⌘ exp

(Z
µQ0

µQ0

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q0

µ0 �K(↵s(µ
0))

�
+ ln

Q0

Q0

K̃inpt(bT;µQ0
)

)
. (39)

Once the numerical values of parameters in D̃h/j(z, bT;µQ0 , Q
2
0) and f̃i/p(x, bT;µQ0 , Q

2
0) are determined and fixed as

above, the TMD term at any other larger scale Q is found straightforwardly by substituting these into Eq. (15).
The scale Q0 is designed to be approximately Q0 for Q ⇡ Q0, where the only important range of bT is bT & 1/Q0,

and the left and right sides of Eqs. (37)–(38) are nearly equal. For large Q (Q � Q0), the UV bT ⌧ 1/Q0 region
starts to become important and cannot be ignored. There, Q0 smoothly transitions into a ⇠ 1/bT behavior such that
RG improvement is implemented in the bT ! 0T limit. The left sides of Eqs. (37)–(38) are the parametrizations that
we labeled with underlines in Eq.(60) of Ref. [16], while the “input” functions on the left sides are to be used for
phenomenological fitting for Q ⇡ Q0. By construction, the left and right sides of Eqs. (37)–(38), as well Q0 and Q0,
di↵er negligibly in the range of bT relevant to Q ⇡ Q0 phenomenology – recall the discussion in Sec. V of [16].

For the examples implementations we will perform in Sec. VID, we will use the approximation

E(Q0/Q0, bT) ⇡ 1 , (40)

and set Q0 ! Q0, since for this paper our main focus is on the Q ⇡ Q0 region and the construction of satisfactory
parametrizations for D̃inpt,h/j(z, bT;µQ0 , Q

2
0) and f̃inpt,i/p(x, bT;µQ0 , Q

2
0). At the end of Sec. VID, we will restore the

Q0 treatment and confirm that its e↵ect is negligible at Q ⇡ Q0.
It can be seen by inspection that the input parametrizations defined in Eq. (18) and Eq. (28) are constrained to

match the perturbative large-kT collinear factorization approximations for the TMD pdfs and ↵s,

Dpert
inpt,h/j(z, zkT;µQ0 , Q

2
0) =

1

2⇡z2
1

k2T


AD

h/j
(z;µQ0) +BD

h/j
(z;µQ0) ln

Q2
0

k2T

�
+

1

2⇡z2
1

k2T
AD,g

h/j
(z;µQ0) , (41)

fpert
inpt,i/p(x,kT;µQ0 , Q

2
0) =

1

2⇡

1

k2T


Af

i/p
(x;µQ0) +Bf

i/p
(x;µQ0) ln

Q2
0

k2T

�
+

1

2⇡

1

k2T
Af,g

i/p
(x;µQ0) , (42)

which are good approximations to the true TMD correlation functions when kT ⇡ Q0 and Q0 � m. Equations (41)
and (42) are calculable entirely within leading power collinear factorization. The same expressions apply at any value
of Q, but for this paper we are especially interested in Q near the input scale.

IV. GAUSSIAN VERSUS SCALAR DIQUARK MODELS

The model parametrizations of the last section are still quite general. The only choices that have been made so
far are to use an additive structure to interpolate to the order-↵s perturbative tail at kT ⇡ Q0 and the choice of the
parametrization of the CS kernel in Eq. (17). Further assumptions are necessary before these parametrizations can
become useful.

Most of the e↵ort in nonperturbative modeling enters in the choices for the functional forms for Dcore,h/j(z, zkT;Q2
0)

and fcore,i/p(x,kT;Q2
0) that describe the very small kT ⇡ 0T behavior. However, many approaches to modeling or

parametrizing this region of nonperturbative TMDs already exist [26–47], and one may defer to them at this stage in
the parametrization construction. The only way these previously existing models need to be modified is by including
the interpolation to the order ↵s large-kT behavior, and by imposing integral relations analogous to Eq. (2). All that
remains is to adjust Dcore,h/j(z, zkT;Q2

0) and fcore,i/p(x,kT;Q2
0) so as to recover (at least approximately) existing

model parametrizations in the kT ⇡ 0 region. The parametersmDj,h ,mDg,h ,mfi,p ,mfg,p control the transition between
the kT model and the large kT perturbative tail.

For the purposes of this article, we will focus on two of the most commonly used models in phenomenology that
are simple to implement. The first is the Gaussian model of TMDs (see, for example, Refs.[48–50]), which is often
found to successfully describe data at lower Q. It prescribes the functions forms

fGauss
core,i/p(x,kT;Q

2
0) =

e�k
2
T/M

2
F

⇡M2
F

, DGauss
core,h/j(z, zkT;Q

2
0) =

e�z
2
k
2
T/M

2
D

⇡M2
D

. (43)

The second model that we will consider is inspired by the popular spectator diquark model [28, 51]. For it, we adopt

9

the functional forms

fSpect
core,i/p(x,kT;Q

2
0) =

6M6
0F

⇡ (2M2
F +M2

0F)

M2
F + k2T

(M2
0F + k2T)

4
. (44)

DSpect
core,h/j(z, zkT;Q

2
0) =

2M4
0D

⇡ (M2
D +M2

0D)

M2
D + k2Tz

2

(M2
0D + k2Tz

2) 3
, (45)

The overall factors in Eqs. (43)–(45) are chosen so that ND

h/j
= Nf

i/p
= 1 in both models (recall Eq. (27) and Eq. (36)).

In later sections, it will often be convenient to work with collinear pdfs and ↵s defined as the cuto↵ transverse
momentum integrals of TMD pdfs and ↵s. Hence, we define

f c

i/p
(x;µQ) ⌘ 2⇡

Z
µQ

0
dkT kTfi/p(x,kT;µQ, Q

2) , (46)

dc
h/j

(z;µQ) ⌘ 2⇡z2
Z

µQ

0
dkT kTDh/j(z, zkT;µQ, Q

2) , (47)

where the c superscript stands for “cuto↵.” The cuto↵ definitions could be defined more generally with an upper
limit µf di↵erent from µQ, but we will keep these scales equal for the present paper. The cuto↵ and MS-renormalized
definitions are equal up to a scheme change and m2/µ2

Q
-suppressed corrections.

With our parametrizations of TMD pdfs and ↵s in the previous section, the integrals are

f c

inpt,i/p(x;µQ0) =2⇡

Z
µQ0

0
dkT kTfinpt,i/p(x,kT;µQ0 , Q

2
0) =

Cf

i/p
f c

core,i/p(x;µQ0) +
1

2
Af,g

i/p
(x;µQ0) ln

 
1 +

µ2
Q0

m2
fg,p

!

+
1

2
Af

i/p
(x;µQ0) ln

 
1 +

µ2
Q0

m2
fi,p

!
+

1

4
Bf

i/p
(x;µQ0)

"
ln2
 
m2

fi,p

Q2
0

!
� ln2

 
µ2
Q0

+m2
fi,p

Q2
0

!#

= fi/p(x;µQ0) +O

✓
↵s(µ0),

m2

Q2
0

◆
, (48)

and

dcinpt,h/j(z;µQ0) =2⇡z2
Z
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0
dkT kTDinpt,h/j(z, zkT;µQ0 , Q

2
0) =
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h/j
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1

2
AD,g

h/j
(z;µQ0) ln
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µ2
Q0

m2
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!

+
1

2
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h/j
(z;µQ0) ln

 
1 +

µ2
Q0

m2
Dh,j

!
+

1

4
BD

h/j
(z;µQ0)

"
ln2
 
m2

Dh,j

Q2
0

!
� ln2

 
µ2
Q0

+m2
Dh,j

Q2
0

!#

= dh/j(z;µQ0) +O

✓
↵s(µ0),

m2

Q2
0

◆
, (49)

with

f c,Gauss
core,i/p(x;µQ0 , Q

2
0) = 1� e�µ

2
Q0

/M
2
F , dc,Gauss

core,h/j(z;µQ0 , Q
2
0) = 1� e�z

2
µ
2
Q0

/M
2
D , (50)

in the case of the Gaussian model, and

f c,Spect
core,i/p(x;µQ0 , Q

2
0) = 1�

M6
0F

�
2M2

F +M2
0F + 3µ2

Q0

�

(2M2
F +M2

0F)
⇣
M2

0F + µ2
Q0

⌘
3
, (51)

dc,Spectcore,h/j(z;µQ0 , Q
2
0) = 1�

M4
0D

�
M2

D +M2
0D + 2µ2

Q0
z2
�

(M2
D +M2

0D)
⇣
M2

0D + µ2
Q0

z2
⌘

2
. (52)

in the case of the spectator model. Note that Eqs. (50)–(52) are all 1 up to (at most) m2/µ2
Q0

-suppressed errors.

HSO approach
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HSO approach

Consistency of the band with the asymptotic term means 
the models for TMDs have been made consistent with collinear  
factorization. In the usual approach, this is the aim
when embedding the OPE. 

59



10-8

10-7

10-6

10-5

10-4

10-3

10-2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.1 GeV < MF=mF < 0.4 GeV
0.1 GeV < MD/z=mD/z < 0.3 GeV

M0F=M0D/z=0.2 GeV

Q=Q0=4 GeV

x=0.1 z=0.3

y=0.5

|d
σ 

/ d
x 

dy
 d

z 
dq

T2 |
 [G

eV
-4

]

qT [GeV]

TMDHSO(Spectator)
ASYHSO
|H|2 FOST

10-8

10-7

10-6

10-5

10-4

10-3

10-2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.1 GeV < MF=mF < 0.4 GeV 
0.1 GeV < MD/z=mD/z < 0.3 GeV 

Q=Q0=4 GeV

x=0.1 z=0.3

y=0.5

|d
σ 

/ d
x 

dy
 d

z 
dq

T2 |
 [G

eV
-4

]

qT [GeV]

TMDHSO(Gaussian)
ASYHSO
|H|2 FOST

HSO approach

10-3

10-2

10-1

100

101

102

103

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.1 GeV < MD/z=mD/z < 0.3 GeV 

Q0=4 GeV   z=0.3

| D
π+

/u
,in

pt
 |

kT [GeV]

DHSO
Dpert

10-5

10-4

10-3

10-2

10-1

100

101

102

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.1 GeV < MF=mF < 0.4 GeV 

Q0=4 GeV   x=0.1
| f

u/
p,

in
pt

 |

kT [GeV]

fHSO
fpert

60



✴Standard treatment vs HSO approach.
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bmax sensitivity

b* prescription not used in HSO. It is instructive though
to construct g-functions from HSO approach

14

working order in ↵s. Therefore, one may consistently interchange cuto↵ and MS definitions, and we will use FFO
ST for

our calculation of the fixed order structure function. We will see in later sections that the e↵ect of switching between
the two is small relative to the overall improvements from using the HSO approach. An interesting question for the
future is whether calculations of FFO can be improved by switching to a cuto↵ scheme for the collinear functions, but
we leave this to future work.

C. The TMD term in the conventional treatment

The usual approach to applying TMD factorization to phenomenology has been reviewed in many places, so we
will not repeat the details here. Readers are referred to, for example, Refs. [3, 56, 57] and references therein. The
standard expression used in calculations follow from making the following replacement in Eqs. (66):

⇥
fj/p, Dh/j

⇤
!
Z

d2bT
(2⇡)2

e�iqT·bT f̃OPE
j/p

(x, b⇤;µb⇤ , µ
2
b⇤) D̃

OPE
h/j

(z, b⇤;µb⇤ , µ
2
b⇤)

⇥ exp

(
2

Z
µQ

µb⇤

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q

µ0 �K(↵s(µ
0))

�
+ ln

Q2

µ2
b⇤

K̃(b⇤;µb⇤)

)

⇥ exp

⇢
�gj/p(x, bT)� gh/j(z, bT)� gK(bT) ln

✓
Q2

Q2
0

◆�
. (74)

(jogh: before ope)

⇥
fj/p, Dh/j

⇤
!
Z

d2bT
(2⇡)2

e�iqT·bT f̃j/p(x, bT;µQ0 , µ
2
Q0

) D̃h/j(z, bT; bT;µQ0 , µ
2
Q0

)

⇥ exp

(
2

Z
µQ

µQ0

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q

µ0 �K(↵s(µ
0))

�
+ ln

Q2

Q2
0

K̃(bT;µQ0)

)
. (75)

(jogh: then)

⇥
fj/p, Dh/j

⇤
!
Z

d2bT
(2⇡)2

e�iqT·bT f̃j/p(x, b⇤;µb⇤ , µ
2
b⇤) D̃h/j(z, b⇤;µb⇤ , µ

2
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⇥ exp
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µ0
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�(↵s(µ

0); 1)� ln
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µ0 �K(↵s(µ
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�
+ ln
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⇥ exp
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�gj/p(x, bT)� gh/j(z, bT)� gK(bT) ln

✓
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◆�
. (76)

The f̃OPE
j/p

and D̃OPE
h/j

on the first line are the TMD pdfs and ↵s in bT-space, expanded and truncated in an operator

product expansion. The �, �K and K̃ are the usual evolution kernels. The “b⇤” method has been used to regulate
f̃OPE
j/p

, D̃OPE
h/j

, and K̃ at large bT. (See reviews of the b⇤ method in Sec. IXA of [16] and in Sec. VIII of [58].) The
most common choice for a functional form for b⇤ is

b⇤(bT) =
bTp

1 + b2T/b
2
max

, (77)

where bmax is a transverse size scale that demarcates a separation between large and small transverse size regions. In
principle, both the functional form of Eq. (77) and the value of bmax are completely arbitrary, but a small bmax justifies
the use of the OPE on the first line of Eq. (74); the error term in the approximation in Eq. (74) is suppressed by
powers of mbmax. All of the nonperturbative transverse momentum dependence is contained in the bT-space functions
gj/p, gh/j , and gK , whose definitions in terms of the more fundamental correlation functions are

�gj/p(x, bT) ⌘ ln

 
f̃j/p(x, bT;µQ0 , Q

2
0)

f̃j/p(x, b⇤;µQ0 , Q
2
0)

!
, �gh/j(z, bT) ⌘ ln

 
D̃h/j(z, bT;µQ0 , Q

2
0)

D̃h/j(z, b⇤;µQ0 , Q
2
0)

!
, (78)

and

gK(bT) ⌘ K̃(b⇤;µ)� K̃(bT;µ) . (79)
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b* prescription not used in HSO. It is instructive though
to construct g-functions from HSO approach
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Some comparisons
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