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Deep Inelastic Scattering at threshold

A "simple" framework where
to test/explore factorization

in hadron processes

Relevant for better
understanding hadron
structure (ratio u/d,
positivity bound etc..)
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Impact of theoretical constraints: positivity
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Fits and future data interpretation
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Widely studied in the past...

In QCD
 Summation of Large Corrections to Short Distance Hadronic Cross-Sections, Sterman (1986)
 Resummation of the QCD Perturbative Series for Hard Processes, Catani, Trentadue (1989)

In SCET

* Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, Becher, Neubert, Pecjak
(2007)

* Rapidity Divergences and Deep Inelastic Scattering in the Endpoint Region, Fleming, Ou Labun (2012)

* Proper factorization theorems in high-energy scattering near the endpoint, Chay, Kim (2013)

...but there are still some subtleties not fully explored.
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» Early QCD works use an "archaic" (poetic) language for the mechanism of soft
subtractions

In the terminology of [13], any choice of soft subdiagram § is known as a “tulip”.
A “garden” K is any set { S} of nested (non-overlapping and not disjoint) sets of
tulips S. An example is shown in fig. 4.3, This construction allows one to show [13]

[Sterman (1986)]

[> The treatment of rapidity divergences is never really addressed ]

> Debatable gauge choice A% = () in light of modern considerations

difficulties in a general treatment. Even the non-light-like case, with n* # 0, is not adequate
for our later work, because the singularity at k - n = 0 breaks standard analyticity rules for
propagators that are needed in proofs of factorization; see Ch. 14.

[Collins (2011)]

Need to uniform the language to modern formalism
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Well, this was

almost 40 years ago
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» In SCET the factorization theorem is clear and simple:

| ‘ ‘ ) ‘ . 1 . — T
F;“(;If, Q‘z) = Z Ej |CL’(QJ: F--’*:‘F QJ ] dg J (QE 3

q a xr

[Becher, Neubert, Pecjak (2007)]
Different organization

compare it with Sterman's / of subtractions

F(x,0%) = Hui( ) [ (/903,02 [ (aw/I1 = w]¥(wQ)

xJ[Q*(y—-x—w)/2x,0] +O(1 - x)°. (3.13)
[Sterman (1986)]

» Difficulties/problems with rapidity divergences

[rapidity anomalous dimensions] reveal sensitivity to IR scales,
which may signal a breakdown of rapidity factorization in SCET), .

[Fleming, Labun (2012)]
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Goals

O Uniform the language of early QCD works to modern factorization formalism (in QCD) -

L Fix once and for all the subtleties related to the rapidity divergences and the
subtraction mechanism

O Find (and exploit) analogies with processes apparently very different but actually
sharing a similar physics

+ A
: TWC.) light-cone |rf_ﬂ_<\ Analogies with TMD
directions entangled 4 9
b + radiati f] processes, event shape
y soft radiation observables (thrust etc...)

d Obtain a factorization theorem that is consistent with the result of the past,
completing and bridging all of them in a fully consistentand modern QCD treatment
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Kinematics and Libby-Sterman analysis
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Factorization

HTV L‘
* Power counting <
. ) . k' — S
 Definition of kinematic ks

approximators

> e

* Ward identities k ﬁ/

§—Tpj o
Fi =|V(¢° |2NC / d / dp p(&;m)S (p) J (£ - p) + p.s.
Tbj Jax, 0 § x

Same as Sterman (1987)  F(x, Q%) =|Hp(0?) lzf(dy/y)fb(y, Q*)fnyﬂ(dW/ll - w)¥(wQ)

xJ[0%(y—x—w)/2x,0] +O(1 - x)°. (3.13)
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Factorization
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1. Dealing with rapidities:
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Kinematic approximations are defined in such a way that light-cone directions are reached only as a limit.

off light-cone

lim {Factorization} _ {
tilt—0 -

tilt—0

BUT lim Operator
{ off light-con
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Factorization
on the light-cone

£ Operator
e on the light-con

(1,0,6T)  lim (1,—6—291,6T)

Y1 —>00

(0,1,6T) —  lim (—eng,l,ﬁT)

Y2 —+r— 00
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Factorization
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2. Dealing with subtractions:
Overlapping between soft and collinear momentum regions

) e (52

o) = [ o 0150 (1)
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Mellin Space: Convolutions == Products

— 1
o B o) = [ dee¥ oo
Fl :/ d$bj :L‘g-_l Fl(.“i?bj)
0

= Ne|V (g2 P Gsub. (N:91)S (N3 y1, y2) Jsun. (N y2) + p.s. A ! 1 /1-a
\_ J J(N) —/ da ™! —J( )
0

— §(N)=/ﬂ dw (1 — w)N =19 (w)

—

Also, dealing with rapidities and subtractions is much easier:

T (N o) = im0
S1D. b - - — . g
yi—oo S(N,y1,y2) The dependence on the rapidity regulators cancel
out at the level of structure functions i.e. in the
final factorization theorem

R _ o(N,5)
) N* — 11]11 I — -
Dsub. ( ) yl) fja— — 00 S(N; Y1, '3;"2)
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Soft Function The Collins-Soper kernel

‘ |
appears in DIS operators! Ly = log ( 1 Ew)
V2Pt
7P "Y1
5 S(N, iy, y2) = uxp{ / dy K (as(p). Ln +y) +
U2
1 LT 17 9. .
; [P (”-H(ﬁi-): Ly +yit 5 ) - P (“-5*(ﬂ=): Ly 4yt )] SO (e ) }
~~
: v (27
’ Qe TE
— S(bp, iy, y2) = GXD{(yu —y2) K (as(p), Ly) +
N
Z) — Plas(p). Ly) + O ({%_2”] : {-‘;EW) }
=
N
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Subtracted Target Function

¢ (&) = 27"

2?1’ Yo — —0OC

/ Parton Density at threshold

tilted off the light-cone

)

.I (N1 §2)
N;y1,42)

Dsub. (N, y1) = _lim
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J Ly
/

e
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))

d [~ Cancelled out in the product

@ (S (N 1391, 42) X dsup. (N, ‘”"yl)) =0 with the soft function
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Subtracted Jet Function

7 (EQ/QQ) 2wl

= . J(N,51)
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Cancelled out in the product
with the soft function
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The factorization theorem is then:

o o~

- : (N3 1y
A= tim No[V(@)? 2282 gy, p) 200
100 S(N;iy1,92) S(N;y1,y2)

Yo —+ — 00

* All operators are rapidity finite.
* The dependence on the rapidity regulators y, 4, vanishesin the final result.
* The P-terms (off light-cone effects) cancel out in the final result.

'IJN‘

Fy = Ne V()| bsup. (N, i, L) exp { /

— N

The Collins-Soper kernel appears
in DIS structure functions!

A. Simonelli - JLAB

dy K (ag(p), Ln + y)} Jsub. (N, jt, —Ly) + ps.
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The factorization theorem is then:

.

- (N; 7 J(N;7
Fy = lim N¢|V(¢*)|? A@( ’yﬂ S(N;y1,1y2) = ( ;yl) + p.s.
A S(N;y1,72) S(N: 71, v2)

* All operators are rapidity finite.
* The dependence on the rapidity regulators , 4, vanishesin the final result.
* The P-terms (off light-cone effects) cancel out in the final result.

'IJN‘

Fy = Ne V()| bsup. (N, i, L) exp { /

— N

The Collins-Soper kernel appears
in DIS structure functions!
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dy K (ag(p), Ln + y)} Jsub. (N, jt, —Ly) + ps.
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Optimal definition (square root) for the Target Function

4 | | )
=) ua o~ III ,(_‘_)1; \ ﬁ " ' T
allht (1\ UH} = lim ¢ ( N, U") III = ~ (,ﬂ U“]“ / ) -~
U' e \ S ( N, U] : .U.'.i‘-) "S(*"\r- Yns Y2 ‘J
N - J
5 log Pt
SUb- — —K (as(p), LN +yn) , 5
| dyn with: L7 = log 2(P+)2N€”’E
dlog qbzﬂll:c'
- = , Lt — L n
dlog 1 Yo (as(p), LT — Ly + yn)

dp'’

oo (N i yn) = 6 (N o, o) exp { f — [yslas(i)) + vi(as(W)) (L — Ly +yn)1}
H

‘Un
X exp {—/ dy K (as(p), Ly + ZU)}

Yo

BONUS (matching): @:ﬂi}t(f\f i, —Ly)=C""(as(p)) fthr(N, j) «— PDF operatgr(defined on the |
A. Simonelli - JLAB light-cone) in the threshold region
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Optimal definition (square root) for the Jet Function
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BONUS (matching): :E}I;t (j\x I, —L"xr) — (a_s(Ji)) j(N! H) - Sta?dardJet Fun_ction Operator
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Fl — NC|V(QE)‘2 Eq - (N'; Hs y”) ‘-ﬂ]h (N H y“)

sub.
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-- Yn <+— Separation of left and right moving quanta

Or, exploiting evolution...
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o sqrt.

Fy = Ne|V(¢*)[* oo (N, g)elo @100 Eaee) TR

sub. (ﬁr; M y”)

mﬂ? Yo Typical jet rapidity scale (large and negative)

Jsub’.’ |
7

P [rapidity anomalous dimensions] reveal
- sensitivity to IR scales, which may signal a
breakdown of rapidity factorization in SCET,, .

[Fleming, Labun (2012)]

oJug W Klas(p),Ln+y)

Rapidity evolution is sensitive to IR scales through
the Collins-Soper kernel. There is no breakdown of
factorization, and the separation of rapidity scales
't Is totally analogous to TMD processes.

D —

Jo Typical target rapidity scale (large and positive)
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There are two natural choices for the reference rapidity
scales:

1. Threshold choice: Yo = —Ln =7,

o Simplifies the evolution (and the subtractions):

) osqrt. 7 <

S

| = —K (as(p), LN + yn)
()"l/n

d log J o (N, i, Yn)

sub.

) = K (as(p), LN + yn)
()'.‘/n

o Leads to standard SCET result and naive (on the light-cone)
factorization approach.

Fy = H (as(p) f(N, @) T(as(u,log (11/Q))

A. Simonelli - JLAB
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There are two natural choices for the reference rapidity —

scales:

2. TMD choice:

o Natural separation of scales: large and positive for target,

Yo =

—LN;

large and negative for jet.

o Leads to aresult in which the CS-kernel is explicit!

F\ = H (a.

s(1)) ¢

Asqﬂz
“sub.

-

] Fody! p ! /
@(N;H,L.c\r):C"l((LS(#_N))fthr'(f\"a#f\f)exp{] %[’*’f(“*"'(“ D dast ))k’g( “ )”
N .

Loy
X exp {—/ d-yK (a.S(’u),LN ‘I",U)}
0
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(N

Yoy = LN

1, Ly) C (as(p) T (N, ﬁ)e-‘r—ﬁw dy K (as(u).Ln+y)

Vap+
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Conclusions

] Re-derivation of the factorization of DIS at threshold in full QCD and with a modern approach. All past
results are included into a more general treatment.

[ All the subtleties related to the rapidity divergences and the separation of the rapidity scales have been
addressed in detail and clarified.

1 The analogies with TMD physics are transparent and, more generally, they are the evidence
for structures shared by processes only apparently very different.

O In particular, the Collins-Soper kernel plays a crucial role in entangling opposite directions on the light-
cone. This feature is related to its geometrical nature, beyond the sole framework of the TMD physics.

= Sqr . T(NT N dy K (as (i), LN+
Fy = H (as(p) 655 (N, i, Ly) C (as (1)) T (N, p)el -tn W las @ Laty) maﬂk
You!
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