$1/Q^2$ power corrections to TMD factorization for Drell-Yan hadronic tensor

Ian Balitsky

QCD Evolution Workshop 28 May 2024

- **1** Introduction: TMD factorization from rapidity factorization:
- 2 Classical fields from retarded propagators at $p_{\perp}^2/p_{\parallel}^2 \ll 1$.
- **3** Full list of power corrections for DY hadronic tensor at $\frac{1}{Q^2}$ leading- N_c level.
- Back-of-the envelope estimates of angular asymmetries for Z-boson production.
- **5** Conclusions and outlook

TMD factorization

TMD factorization formula for particle production in hadron-hadron scattering looks like

$$rac{d\sigma}{d\eta d^2 q_\perp} \;=\; \sum_{
m flavors} e_f^2 \int d^2 k_\perp \mathcal{D}_{f/A}(x_A,k_\perp) \mathcal{D}_{f/B}(x_B,q_\perp-k_\perp) C(q,k_\perp)$$

+ power corrections + "Y - terms"

- $\mathcal{D}_{f/A}(x_A, k_\perp)$ is the TMD density of a parton *f* in hadron *A* with fraction of momentum x_A and transverse momentum k_\perp ,
- $\mathcal{D}_{f/B}(x, q_{\perp} k_{\perp})$ is a similar quantity for hadron *B*,
- $C_i(q,k)$ are determined by the cross section $\sigma(ff \to \mu^+ \mu^-)$ of production of DY pair of invariant mass q^2 in the scattering of two partons.

Examples: Drell-Yan process with Q being the mass of DY pair and Higgs production by gluon-gluon fusion

TMD approach is relevant when the transverse momentum $q_\perp \ll Q$

$$\frac{d\sigma}{d\eta d^2 q_{\perp}} = \sum_{\text{flavors}} e_f^2 \int d^2 k_{\perp} \mathcal{D}_{f/A}(x_A, k_{\perp}) \mathcal{D}_{f/B}(x_B, q_{\perp} - k_{\perp}) C(q, k_{\perp})$$

+ power corrections + "Y - terms"

The quantities $\mathcal{D}_{f/A}(x_A, k_{\perp})$, $\mathcal{D}_{f/B}(x_B, q_{\perp} - k_{\perp})$, and $C(q, k_{\perp})$ are defined with cutoffs. The dependence on the cutoffs cancels in their product order by order in α_s .

At moderate x_A, x_B : CSS/SCET approach. The TMDs $\mathcal{D}_{f/A}(x_A, k_{\perp})$ are defined with a combination of UV and rapidity cutoffs.

At $x_A, x_B \ll 1$: k_T -factorization approach. The TMDs are defined with rapidity-only cutoffs.

It is impossible to extend CSS to small x. (Recently: LO BFKL from SCET)

It *is* possible to study TMD factorization at moderate *x* using small-*x* methods (rapidity-only factorization etc.) (A. Tarasov, G. Chirilli, I.B, 2015-2023)

Example: full list of power corrections $\sim \frac{1}{Q^2}$ for DY hadronic tensor, see below. They are not obtained (yet?) by CSS or SCET

Classical example: DY hadronic tensor

DY cross section is given by the product of leptonic tensor and hadronic tensor. The hadronic tensor $W_{\mu\nu}$ is defined as

$$W_{\mu
u}(p_A, p_B, q) = \frac{1}{(2\pi)^4} \int d^4x \; e^{-iqx} \langle p_A, p_B | J_\mu(x) J_\nu(0) | p_A, p_B \rangle$$

 p_A, p_B = hadron momenta, q = the momentum of DY pair, and J_{μ} is the electromagnetic or Z-boson current.

There are four tensor structures W_T , W_L , W_{Δ} , $W_{\Delta\Delta}$

TMD representation for W_i

The hadronic tensor in the Sudakov region $q^2 \equiv Q^2 \gg q_{\perp}^2$ can be studied by TMD factorization. For example, functions W_T and $W_{\Delta\Delta}$ can be represented as

 $W_{i} = \sum_{\text{flavors}} e_{f}^{2} \int d^{2}k_{\perp} \mathcal{D}_{f/A}^{(i)}(x_{A}, k_{\perp}) \mathcal{D}_{f/B}^{(i)}(x_{B}, q_{\perp} - k_{\perp}) C_{i}(q, k_{\perp})$ + power corrections + Y - terms

(1)

There is, however, a problem with Eq. (1) for the functions W_L and W_{Δ} .

 W_T and $W_{\Delta\Delta}$ are determined by leading-twist quark TMDs, but W_{Δ} and W_L start from terms $\sim \frac{q_{\perp}}{Q}$ and $\sim \frac{q_{\perp}^2}{Q^2}$ determined by quark-quark-gluon TMDs.

The power corrections $\sim \frac{q_{\perp}}{Q}$ were found more than two decades ago but there was no calculation of power corrections $\sim \frac{q_{\perp}^2}{Q^2}$ until recently.

Power corrections from tree diagrams in background fields

Sudakov variables:

$$p = \alpha p_1 + \beta p_2 + p_\perp, \qquad p_1 \simeq p_A, \ p_2 \simeq p_B, \ p_1^2 = p_2^2 = 0$$

The result of the integration over "central" fields in the background of projectile and target fields is a series of TMD operators made from projectile (or target) fields multiplied by powers of $\frac{1}{O^2} \Rightarrow$ power corrections

$$\hat{J}(x_1)\hat{J}(x_2) = \sum_{I,J} \int dz_1^- dz_2^- dw_1^+ dw_2^+ \mathfrak{C}_{IJ}(x_1, x_2; z_i^-, w_i^+; \sigma_p, \sigma_l) \times \hat{\mathcal{O}}_I^{\sigma_p}(z_2^-, x_{2\perp}; z_1^-, x_{1\perp}) \hat{\mathcal{O}}_J^{\sigma_l}(z_2^+, x_{2\perp}; z_1^+, x_{1\perp})$$

 $\hat{\mathcal{O}}_i^{\sigma_p}$ - "projectile" TMD operators, $\hat{\mathcal{O}}_i^{\sigma_p}$ - "target" TMD operators

To find relevant operators and coefficients, it is convenient to consider "matrix elements" of the l.h.s. and r.h.s. in suitable background field

Suitable field \mathbb{A} : solution of classical YM equations with boundary condition that at the remote past the field is a sum of projectile and target fields

$$\begin{split} \langle \hat{J}(x_{1})\hat{J}(x_{2})\rangle_{\mathbb{A}} &= \sum_{I,J} \int dz_{1}^{-} dz_{2}^{-} dw_{1}^{+} dw_{2}^{+} \mathfrak{C}_{IJ}(x_{1}, x_{2}; z_{i}^{-}, w_{i}^{+}; \sigma_{p}, \sigma_{t}) \\ &\times \langle \hat{\mathcal{O}}_{I}^{\sigma_{p}}(z_{2}^{-}, x_{2\perp}; z_{1}^{-}, x_{1\perp}) \hat{\mathcal{O}}_{J}^{\sigma_{t}}(z_{2}^{+}, x_{2\perp}; z_{1}^{+}, x_{1\perp}) \rangle_{\mathbb{A}} \end{split}$$

In the tree approximation

$$\langle \hat{\mathcal{O}}_{I}^{\sigma_{p}} \hat{\mathcal{O}}_{J}^{\sigma_{l}} \rangle_{\mathbb{A}} = \hat{\mathcal{O}}_{I}(\mathbb{A}) \hat{\mathcal{O}}_{J}(\mathbb{A})$$

Classical solution \mathbb{A} and $\psi_{\mathbb{A}}$

Solution of classical YM equations

$$onumber \psi_{\mathbb{A}} = 0, \quad \mathscr{D}^{
u} \mathscr{F}^{a}_{\mu
u} = \sum_{f} g \bar{\psi}_{\mathbb{A}} t^{a} \gamma_{\mu} \psi_{\mathbb{A}}$$

Boundary conditions :

The projectile and target fields satisfy YM equations

$$(\not\!\!\!\!\!/ + m_f)\psi_a = 0, \quad D^{\nu}F^a_{\mu\nu} = g\bar{\psi}_a t^a \gamma_{\mu}\psi_a$$
$$(\not\!\!\!\!/ + m_f)\psi_b = 0, \quad D^{\nu}F^a_{\mu\nu} = g\bar{\psi}_b t^a \gamma_{\mu}\psi_b$$

Method of solution:

- Start with $\psi_A + \psi_B$ and $\bar{A}_{\mu} + \bar{B}_{\mu}$ in the gauge $A^+ = 0, A^- = 0$
- Correct by computing Feynman diagrams (with retarded propagators) with sources $(P + m)(\psi_A + \psi_B)$ and $J_{\nu} = D^{\mu}F^{\mu\nu}(U + V)$

ψ_C in the tree approximation

It is convenient to choose projectile/target fields as Projectile fields: $\beta = 0 \Rightarrow A(x^-, x_\perp), \ \psi_A(x^-, x_\perp)$ Target fields: $\alpha = 0 \Rightarrow B(x^+, x_\perp), \ \psi_B(x^-, x_\perp)$

Classical background fields: ψ_C , C_μ

 ψ_C = sum of tree diagrams in external $A, \tilde{A}, \psi_A, \tilde{\psi}_A$ and $B, \tilde{B}, \psi_B, \tilde{\psi}_B$ fields with sources

 $J_{\psi} = (P + m)(\psi_A + \psi_B), \quad J_{\nu} = D^{\mu}F^{\mu\nu}(A + B)$ and

Classical solution $\equiv \sum$ tree diagrams with retarded propagators

The fields A, ψ and $\tilde{A}, \tilde{\psi}$ do not depend on $x^+ \Rightarrow$ if they coincide at $x^+ = \infty \Rightarrow$ they coincide everywhere.

```
Similarly,

B, \psi_b and \tilde{B}, \tilde{\psi}_b do not depend on x^- \Rightarrow

if they coincide at x^- = \infty they should be equal.
```

Since $\tilde{A} = A$ and $\tilde{B} = B$ the sources and background fields are the same to the left and to the right of the cut

 \Rightarrow

 ψ_{C} and C_{μ} are given by the sum of tree diagrams with *retarded* Green functions

Classical fields in the leading order in $p_{\perp}^2/p_{\parallel}^2 \sim q_{\perp}^2/Q^2$

The solution of such YM equations in general case is yet unsolved problem (goes under the name "glasma" \Leftrightarrow scattering of two "color glass condensates").

Fortunately, for our case of particle production with $\frac{q_{\perp}}{Q} \ll 1$ we can use this small parameter and construct the approximate solution.

At the tree level transverse momenta are $\sim q_{\perp}^2$ and longitudinal are $\sim Q^2 \Rightarrow$

$$\psi, A = \text{series in } \frac{q_{\perp}}{Q}: \quad \psi = \psi^{(0)} + \psi^{(1)} + \dots, \quad A = A^{(0)} + A^{(1)} + \dots$$

NB: After the expansion

$$\frac{1}{p^2 + i\epsilon p_0} \; = \; \frac{1}{p_{\parallel}^2 - p_{\perp}^2 + i\epsilon p_0} \; = \; \frac{1}{p_{\parallel}^2} - \frac{1}{p_{\parallel}^2 + i\epsilon p_0} p_{\perp}^2 \frac{1}{p_{\parallel}^2 + i\epsilon p_0} \; + \dots$$

the dynamics in transverse space is trivial.

Fields are either at the point x_{\perp} or at the point $0_{\perp} \Rightarrow \mathsf{TMDs}$

Leading-*N_c* power corrections

Power corrections are ~ leading twist
$$\times \left(\frac{q_{\perp}}{Q} \text{ or } \frac{q_{\perp}^2}{Q^2}\right) \times \left(1 + \frac{1}{N_c} + \frac{1}{N_c^2}\right).$$

NB: almost all $\bar{q}Gq$ TMDs not suppressed by $\frac{1}{N_c}$ can be rewritten in terms of $\bar{q}q$ TMDs due to QCD equations of motion

Leading twist:

$$\varrho \equiv \sqrt{s/2}$$

Power correction:

Result for $W_{\mu\nu}$ for unpolarized hadrons

Result:

$$W_{\mu
u}(q) \;=\; W^1_{\mu
u}(q) + W^2_{\mu
u}(q) + W^3_{\mu
u}(q)$$

The first, gauge-invariant, part is a "gauge completion" of leading-twist result

$$\begin{split} W^{1}_{\mu\nu}(q) &= W^{1F}_{\mu\nu}(q) + W^{1H}_{\mu\nu}(q), \\ W^{1F}_{\mu\nu}(q) &= \sum_{f} e_{f}^{2} W^{fF}_{\mu\nu}(q), \quad W^{fF}_{\mu\nu}(q) &= \frac{1}{N_{c}} \int d^{2}k_{\perp} \{f_{1}\bar{f}_{1} + \bar{f}_{1}f_{1}\} \mathcal{W}^{F}_{\mu\nu}(q,k_{\perp}), \\ W^{1H}_{\mu\nu}(q) &= \sum_{f} e_{f}^{2} W^{fH}_{\mu\nu}(q), \quad W^{fH}_{\mu\nu}(q) &= \frac{1}{N_{c}} \int d^{2}k_{\perp} \{h_{1}^{\perp}\bar{h}_{1}^{\perp} + \bar{h}_{1}^{\perp}h_{1}^{\perp}\} \mathcal{W}^{H}_{\mu\nu}(q,k_{\perp}) \end{split}$$

where $(\alpha_q \equiv x_A, \beta_q \equiv x_B)$

$$\{ f_{1}\bar{f}_{1} + \bar{f}_{1}f_{1} \} \equiv f_{1}(\alpha_{q},k_{\perp})\bar{f}_{1}(\beta_{q},(q-k)_{\perp}) + f_{1} \leftrightarrow \bar{f}_{1} \\ \{ h_{1}^{\perp}\bar{h}_{1}^{\perp} + \bar{h}_{1}^{\perp}h_{1}^{\perp} \} \equiv h_{1}^{\perp}(\alpha_{q},k_{\perp})\bar{h}_{1}^{\perp}(\beta_{q},(q-k)_{\perp}) + h_{1}^{\perp} \leftrightarrow \bar{h}_{1}^{\perp}$$

Gauge-invariant structures

 $q^\mu W^F_{\mu
u} = q^\mu W^H_{\mu
u} = 0$

$$\begin{split} & m^{2}\mathcal{W}_{\mu\nu}^{H}(q,k_{\perp}) \\ &= -\left[k_{\mu}^{\perp}(q-k)_{\nu}^{\perp} + k_{\nu}^{\perp}(q-k)_{\mu}^{\perp} + g_{\mu\nu}^{\perp}(k,q-k)_{\perp}\right] + 2\frac{\tilde{q}_{\mu}\tilde{q}_{\nu} - q_{\mu}^{\parallel}q_{\nu}^{\parallel}}{Q^{4}}k_{\perp}^{2}(q-k)_{\perp}^{2} \\ &- \left(\frac{q_{\mu}^{\parallel}}{Q^{2}}\left[k_{\perp}^{2}(q-k)_{\nu}^{\perp} + k_{\nu}^{\perp}(q-k)_{\perp}^{2}\right] + \frac{\tilde{q}_{\mu}}{Q^{2}}\left[k_{\perp}^{2}(q-k)_{\nu}^{\perp} - k_{\nu}^{\perp}(q-k)_{\perp}^{2}\right] + \mu \leftrightarrow \nu\right) \\ &- \frac{\tilde{q}_{\mu}\tilde{q}_{\nu} + q_{\mu}^{\parallel}q_{\nu}^{\parallel}}{Q^{4}}\left[q_{\perp}^{2} - 2(k,q-k)_{\perp}\right](k,q-k)_{\perp} - \frac{q_{\mu}^{\parallel}\tilde{q}_{\nu} + \tilde{q}_{\mu}q_{\nu}^{\parallel}}{Q^{4}}(2k-q,q)_{\perp}(k,q-k)_{\perp} \end{split}$$

Ian Balitsky

Second gauge-invariant part

$$\begin{split} W^2_{\mu\nu}(q) &= \frac{2}{N_c Q^2} \int d^2 k_{\perp} \Big\{ \Big[\tilde{q}_{\mu}(q-k)_{\nu} + \frac{2}{\beta_q s} \tilde{q}_{\mu} p_{1\nu}(k,q-k)_{\perp} + \frac{2}{\alpha_q s} \tilde{q}_{\mu} p_{2\nu}(q-k)^2_{\perp} + \mu \leftrightarrow \nu \Big] \\ &\times \Big(\beta_q \{ f_l \bar{f}_{\perp} + \bar{f}_l f_{\perp} \} - \alpha_q \{ h \bar{h}_1^{\perp} + \bar{h} h_1^{\perp} \} \Big) \\ &+ \Big[\tilde{q}_{\mu} k_{\nu}^{\perp} + \frac{2}{s \beta_q} k_{\perp}^2 \tilde{q}_{\mu} p_{1\nu} + \frac{2}{s \alpha_q} (k,q-k)_{\perp} \tilde{q}_{\mu} p_{2\nu} + \mu \leftrightarrow \nu \Big] \\ &\times \Big(- \alpha_q \{ f_{\perp} \bar{f}_1 + \bar{f}_{\perp} f_1 \} + \beta_q \{ h_1^{\perp} \bar{h} + \bar{h}_1^{\perp} h \} \Big) \\ &+ \frac{4 \tilde{q}_{\mu} \tilde{q}_{\nu}}{Q^2} \Big[m^2 \Big(\alpha_q^2 \{ f_3 \bar{f}_1 + \bar{f}_3 f_1 \} + \beta_q^2 \{ f_1 \bar{f}_3 + \bar{f}_1 f_3 \} + \alpha_q \beta_q \big[\{ e \bar{e} + \bar{e} e \} + \{ h \bar{h} + \bar{h} h \} \big] \Big) \\ &+ (k, q-k)_{\perp} \Big(- \alpha_q \beta_q \big[\{ f_{\perp} \bar{f}_{\perp} + \bar{f}_{\perp} f_1 \} + \{ g_{\perp} \bar{g}_{\perp} + \bar{g}_{\perp} g_{\perp} \} \big] \\ &+ \beta_q^2 \{ h_1^{\perp} \bar{h}_3^{\perp} + \bar{h}_1^{\perp} h_3^{\perp} \} + \alpha_q^2 \{ h_3^{\perp} \bar{h}_1^{\perp} + \bar{h}_3^{\perp} h_1^{\perp} \} \Big) \Big] \\ &+ \frac{1}{m^2} \mathcal{W}_{\mu\nu}^{\perp}(q,k_{\perp}) \Big[\frac{2}{\alpha_q} \{ h_1^{\perp} \Re \bar{h}_{1G} + \bar{h}_1^{\perp} \Re h_{1G} \} + \frac{2}{\beta_q} \{ \Re h_{1G} \bar{h}_1^{\perp} + \Re \bar{h}_{1G} \bar{h}_1^{\perp} \} + \Re (\{ h_{1G}^{\perp} \bar{h}_{1G}^{\perp} + \bar{h}_{1G}^{\perp} h_{1G}^{\perp} - \bar{h}_{1G}^{\perp} h_{1G}^{\perp} + \bar{h}_{1G}^{\perp} h_{1G}^{\perp} \} \Big) \Big] \\ \end{split}$$

where $\mathcal{W}_{\mu\nu}^{\perp}(q_{\perp},k_{\perp})$ is a transverse gauge-invariant structure

$$\begin{split} \mathcal{W}^{\perp}_{\mu\nu}(q_{\perp},k_{\perp}) \; &\equiv \; g^{\perp}_{\mu\nu}(k,q-k)^{\perp}_{\perp} - g^{\perp}_{\mu\nu}k^{\perp}_{\perp}(q-k_{\perp})^2 \\ &+ [k^{\perp}_{\mu}(q-k)^{\perp}_{\nu} + \mu \leftrightarrow \nu](k,q-k)_{\perp} - k^{\perp}_{\perp}(q-k)^{\perp}_{\mu}(q-k)^{\perp}_{\nu} - \; (q-k_{\perp})^2 k^{\perp}_{\mu}k^{\perp}_{\nu} \end{split}$$

 $f_{\perp}, f_3, h, h_3^{\perp}, g_{\perp}, e$ are the quark-antiquark TMDs of a non-leading twist,

 h_{1G}^{\perp} - quark-antiquark-gluon TMD.

Ian Balitsky

Third part

$$\begin{split} W^3_{\mu\nu}(q) &= \frac{2}{N_c Q^2} \int d^2 k_\perp \\ \times \left\{ g^{\perp}_{\mu\nu} \times \left[\text{a bunch of quark-antiquark and quark-antiquark-gluon TMDs} \right] \\ &+ \left[k^{\perp}_{\mu}(q-k)^{\perp}_{\nu} + k^{\perp}_{\nu}(q-k)^{\perp}_{\mu} + g^{\perp}_{\mu\nu}(k,q-k)_{\perp} \right] \times \text{same} \\ &+ \left[2(q-k)^{\perp}_{\mu}(q-k)^{\perp}_{\nu} + g^{\perp}_{\mu\nu}(q-k)^{\perp}_{\perp} \right] \times \text{same} \\ &+ \left[2(q-k)^{\perp}_{\mu}(q-k)^{\perp}_{\nu} + g^{\perp}_{\mu\nu}(q-k)^{\perp}_{\perp} \right] \times \text{same} \end{split}$$

Similarly to LT contribution, is not EM gauge invariant \Rightarrow needs "gauge completion" by $\frac{1}{Q^3}$ and $\frac{1}{Q^4}$ power corrections. Still, it is gauge invariant at the $\frac{1}{Q^2}$ level

$$q^{\mu}W^3_{\mu\nu} = O\left(\frac{1}{Q^2}\right)$$

This is the result of cancellations of $O\left(\frac{1}{Q}\right)$ corrections due to QCD equations

$$\begin{split} W^{3}_{\mu\nu}(q) &= \frac{2}{N_c Q^2} \int d^2 k_{\perp} \left[g^{\perp}_{\mu\nu} \left\{ m^2 \alpha_q \beta_q (\{h\bar{n} + \bar{h}h\} - \{e\bar{e} + \bar{e}e\}) \right. \\ &+ \alpha_q \beta_q m^2 \left[\Re f_D(\alpha_q, k_{\perp}) f_1'(\beta_q, q_{\perp} - k_{\perp}) + \Re f_D(\alpha_q, k_{\perp}) f_1'(\beta_q, q_{\perp} - k_{\perp}) + f_1'(\alpha_q, k_{\perp}) \Re f_D(\beta_q, q_{\perp} - k_{\perp}) + \bar{f}_1'(\alpha_q, k_{\perp}) R f_D(\beta_q, q_{\perp} - k_{\perp}) + \bar{f}_1 R f_1 + \bar{h}_1 R f_1 + 2\beta_q \{ N h_1 R f_1 + h h_1^+ \} + 2\beta_q \{ N h_1 R f_1 + h h_1^+ \} + 2\beta_q \{ N h_1 R f_1 + h h_1^+ \} + 2\beta_q \{ N h_1 R f_1 + h h_1^+ \} + 2\beta_q \{ N h_1 R f_1 + h h_1^+ \} + 2\beta_q \{ N h_1 R f_1 + h h_1^+ \} + 2\beta_q \{ N h_1 R f_1 + h h_1^+ \} + 2\beta_q \{ N h_1 R f_1 + h h_1^+ + 2\beta_q \{ N h_1 R f_1 + h h_1^+ \} + 2\beta_q \{ N h_1 R f_1 + h h_1^+ \} + 2\beta_q \{ N h_1 R f_1 + h h_1^+ + 2\beta_q \{ N h_1 R f_1 + h h_1^+ \} + 2\beta_q \{ N h_1 R f_1 + h h_1^+ \} + 2\beta_q \{ N h_1 R f_1 + h h_1^+ \} + 2\beta_q \{ N h_1 R f_1 + h h_1^+ \} + 2\beta_q \{ N h_1 R f_1 + h h_1^+ \} + 2\beta_q \{ N h_1 R f_1 + h h_1 R f_1 \} \right\} \\ + \left[g^{\mu}_{\mu\nu}(k, q - k)_{\perp} + k_{\perp}^{\mu}(q - k)_{\perp} + k_{\perp}^{\mu}(q - k)_{\perp} + k_{\perp}^{\mu}(q - k)_{\perp} + h_1^{\mu}(q - k)_{\perp} + h_1^+ R h_1 R f_1 + h h_1 R h_$$

Basis of operators for $\frac{1}{O^2}$

Power corrections $\sim \frac{1}{Q}$ are unique but corrections $\sim \frac{1}{Q^2}$ depend on the chosen basis of TMD operators because $\varrho \equiv \sqrt{s/2}$

$$EOM: \qquad \begin{array}{ll} \mathbf{A}_{\perp}(\mathbf{x})\psi(\mathbf{x}) &= -i\partial_{\perp}\psi(\mathbf{x}) - i\frac{1}{\varrho}\psi_{1}\partial_{+}\psi(\mathbf{x}) - i\frac{1}{\varrho}\psi_{2}D_{-}\psi(\mathbf{x}) \\ \mathbf{B}_{\perp}(\mathbf{x})\psi(\mathbf{x}) &= -i\partial_{\perp}\psi(\mathbf{x}) - i\frac{1}{\varrho}\psi_{2}\partial_{-}\psi(\mathbf{x}) - i\frac{1}{\varrho}\psi_{1}D_{+}\psi(\mathbf{x}) \end{array}$$

r.h.s. = my choice, l.h.s = Vladimirov, Scimemi et al

Example:

$$\frac{1}{8\pi^3 s} \int dx^- dx_\perp \ e^{-i\alpha \varrho x^- + i(k,x)_\perp} \\ \times \langle A | \hat{\psi}(x^-, x_\perp) \hat{A}(x^-, x_\perp) \not p_2 \gamma_i \hat{\psi}(0) | A \rangle$$

 $= k_i f_1(\alpha, k_{\perp}) - \alpha k_i [f_{\perp}(\alpha, k_{\perp}) + i g^{\perp}(\alpha, k_{\perp})]$

The terms $\sim \frac{1}{\varrho} \psi_1 D_{\pm} \psi(x)$ cancel in final expressions for $\frac{1}{\varrho^2}$ power corrections due to $\bar{q}qG$ operators.

(Of course they are still present in the kinematical corrections)

Ian Balitsky

 $1/Q^2$ power corrections to TMD factorization for 20/27

Application: angular coefficients of Z-boson production

In CMS and ATLAS experiments s = 8 TeV, Q = 80 - 100 GeV and Q_{\perp} varies from 0 to 120 GeV.

Our analysis is valid at $Q_{\perp} = 10 - 30$ GeV and $Y \simeq 0$ ($x_A \sim x_B \sim 0.1$) so that power corrections are small but sizable.

Angular distribution of DY leptons in the Collins-Soper frame ($c_{\phi} \equiv \cos \phi$, $s_{\phi} \equiv \sin \phi$ etc.)

$$\frac{d\sigma}{dQ^2 dy d\Omega_l} = \frac{3}{16\pi} \frac{d\sigma}{dQ^2 dy} \Big[(1+c_{\theta}^2) + \frac{A_0}{2} (1-3c_{\theta}^2) + A_1 s_{2\theta} c_{\phi} + \frac{A_2}{2} s_{\theta}^2 c_{2\phi} + A_3 s_{\theta} c_{\phi} + A_4 c_{\theta} + A_5 s_{\theta}^2 s_{2\phi} + A_6 s_{2\theta} s_{\phi} + A_7 s_{\theta} s_{\phi} \Big]$$

Back-of-the envelope estimation: take only f_1 contribution at large N_c , use "factorization hypothesis" for TMD $f_1(x, k_{\perp}) \simeq f(x)g(k_{\perp})$ and calculate integrals over k_{\perp} in the leading log approximation using $f_1(x, k_{\perp}^2) \simeq \frac{f(x)}{k^2}$

Result with $\frac{1}{O^2}$, large- N_c and " f_1 " accuracy

$$\begin{split} \mathbb{W}(q,l,l') &= c_e^2 c_f^2 \frac{Q^4}{|m_Z^2 - Q^2|^2 + \Gamma_Z^2 m_Z^2} \\ \times &\sum_f \left\{ (a_e^2 + 1)(a_f^2 + 1) \Big(\big[\mathcal{W}^{\text{Ff}} - \frac{Q_{\perp}^2}{2Q^2} (\mathcal{W}^{\text{Ff}} - \mathcal{W}_L^{\text{Ff}}) \big] (1 + \cos^2 \theta) \\ &+ \frac{Q_{\perp}^2}{2Q^2} \mathcal{W}_L^{\text{Ff}} (1 - 3\cos^2 \theta) + \frac{Q_{\perp}}{Q} \mathcal{W}_1^{\text{Ff}} \sin 2\theta \cos \phi + \frac{Q_{\perp}^2}{2Q^2} \mathcal{W}^{\text{Ff}} \sin^2 \theta \cos 2\phi \big] \Big) \\ &+ 8a_e a_f \Big[\frac{Q_{\perp}}{Q} \mathcal{W}_3^{\text{Ff}} \sin \theta \cos \phi + \mathcal{W}_4^{\text{Ff}} \cos \theta \Big] \Big\} \end{split}$$

$$\begin{split} \mathcal{W}^{\mathrm{F}f}(q) &= \int d^{2}k_{\perp}F^{f}(q,k_{\perp}), \qquad \mathcal{W}_{L}^{\mathrm{F}f}(q) = \int dk_{\perp}\frac{(q-2k)_{\perp}^{2}}{q_{\perp}^{2}}F^{f}(q,k_{\perp}) \\ \mathcal{W}_{1}^{\mathrm{F}f}(q) &= \int d^{2}k_{\perp}\frac{(q,q-2k)_{\perp}}{q_{\perp}^{2}}F^{f}(q,k_{\perp}) \\ \mathcal{W}_{3}^{\mathrm{F}f}(q) &= \int d^{2}k_{\perp}\frac{(q,q-2k)_{\perp}}{q_{\perp}^{2}}\mathcal{F}^{f}(q,k_{\perp}), \qquad \mathcal{W}_{4}^{\mathrm{F}f}(q) = \int d^{2}k_{\perp}\mathcal{F}^{f}(q,k_{\perp}), \\ \mathcal{F}^{f}(q,k_{\perp}) &= f_{1}^{f}(\alpha_{q},k_{\perp})\overline{f}_{1}^{f}(\beta_{q},(q-k)_{\perp}) - f_{1}^{f} \leftrightarrow \overline{f}_{1}^{f} \end{split}$$

$$\begin{split} \mathbb{W} &\sim \sum_{f} \mathcal{W}^{\mathrm{Ff}} \Big\{ (a_{e}^{2}+1)(a_{f}^{2}+1) \Big(\Big[1 - \frac{Q_{\perp}^{2}}{2m_{Z}^{2}} + \frac{Q_{\perp}^{2}}{2m_{Z}^{2}} \frac{\mathcal{W}_{L}^{\mathrm{Ff}}}{\mathcal{W}^{\mathrm{Ff}}} \Big] (1 + \cos^{2}\theta) \\ &+ \frac{Q_{\perp}^{2}}{2m_{Z}^{2}} \frac{\mathcal{W}_{L}^{\mathrm{Ff}}}{\mathcal{W}^{\mathrm{Ff}}} (1 - 3\cos^{2}\theta) + \frac{Q_{\perp}}{m_{Z}} \frac{\mathcal{W}_{1}^{\mathrm{Ff}}}{\mathcal{W}^{\mathrm{Ff}}} \sin 2\theta \cos\phi + \frac{Q_{\perp}^{2}}{2m_{Z}^{2}} \sin^{2}\theta \cos 2\phi \Big] \Big) \\ &+ 8a_{e}a_{f} \Big[\frac{Q_{\perp}}{m_{Z}} \frac{\mathcal{W}_{3}^{\mathrm{Ff}}}{\mathcal{W}^{\mathrm{Ff}}} \sin \theta \cos\phi + \frac{\mathcal{W}_{4}^{\mathrm{Ff}}}{\mathcal{W}^{\mathrm{Ff}}} \cos\theta \Big] \Big\} \end{split}$$

We can easily estimate A_0 and A_2 which depend on $\frac{W_L^{\text{FT}}}{W^{\text{FT}}}$.

Logarithmic estimate of $\frac{w_L^{\rm Ff}}{w^{\rm Ff}}$: if $k_\perp^2 \gg m_N^2$ we can approximate

$$f_1(x,k_{\perp}^2) \simeq \frac{f(x)}{k_{\perp}^2} \quad \Rightarrow \quad F(q,k_{\perp}) \simeq \frac{f(\alpha_q)\bar{f}(\beta_q) + f \leftrightarrow \bar{f}}{k_{\perp}^2(q-k)_{\perp}^2}$$

Performing integration over k_{\perp} in logarithmical approximation, one obtains

$$rac{\mathcal{W}_L^{
m Ff}}{\mathcal{W}^{
m Ff}} \simeq 1+2rac{\ln m_z^2/Q_\perp^2}{\ln Q_\perp^2/m^2}$$

Ian Balitsky

Comparison of *A*⁰ with LHC results

Logarithmic estimate of A_0 (m_z -Z-boson mass, m - proton mass)

Figure: Comparison of prediction (*) with lines depicting angular coefficient A_0 in bins of Q_{\perp} and Y < 1 from CMS (arXiv:1504.03512) and ATLAS (arXiv1606.00689)

Comparison of *A*² with LHC results

Logarithmic estimate of A2

Figure: Comparison of prediction (**) with lines depicting angular coefficient A_2 in bins of Q_{\perp} and Y < 1 from CMS (arXiv:1504.03512) and ATLAS (arXiv1606.00689)

$$\begin{split} \mathbb{W} &\sim \sum_{f} r^{f} \mathcal{W}^{\mathrm{Ff}} \Big\{ 1 + \cos^{2} \theta + \frac{Q_{\perp}^{2}}{2m_{Z}^{2}} \frac{\mathcal{W}_{L}^{\mathrm{Ff}}}{\mathcal{W}^{\mathrm{Ff}} r^{f}} (1 - 3\cos^{2} \theta) \\ &+ \frac{Q_{\perp}}{m_{Z}} \frac{\mathcal{W}_{1}^{\mathrm{Ff}}}{\mathcal{W}^{\mathrm{Ff}} r^{f}} \sin 2\theta \cos \phi + \frac{Q_{\perp}^{2}}{2m_{Z}^{2}} r^{f} \sin^{2} \theta \cos 2\phi \Big] \\ &+ \frac{8a_{e}a_{f}}{(a_{e}^{2} + 1)(a_{f}^{2} + 1)} \Big[\frac{Q_{\perp}}{m_{Z}} \frac{\mathcal{W}_{3}^{\mathrm{Ff}}}{\mathcal{W}^{\mathrm{Ff}} r^{f}} \sin \theta \cos \phi + \frac{\mathcal{W}_{4}^{\mathrm{Ff}}}{\mathcal{W}^{\mathrm{Ff}} r^{f}} \cos \theta \Big] \Big\} \end{split}$$

$$r^f\equiv 1-rac{Q_\perp^2}{2m_Z^2}+rac{Q_\perp^2}{2m_Z^2}rac{w_L^{
m Ff}}{w^{
m Ff}}$$

Qualitative checks:

- Factorization of TMD $f_1(x, k_{\perp}^2) \simeq f(x)f(k_{\perp}^2) \Rightarrow \mathcal{W}_1^{\text{Ff}}(q) = 0$
 - \Rightarrow A_1 is smaller than A_2
- A_4 does not depend on Q_{\perp} and increases with rapidity
- A_3 is smaller than A_4
- A_5, A_6, A_7 are order of magnitude smaller than A_0, A_2, A_4

Conclusions

- Power corrections $\sim \frac{1}{Q^2}$ for DY hadronic tensor \Rightarrow "gauge-invariant completion" of the LT result.
- Bookkeeping: full list of $\frac{1}{Q^2}$ power corrections.
- Back-of-the-envelope estimates of angular distributions for DY Z-boson production are in good agreement with LHC data.
- 2 Outlook
 - Power corrections for SIDIS

Thank you for attention!