The Axial Current and its Divergence

Andreas Metz
Temple University

supported by the

Outline

- Introduction and motivation
- Perturbative calculations involving the axial current
- parton distribution
- local current and form factor
- generalized parton distributions
- Summary

In collaboration with: Ignacio Castelli, Adam Freese, Cédric Lorcé, Barbara Pasquini, Simone Rodini

Introduction and Motivation

- Throughout we mostly consider QED, with one fermion type
- Vector current

$$
\begin{aligned}
J^{\mu}(x) & =\bar{\psi}(x) \gamma^{\mu} \psi(x) \\
\partial_{\mu} J^{\mu}(x) & =0
\end{aligned}
$$

- Axial current

$$
\begin{aligned}
J_{5}^{\mu}(x) & =\bar{\psi}(x) \gamma^{\mu} \gamma_{5} \psi(x) \\
\partial_{\mu} J_{5}^{\mu}(x) & =2 i m \bar{\psi}(x) \gamma_{5} \psi(x)-\frac{\alpha_{\mathrm{em}}}{2 \pi} F^{\mu \nu}(x) \widetilde{F}_{\mu \nu}(x)
\end{aligned}
$$

- axial current not conserved due to (i) nonzero fermion mass and (ii) chiral anomaly (Adler, 1969 / Bell, Jackiw, 1969 / Adler, Bardeen, 1969 / ...)
- chiral anomaly can be derived, e.g., by evaluating $J_{5}^{\mu}(x)$ between photon states
- chiral anomaly was intensively discussed in hadronic physics soon after discovery of nucleon spin crisis through DIS measurements
- Pioneering work (Altarelli, Ross, 1988 (AR) / Carlitz, Collins, Mueller, 1988 (CCM) / ...)
- considering process $\gamma^{*}+g \rightarrow q+\bar{q}$

- extracting leading power-term of $1 / q^{2}$ expansion and integrating upon x \rightarrow calculation of local axial current

- overall conclusion: difference between measured $(\Delta \Sigma)$ and "intrinsic" $(\Delta \widetilde{\Sigma})$ quark-spin contributions

$$
\Delta \Sigma=\Delta \widetilde{\Sigma}-\frac{\alpha_{\mathrm{s}} N_{f}}{2 \pi} \Delta G
$$

* term proportional to ΔG due to chiral anomaly (?)
* explanation of nucleon spin crisis (?)
- Critique of pioneering papers (Jaffe, Manohar, 1989 / Bodwin, Qiu, 1989 / ...)
- main concern: result depends on infrared (IR) regulator

AR: nonzero quark mass m in denominators of propagators
CCM: nonzero off-shellness p^{2} of gluons / find zero if $m \neq 0$ used throughout

- this concern, and need for very large ΔG, raised severe doubts
- Recent renewed interest in field
(Tarasov, Venugopalan, 2021, 2022 / Bhattacharya, Hatta, Vogelsang, 2022, 2023)
- considered also the x-dependence as opposed to x-integrated results only
- statements include:
* need off-forward kinematics to capture physics of anomaly
* GPDs may have more robust connection to anomaly than PDFs
* anomaly manifests in pole contribution for $t=\Delta^{2} \rightarrow 0$
* anomaly pole could challenge factorization (not stated in all papers)
- papers reached important conclusions based on perturbative calculations
- Our motivations
- revisit dependence of perturbative calculations on IR regulator
- what role is played by fermion mass ?
- relation between "classic papers" and more recent work?

Parton Distribution in Perturbation Theory

- Definition of PDF

$$
\begin{aligned}
F_{\lambda, \lambda^{\prime}}^{\left[\gamma^{+} \gamma_{5}\right]}(x) & =\left.\int \frac{d z^{-}}{4 \pi} e^{i k \cdot z}\left\langle\gamma\left(p, \lambda^{\prime}\right)\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \gamma_{5} \psi\left(\frac{z}{2}\right)|\gamma(p, \lambda)\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}} \\
& =\frac{i}{p^{+}} \varepsilon^{+\varepsilon \varepsilon^{\prime} p} g_{1}(x)=\frac{i}{p \cdot n} \varepsilon^{n \varepsilon \varepsilon^{\prime} p} g_{1}(x) \\
g_{1}(x) & \sim\left(F_{+,+}^{\left[\gamma^{+} \gamma_{5]}\right.}(x)-F_{-,-}^{\left[\gamma^{+} \gamma_{5}\right]}(x)\right) \quad \text { circularly polarized photons }
\end{aligned}
$$

- Leading-order diagrams

- two diagrams contribute in different regions of x
- Result for $m \neq 0$ and off-shellness $p^{2}<0$, for $0 \leq x \leq 1 \quad\left(\bar{\mu}^{2}=4 \pi e^{-\gamma_{E}} \mu^{2}\right)$

$$
g_{1}(x, \mu)=\frac{\alpha_{\mathrm{em}}}{2 \pi}\left[\left(\frac{1}{\varepsilon}+\ln \frac{\bar{\mu}^{2}}{m^{2}-p^{2} x(1-x)}\right)(1-2 x)-\frac{p^{2} x(1-x)}{m^{2}-p^{2} x(1-x)}\right]+\mathcal{O}(\varepsilon)
$$

- $\int d x g_{1}$ provides total spin contribution
- UV behavior
- $g_{1}(x, \mu)$ UV-divergent, divergence regulated using dimensional regularization (DR)
- $\int d x g_{1}$ UV-finite, does not depend on UV regulator
- IR behavior
- $g_{1}(x, \mu)$ IR-divergent, divergence regulated using nonzero m and p^{2}
- result well behaved for $m \neq 0$ and $p^{2}=0$
- result well behaved for $m=0$ and $p^{2} \neq 0$, except for endpoints $x=0,1$
- also DR could be used as IR regulator; in that case

$$
\int d^{n-2} \vec{k}_{\perp} \frac{1}{\vec{k}_{\perp}^{2}} \sim \frac{1}{\varepsilon_{\mathrm{UV}}}-\frac{1}{\varepsilon_{\mathrm{IR}}}
$$

separation of UV and IR divergence needed, otherwise $g_{1}(x, \mu)=0$

- $\int d x g_{1}$ IR-finite, and does depend on IR regulator
- Integral upon x
- full result

$$
\begin{aligned}
\int_{-1}^{1} d x g_{1}(x, \mu) & =\frac{\alpha_{\mathrm{em}}}{\pi} \int_{0}^{1} d x \frac{-p^{2} x(1-x)}{m^{2}-p^{2} x(1-x)} \\
& =\frac{\alpha_{\mathrm{em}}}{\pi}\left[1-\int_{0}^{1} d x \frac{2 m^{2}(1-x)}{m^{2}-p^{2} x(1-x)}\right]
\end{aligned}
$$

- after $\alpha_{\mathrm{em}} \rightarrow \frac{1}{2} \alpha_{\mathrm{s}} N_{f}$, full agreement with CCM (1988)
- special cases

$$
\left.\int_{-1}^{1} d x g_{1}(x, \mu)\right|_{m \neq 0, p^{2}=0}=\left.0 \quad \int_{-1}^{1} d x g_{1}(x, \mu)\right|_{m=0, p^{2} \neq 0}=\frac{\alpha_{\mathrm{em}}}{\pi}
$$

- one can understand origin of

$$
\Delta \Sigma=\Delta \widetilde{\Sigma}-\frac{\alpha_{\mathrm{s}} N_{f}}{2 \pi} \Delta G
$$

- also result of AR (1988) can be obtained by computing $\int d x g_{1}$ in their scheme

Local Axial Current in Perturbation Theory

- Divergence of axial current
- recall operator

$$
\partial_{\mu} J_{5}^{\mu}(x)=2 i m \bar{\psi}(x) \gamma_{5} \psi(x)-\frac{\alpha_{\mathrm{em}}}{2 \pi} F^{\mu \nu}(x) \widetilde{F}_{\mu \nu}(x)
$$

- matrix element of anomaly term $\quad\left(P=\frac{1}{2}\left(p+p^{\prime}\right), \Delta=p^{\prime}-p\right)$

$$
-\frac{\alpha_{\mathrm{em}}}{2 \pi}\left\langle\gamma\left(p^{\prime}, \lambda^{\prime}\right)\right| F^{\mu \nu}(0) \widetilde{F}_{\mu \nu}(0)|\gamma(p, \lambda)\rangle=\frac{2 \alpha_{\mathrm{em}}}{\pi} \varepsilon^{\varepsilon \varepsilon^{\prime} P \Delta} \rightarrow \Delta \neq 0 \text { needed }
$$

- matrix element of mass term $\quad\left(\tau=-\Delta^{2} / m^{2}>0\right)$

$$
\begin{aligned}
2 i m\left\langle\gamma\left(p^{\prime}, \lambda^{\prime}\right)\right| \bar{\psi}(0) \gamma_{5} \psi(0)|\gamma(p, \lambda)\rangle & =-\frac{2 \alpha_{\mathrm{em}}}{\pi} \varepsilon^{\varepsilon \varepsilon^{\prime} P \Delta} \frac{1}{\tau} \ln ^{2} \frac{\sqrt{\tau+4}-\sqrt{\tau}}{\sqrt{\tau+4}+\sqrt{\tau}} \\
& \xrightarrow{\tau \rightarrow 0}-\frac{2 \alpha_{\mathrm{em}}}{\pi} \varepsilon^{\varepsilon \varepsilon^{\prime} P \Delta} \quad \text { independent of } m(\neq 0)
\end{aligned}
$$

\rightarrow for $\Delta^{2}=0$, exact cancellation between anomaly term and fermion mass term

- General structure of axial current

$$
\begin{aligned}
\Gamma_{5}^{\mu}= & \left\langle\gamma\left(p^{\prime}, \lambda^{\prime}\right)\right| J_{5}^{\mu}(0)|\gamma(p, \lambda)\rangle=\sum_{i=1}^{3} \widetilde{G}_{i}\left(\Delta^{2}\right) A_{i}^{\mu} \\
& A_{1}^{\mu}=i \varepsilon^{\mu \varepsilon \varepsilon^{\prime} P} \\
& A_{2}^{\mu}=\frac{i}{2 \Delta^{2}} \Delta^{\mu} \varepsilon^{\varepsilon \varepsilon^{\prime} P \Delta} \\
& A_{3}^{\mu}=\frac{i}{\Delta^{2}}\left(\varepsilon \cdot P \varepsilon^{\mu \varepsilon^{\prime} P \Delta}+\varepsilon^{\prime} \cdot P \varepsilon^{\mu \varepsilon P \Delta}\right) \\
& A_{2} \text { and } A_{3} \text { do not exhibit a pole for } \Delta^{2} \rightarrow 0
\end{aligned}
$$

- Schouten identity

$$
A_{2}^{\mu}=-\frac{1}{2} A_{1}^{\mu}+A_{3}^{\mu}
$$

- Ward identities related to incoming/outgoing photon provide one more constraint

$$
\Gamma_{5}^{\mu}=G\left(\Delta^{2}\right) A_{2}^{\mu}
$$

\rightarrow local current is parametrized through just one form factor

- Axial current in perturbation theory
- consider axial (anomalous) Ward identity

$$
\begin{aligned}
\left\langle J_{5}^{\mu}(x)\right\rangle & =\Gamma_{5}^{\mu}(x)=\Gamma_{5}^{\mu} e^{i \Delta \cdot x} \\
\rightarrow \partial_{\mu} \Gamma_{5}^{\mu}(x) & =i \Delta_{\mu} \Gamma_{5}^{\mu} e^{i \Delta \cdot x}=\left\langle\partial_{\mu} J_{5}^{\mu}(0)\right\rangle e^{i \Delta \cdot x}
\end{aligned}
$$

- here, axial current fully determined by its divergence
- final result ($m \neq 0$ as IR regulator)

$$
\begin{aligned}
\Gamma_{5}^{\mu} & =G\left(\Delta^{2}\right) \frac{i}{2 \Delta^{2}} \Delta^{\mu} \varepsilon^{\varepsilon \varepsilon^{\prime} P \Delta} \\
G\left(\Delta^{2}\right) & =\frac{4 \alpha_{\mathrm{em}}}{\pi}\left[\frac{1}{\tau} \ln ^{2} \frac{\sqrt{\tau+4}-\sqrt{\tau}}{\sqrt{\tau+4}+\sqrt{\tau}}-1\right] \stackrel{\tau \rightarrow 0}{\rightarrow} 0
\end{aligned}
$$

* anomaly makes form factor vanish for $\Delta^{2}=0$
* matrix element Γ_{5}^{μ} vanishes for $\Delta=0$ for on-shell photons
- considering $\left\langle\partial_{\mu} J_{5}^{\mu}(0)\right\rangle$ is the easiest way to compute $G\left(\Delta^{2}\right)$
- Considering the forward limit
- relation between PDF g_{1} and form factor G

$$
\int_{-1}^{1} d x g_{1}(x, \mu)=-\frac{1}{4} G(0)
$$

- by computing $G(0)$ (for nonzero m and p^{2}) we (again) find result of CCM (1988)

$$
\int_{-1}^{1} d x g_{1}(x, \mu)=\frac{\alpha_{\mathrm{em}}}{\pi}\left[1-\int_{0}^{1} d x \frac{2 m^{2}(1-x)}{m^{2}-p^{2} x(1-x)}\right]
$$

- result for $\int d x g_{1}$ depends on anomaly and fermion mass term in $\partial_{\mu} J_{5}^{\mu}$
- for $m \neq 0$ and $p^{2}=0$, anomaly leads to $\Delta \Sigma=\Delta \widetilde{\Sigma}$
- in scheme of AR (1988), one would neglect quark mass term in $\partial_{\mu} J_{5}^{\mu}$

$$
\int_{-1}^{1} d x g_{1}(x, \mu)=\frac{\alpha_{\mathrm{em}}}{\pi}
$$

\rightarrow explanation why (nonzero) results by AR (1988) and CCM (1988) agree (?)

Generalized Parton Distributions in Perturbation Theory

- Definition (using Schouten identities and Ward identities)

$$
\begin{aligned}
F_{\lambda, \lambda^{\prime}}^{\left[\gamma^{+} \gamma_{5}\right]}(x, \Delta) & =\left.\int \frac{d z^{-}}{4 \pi} e^{i k \cdot z}\left\langle\gamma\left(p^{\prime}, \lambda^{\prime}\right)\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \gamma_{5} \psi\left(\frac{z}{2}\right)|\gamma(p, \lambda)\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}} \\
& =B_{1} \widetilde{H}_{1}\left(x, \xi, \Delta^{2}\right)+B_{2} \widetilde{H}_{2}\left(x, \xi, \Delta^{2}\right)
\end{aligned}
$$

- agreement with BHV $(2022,2023)$ about number of independent terms
- structures B_{i} and gauge invariance (Ward identities)

$$
\begin{gathered}
B_{1} \xrightarrow{\Delta \rightarrow 0} \frac{1}{P^{+}} A_{1}^{+} \quad B_{2}=\frac{i}{2 \Delta^{2}} \frac{\Delta \cdot n}{P \cdot n} \varepsilon^{\varepsilon \varepsilon^{\prime} P \Delta}=\frac{1}{P^{+}} A_{2}^{+} \\
B_{i}(\varepsilon \rightarrow p)=B_{i}\left(\varepsilon^{\prime} \rightarrow p^{\prime}\right)=0
\end{gathered}
$$

- to extract two GPDs, one can use circularly and linearly polarized photons
- Usage of nonzero Δ : (i) IR regulator; (ii) generates new structure
- if no other IR regulator, one cannot recover forward limit of matrix element
- Forward limit, using (additional) IR regulator

$$
\begin{aligned}
\lim _{\Delta \rightarrow 0} F_{\lambda, \lambda^{\prime}}^{\left[\gamma^{+} \gamma_{5}\right]}(x, \Delta) & =F_{\lambda, \lambda^{\prime}}^{\left[\gamma^{+} \gamma_{5}\right]}(x) \\
\widetilde{H}_{1}(x, 0,0) & =g_{1}(x)
\end{aligned}
$$

- Comparison with local current (form factor)
(see also Tarasov, Venugopalan, 2021, 2022 / Bhattacharya, Hatta, Vogelsang, 2022, 2023)

$$
\begin{aligned}
\int_{-1}^{1} d x \widetilde{H}_{1}\left(x, \xi, \Delta^{2}\right) & =0 \\
\int_{-1}^{1} d x \widetilde{H}_{2}\left(x, \xi, \Delta^{2}\right) & =\frac{1}{2} G\left(\Delta^{2}\right) \rightarrow \text { relation with anomaly }
\end{aligned}
$$

- Our perturbative GPD results satisfy quoted constraints
- GPD results for $m=0$ and $\Delta_{\perp} \neq 0$ (shown for $\xi \leq x \leq 1$ only)
$\widetilde{H}_{1}\left(x, \xi, \Delta^{2}\right) \sim \frac{\alpha_{\mathrm{em}}}{2 \pi}\left[\frac{1-2 x+\xi^{2}}{1-\xi^{2}}\left(\frac{1}{\varepsilon}-\ln \left(-\frac{\Delta^{2}}{\bar{\mu}^{2}}\right)-\ln \frac{(1-x)^{2}}{1-\xi^{2}}\right)-2 \frac{1-x}{1-\xi^{2}}\right]$
$\widetilde{H}_{2}\left(x, \xi, \Delta^{2}\right) \sim \frac{\alpha_{\mathrm{em}}}{2 \pi}\left[-2 \frac{1-x}{1-\xi^{2}}\right]$
- full agreement with results of BHV (2023)
- presence of $\ln \left(-\Delta^{2} / \bar{\mu}^{2}\right)$ prevents one from taking forward limit
- upon integration, results satisfy

$$
\int_{-1}^{1} d x \widetilde{H}_{1}\left(x, \xi, \Delta^{2}\right)=0 \quad \int_{-1}^{1} d x \widetilde{H}_{2}\left(x, \xi, \Delta^{2}\right)=\frac{1}{2} G\left(\Delta^{2}\right)
$$

- $G\left(\Delta^{2}\right)=G(0)$ anomaly effect that was computed by CCM (1988) for $p^{2} \neq 0$
- term $\sim \widetilde{H}_{2}\left(x, \xi, \Delta^{2}\right)$ in $F_{\lambda, \lambda^{\prime}}^{\left[\gamma^{+} \gamma_{5}\right]}(x, \Delta)$ has no pole
- GPD results for $m \neq 0$ and $\Delta_{\perp}=0 \quad$ (implies $\Delta^{2}=0$)

$$
\begin{aligned}
\widetilde{H}_{1}^{\mathrm{DGLAP}}(x, \xi, 0) & =\frac{\alpha_{\mathrm{em}}}{2 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\bar{\mu}^{2}}{m^{2}}\right) \frac{1-2 x+\xi^{2}}{1-\xi^{2}} \quad(\xi \leq x \leq 1) \\
\widetilde{H}_{1}^{\mathrm{ERBL}}(x, \xi, 0) & =\frac{\alpha_{\mathrm{em}}}{2 \pi}\left(\frac{1}{\varepsilon}+\ln \frac{\bar{\mu}^{2}}{m^{2}}\right) \frac{(1-\xi)(x+\xi)}{2 \xi(1+\xi)}+(x \rightarrow-x) \\
\widetilde{H}_{2}^{\mathrm{DGLAP}}(x, \xi, 0) & =\widetilde{H}_{2}^{\mathrm{ERBL}}(x, \xi, 0)=0
\end{aligned}
$$

- for $\xi \rightarrow 0$, we recover result for $g_{1}(x)$
$-\int d x \widetilde{H}_{1}=\int d x \widetilde{H}_{2}=0$, in agreement with $\left.G(0)\right|_{m \neq 0}=0$
- GPD results for $m \neq 0$ and $\Delta_{\perp} \neq 0$
- for $\Delta_{\perp} \rightarrow 0$, we recover results above
- again, we find agreement with

$$
\int_{-1}^{1} d x \widetilde{H}_{1}\left(x, \xi, \Delta^{2}\right)=0 \quad \int_{-1}^{1} d x \widetilde{H}_{2}\left(x, \xi, \Delta^{2}\right)=\frac{1}{2} G\left(\Delta^{2}\right)
$$

Summary

- Potential imprints of chiral anomaly in polarized DIS and DVCS have been discussed in literature
- We confirm "classic" results by AR (1988) and CCM (1988) for DIS

$$
\Delta \Sigma=\Delta \widetilde{\Sigma}-\frac{\alpha_{\mathrm{s}} N_{f}}{2 \pi} \Delta G
$$

- Perturbative results (for PDF, FF, GPDs) depend on IR scheme
- Going from $m=0$ to $m \neq 0$ can qualitatively change results
- How to embed anomaly-related perturbative results in full process has been a matter of debate
- Additional contribution arises for $\Delta \neq 0$
(Tarasov, Venugopalan, 2021, 2022 / Bhattacharya, Hatta, Vogelsang, 2022, 2023)
- Additional contribution has no pole for $\Delta \rightarrow 0$ (and no challenge for factorization)
- Perturbative calculations show that imprints of anomaly can be seen by
(i) using off-shell photons and/or (ii) going to off-forward kinematics

