p_T resummation in Drell-Yan and determination of the W mass at hadron colliders

Paolo Torrielli Università di Torino and INFN

OCD Evolution 2024 Pavia, May 27th 2024

Drell-Yan at the LHC

Paolo Torrielli

Status: February 2022

- DY: the LHC standard candle lacksquare
- Large cross section and clean signature due to hard charged lepton(s) in the final state
- Allows experimental measurements \bullet and theoretical predictions of the highest precision

Drell-Yan at the LHC

- Fixed-order DY computations reliable only for large values of $p_T \sim M$
- Large soft/collinear $\log(p_T/M)$ arising when $p_T \ll M$
- All-order resummation of $log(p_T/M)$ needed

Paolo Torrielli

Outline

Paolo Torrielli

 p_T resummation in Drell-Yan and determination of the W mass at hadron colliders

• State-of-the-art p_T resummation in QCD

• Inclusion of EW effects in p_T resummation

• Implications for m_W determination

• State-of-the-art p_T resummation in QCD

• Inclusion of EW effects in p_T resummation

• Implications for m_W determination

p_T resummation in Drell-Yan

- Variety of frameworks to perform p_T resummation: b-space / momentum space, QCD / SCET, TMD
- Nowadays full N3LL' QCD accuracy, i.e. $\alpha_s^n \log$

$$pg(p_T/M)^{n-2}$$
 and $\alpha_s^n \log(p_T/M)^{2n-6}$

Ingredients known for N4LL in QCD, i.e. $\alpha_s^n \log(p_T/M)^{n-3}$, included in some of the frameworks

[Artemide: Scimemi, Vladimirov Cute+MCFM: Becher, Campbell, Neumann, et al. DYTurbo: Camarda, Catani, Cieri, Ferrera, Grazzini, et al. NangaParbat: Bacchetta, Bertone, Bozzi, et al. RadISH: Monni, Re, Rottoli, PT Resbos: Isaacson, Yuan, et al. reSolve: Coradeschi, Cridge SCETlib: Billis, Ebert, Michel, Tackmann, et al.]

p_T spectrum in Drell-Yan at the LHC

- $p_T(Z)$ comparison at N3LL' / approx N4LL QCD against ATLAS 8 TeV data
- A success for the community: remarkable agreement with data and few-% QCD residual uncertainty in the resummation region $p_T(Z) \ll m_Z$
- Impact of aN3LO PDFs to be carefully assessed
- Non-perturbative developments important to improve description below 5 GeV

Paolo Torrielli

 p_T resummation in Drell-Yan and determination of the W mass at hadron colliders

5

α_{s} from resummed $p_{T}(Z)$ in Drell-Yan

- α_{c} precisely extracted from resummed $p_{T}(Z)$ spectrum by ATLAS
- Uses aN3LO MSHT20 PDFs [MSHT 2207.04739] lacksquare
- lacksquarebuild confidence in the quoted uncertainty

Paolo Torrielli

 p_T resummation in Drell-Yan and determination of the W mass at hadron colliders

Studies on correlation of α_s with PDFs and non-perturbative modelling important to

p_T resummation for differential distributions

- Some crucial leptonic observables for DY phenomenology cannot be described at fixed order
- Lepton transverse momentum: at $p_T^{\ell} \sim m_Z/2$ jacobian peak sensitive to multiple IR radiation beyond LO [Catani, Webber, 9710333]: integrable singularity at fixed order
- Physical behaviour recovered resumming linear power corrections through kinematical recoil [Catani et al. 1507.06937, Ebert et al. 2006.11382]
- q_T subtraction formula [Catani, Grazzini, 0703012] with recoil $d\sigma_{\rm DY}^{\rm N3LO+N3LL} = \mathscr{H}_{\rm DY}^{\rm N3LL+recoil} \otimes d\sigma_{\rm DY}^{\rm LO} + d\sigma_{\rm DY+1\,jet}^{\rm NNLO} - \left[d\sigma_{\rm DY}^{\rm N3LL+recoil} \right]$

Paolo Torrielli

State-of-the-art p_T resummation in QCD

• Inclusion of EW effects in p_T resummation

• Implications for m_W determination

p_T resummation in Drell-Yan and determination of the *W* mass at hadron colliders

Paolo Torrielli Università di Torino and INFN

OCD Evolution 2024 Pavia, May 27th 2024

- Autieri et al. 2302.05403]

 p_T resummation in Drell-Yan and determination of the W mass at hadron colliders

Accurate resummation of QED and mixed **QCD-EW effects with RadISH** [Buonocore, Rottoli, PT, 2404.15112]

Schematic RadISH resummation differential over leptons phase space (massive bare muons)

lacksquare

 p_T resummation in Drell-Yan and determination of the W mass at hadron colliders

$$(k_{t1}) e^{-R(k_{t1})} \mathcal{F}(p_T, \Phi_B, k_{t1})$$

Inclusion of QED and mixed QCD-EW effects in RadISH at NLL, i.e. $O(\alpha_s^n \alpha^m L^{n+m})$ + subleading

Accurate resummation of QED and mixed **QCD-EW effects with RadISH** [Buonocore, Rottoli, PT, 2404.15112]

Schematic RadISH resummation differential over leptons phase space (massive bare muons)

$$\frac{\mathrm{d}\sigma(p_T)}{\mathrm{d}\Phi_B} = \int \frac{\mathrm{d}k_{t1}}{k_{t1}} \mathscr{L}(k_{t1}) \,\mathrm{e}^{-R(k_{t1})} \,\mathscr{F}(p_T, \Phi_B, k_{t1})$$

to coefficient functions, hard function:

$$C_{ab} = C_{ab}^{\text{QCD}} + \frac{\alpha}{2\pi} C_{ab}^{'(1)} + \frac{\alpha_s}{2\pi} \frac{\alpha}{2\pi} C_{ab}^{(1,1)} + \text{DGL}$$
$$H = H^{\text{QCD}} + \frac{\alpha}{2\pi} H^{'(1)} + \frac{\alpha}{2\pi} F^{'(1)} (\Phi_B) + \frac{\alpha_s}{2\pi} \frac{\alpha}{2\pi} H^{(1,1)}$$

Paolo Torrielli

 p_T resummation in Drell-Yan and determination of the W mass at hadron colliders

Inclusion of QED and mixed QCD-EW effects in RadISH at NLL, i.e. $O(\alpha_s^n \alpha^m L^{n+m})$ + subleading

Luminosity $\mathscr{L}(k_{t1}) = |\mathscr{M}_B|_{cd}^2 [C_{ci} \otimes f_i(k_{t1})] [C_{di} \otimes f_i(k_{t1})] H(\mu_R)$ including $O(\alpha)$ and $O(\alpha_s \alpha)$ corrections

LAP $P_{ab}^{(1)}$ and $P_{ab}^{(1,1)}$

9

Accurate resummation of QED and mixed **QCD-EW effects with RadISH** [Buonocore, Rottoli, PT, 2404.15112]

Schematic RadISH resummation differential over leptons phase space (massive bare muons)

$$\frac{\mathrm{d}\sigma(p_T)}{\mathrm{d}\Phi_B} = \int \frac{\mathrm{d}k_{t1}}{k_{t1}} \mathscr{L}(k_{t1}) \,\mathrm{e}^{-\mathbf{R}(k_{t1})} \,\mathscr{F}(p_T, \Phi_B, k_{t1})$$

Sudakov radiator $R(k_{t1})$ including QED NLL $L g_1(\alpha L) + g_2(\alpha L)$, QED (QCD) running of QCD (QED) coupling $g_{11}(\alpha_s L, \alpha L)$, and soft wideangle QED radiation from leptons (Φ_B dependence)

$$R = R^{\text{QCD}} + R^{\text{QED}}(\Phi_B) + R^{\text{MIX}} + \frac{\alpha}{\gamma}$$

Paolo Torrielli

 p_T resummation in Drell-Yan and determination of the W mass at hadron colliders

• Inclusion of QED and mixed QCD-EW effects in RadISH at NLL, i.e. $O(\alpha_{c}^{n}\alpha^{m}L^{n+m})$ + subleading

First pheno results with QED and mixed **QCD-EW effects in RadISH** [Buonocore, Rottoli, PT, 2404.15112]

- Paolo Torrielli

Impact of matching at $O(\alpha_s \alpha)$

- largely absorbed by matching to fixed order
- Expected numerical impact of matching on precision observables. After matching, residual m_{μ} dependence should be under control
- Interest in developing formalism to resum all $log(m_{\mu})$ terms (soft wide-angle + quasi-collinear) Paolo Torrielli

• We work with massive bare muons: $O(\alpha_s \alpha)$ terms enhanced by large $\log(m_{\mu}/M)$ in the resummation,

 p_T resummation in Drell-Yan and determination of the W mass at hadron colliders

11

State-of-the-art p_T resummation in QCD

• Inclusion of EW effects in p_T resummation

• Implications for m_W determination

Experimental determination of m_W

Overview of m., Measurements

New variable for m_W determination [Rottoli, PT, Vicini, 2301.04059]

 p_T resummation in Drell-Yan and determination of the W mass at hadron colliders

Paolo Torrielli

• p_T^{ℓ} jacobian peak at ~ $m_W/2$

• Sensitivity to m_W of p_T^{ℓ} bins σ_i through the covariance matrix: $C_{ij} = \langle \sigma_i \sigma_j \rangle - \langle \sigma_i \rangle \langle \sigma_j \rangle$

 $\langle ... \rangle$ = average over different m_W values

• Eigenvalues of C_{ii} yield eigenvectors' sensitivity to m_W

- Define a new observable as a proxy for the dominant C_{ii} eigenvector: jacobian asymmetry

Paolo Torrielli

 p_T resummation in Drell-Yan and determination of the W mass at hadron colliders

[Rottoli, PT, Vicini, 2301.04059]

Sensitivity to m_W in a single bin combination: Δm_W just causes p_T^ℓ spectrum to shift by $\Delta m_W/2$

14

Jacobian asymmetry

[Rottoli, PT, Vicini, 2301.04059]

Paolo Torrielli

 p_T resummation in Drell-Yan and determination of the W mass at hadron colliders

• L / U sum bins below / above ~ 37GeV with + / — sign, mimicking dominant C_{ij} eigenvector

Jacobian asymmetry in perturbative QCD

[Rottoli, PT, Vicini, 2301.04059]

Slope independent of QCD approx / scale choice: QCD ISR factorised from m_W -sensitive propagation / decay

Paolo Torrielli

Excellent perturbative QCD convergence

• Simple combination of fiducial p_T^{ℓ} rates integrated in wide bins: small systematic/statistical experimental error, viability to unfold detector effects

• Naive estimate: $\Delta m_W \sim \pm 15$ MeV experimental (syst.), $\Delta m_W \sim \pm 5$ MeV in perturbative QCD

 m_W determined as the intersection of theo. / expt. straight lines, with their error bands

Calculated from charged DY: minimal reliance on neutral DY (only via non-perturbative QCD model, when included)

Jacobian asymmetry: expected impact of EW and non-perturbative

Paolo Torrielli

constant given by x(0), no pair radiation and negligible shifts (MgED ISR in PYTHIA-QED). Templates accuracy: LO $W^+ \to e^+ \nu$ $\rightarrow \mu^+ \nu$ W^+ Pseudo-data accuracy M_T p_T^ℓ M_T p_T^{ι} $\begin{array}{c} 1 & 3 \\ \text{Horace only Fighted the data of the shifted the data of the shifted the determined of the shifted the data of the determined of the shifted the data of the determined of the d$ 2 radiation model for the words, the effect of QED_{\pm} terms HD_{\pm} an expan-3 signs in powero of weathin the gradient of the shifts of the shifts of the shifts of the same at the 4 level of 1 MeSR within the statistical error, but hor $M_{\pm 1}$ and $M_{\pm 2}$ in the same of muons 5 and dressed electrons. This can be understood by the fact that the hardest QED final state photon is described, in both approaches, with NLO matrix element accup_T resummation in Drell-Yan and determination of the WE has at hadronic only higher-order effects. As a consequence,

$p\bar{p} \to W^+, \sqrt{s} = 1.96 \text{ TeV}$		M_W shifts (MeV)			
<i>I nt</i> allows atour disentangled	he impa	act of	⊳non-	pert→	
PT Pseudodata accuracy	QED FSR	\mathbf{A}^{M_T}	p_T^ℓ	M_T	
NLO-QCD+(QCD+QED) _{PS} $UU W U$	PYTHIA	-91±1	-308 ± 4	-37±1	-
$NLO-QCD+(QCD+QED)_{PS}$	Рнотоз	-83±1	-282 ± 4	-36 ± 1	-
Ion-pert OCD rad+(OCD+DED) NLO-(QCD+EW)-two-rad+(QCD+QED)PS	D have a	-86±1 -85±1	derate -290±4	;- <u>38±1</u> -37±2	ac
The second seco	and dressed e	ppe lectrons	at the Te	vatron.	M_W
MeV due to multiple QED FSR and mixed Q	QCD-EW corr	ections,	computed	with Py	ζTΗ
d PHOTOS as tools for the simulation of QED	FSR effects.	Pythia-	QED and	PHOTOS JAIIIE	hav Avfi
Fred with MLO (OCD+EW acouracy lines owned-v2 wipfonly QCD corrections. The re	3 and 4). The sults are base	e templat d on MC	tes have b SO samples	een com TS SIC	

Outlook

- p_T resummation at N3LL' / approx. N4LL in perturbative QCD, accurate comparison with data. Non pert. and PDF advances important for $p_T(Z) \to 0$ and for α_c measurement from $p_T(Z)$
- Importance of EW effects for leptonic DY observables. High accuracy resummation of QCD+EW effects at the level of fiducial leptons in RadISH

• Jacobian asymmetry for m_W determination. m_W dependence

Paolo Torrielli

 p_T resummation in Drell-Yan and determination of the W mass at hadron colliders

Minimal reliance on neutral DY (i.e. no tuning), clean disentangling of different effects contributing to

Thank you for your attention

Backup

Leading-power p_T resummation

- Including next-to-leading power: recoil prescription [Catani et al., 1507.06937]
 - generate p_T by QCD initial-state radiation
 - boost Born kinematics from V rest frame to frame with that p_T
 - apply fiducial cuts on boosted Born kinematics

Paolo Torrielli

- Sufficient to resum all linear fiducial power corrections in p_T in the QCD corrections to DY [Ebert et al., 2006.11382]
 - p_T resummation in Drell-Yan and determination of the W mass at hadron colliders

RadISH vs POWHEG-EW

[Buonocore, Rottoli, PT, 2404.15112]

Jacobian asymmetry: dependence on bin edges

Paolo Torrielli

- Very good perturbative QCD convergence across different bin-edge choices
- Importance of N3LL resummation to establish perturbative convergence beyond mere scale variations
- Trade-off between sensitivity (improving at higher $p_{\perp}^{\ell, \text{mid}}$) and perturbative convergence (improving) at lower $p_{\perp}^{\ell, \text{mid}}$)

Jacobian asymmetry: dependence on PDFs

- Variations from 100 NNPDF4.0 NNLO replicas on NLL+NLO result: $\Delta m_W \sim \pm 12$ MeV Spread from 3 other NNLO PDF sets (central replica) on N3LL+NNLO: $\Delta m_W \sim 30$ MeV
- Asymmetry slope unaffected: factorisation of initial-state effects from W propagation / decay
- PDF spread can be reduced to few MeV using additional p_T^{ℓ} bins, anti-correlation of different rapidity windows [Bozzi, Citelli, Vesterinen, Vicini, 2015; Bagnaschi, Vicini 2019], combination of W^+/W^-

Paolo Torrielli

Jacobian asymmetry: toy non perturbative study

- $p_T(Z)$ K-factors from NNLL (templates) to N3LL (pseudodata): mimic tuning. One K-factor per scale variation
- Reweigh NNLL $p_T(W)$ templates with those K-factors and compare with N3LL $p_T(W)$ pseudo-data
- Uncertainty on m_W is not reduced after reweighing
- Importance of accurate perturbative starting point to assess impact of tuning on m_W extraction
- Asymmetry allows to study non-pert. impact separately from other sources (e.g. EW). Slope unaffected

Paolo Torrielli

