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Introduction and Motivation

• Throughout we mostly consider QED, with one fermion type

• Vector current

J
µ
(x) = ψ̄(x) γ

µ
ψ(x)

∂µJ
µ
(x) = 0

• Axial current

J
µ
5 (x) = ψ̄(x) γ

µ
γ5ψ(x)

∂µJ
µ
5 (x) = 2im ψ̄(x) γ5ψ(x) −

αem

2π
F
µν
(x)F̃µν(x)

– axial current not conserved due to (i) nonzero fermion mass and (ii) chiral anomaly

(Adler, 1969 / Bell, Jackiw, 1969 / Adler, Bardeen, 1969 / ...)

– chiral anomaly can be derived, e.g., by evaluating J
µ
5 (x) between photon states

– chiral anomaly was intensively discussed in hadronic physics soon after discovery

of nucleon spin crisis through DIS measurements



• Pioneering work (Altarelli, Ross, 1988 (AR) / Carlitz, Collins, Mueller, 1988 (CCM) / ...)

– considering process γ
∗
+ g → q + q̄

– extracting leading power-term of 1/q
2
expansion and integrating upon x

→ calculation of local axial current

– overall conclusion: difference between measured (∆Σ) and “intrinsic” (∆Σ̃)

quark-spin contributions

∆Σ = ∆Σ̃ −
αsNf

2π
∆G

∗ term proportional to ∆G due to chiral anomaly (?)

∗ explanation of nucleon spin crisis (?)



• Critique of pioneering papers (Jaffe, Manohar, 1989 / Bodwin, Qiu, 1989 / ...)

– main concern: result depends on infrared (IR) regulator

AR: nonzero quark mass m in denominators of propagators

CCM: nonzero off-shellness p
2
of gluons / find zero if m ̸= 0 used throughout

– this concern, and need for very large ∆G, raised severe doubts

• Recent renewed interest in field

(Tarasov, Venugopalan, 2021, 2022 / Bhattacharya, Hatta, Vogelsang, 2022, 2023)

– considered also the x-dependence as opposed to x-integrated results only

– statements include:

∗ need off-forward kinematics to capture physics of anomaly

∗ GPDs may have more robust connection to anomaly than PDFs

∗ anomaly manifests in pole contribution for t = ∆
2 → 0

∗ anomaly pole could challenge factorization (not stated in all papers)

– papers reached important conclusions based on perturbative calculations

• Our motivations

– revisit dependence of perturbative calculations on IR regulator

– what role is played by fermion mass ?

– relation between “classic papers” and more recent work ?



Parton Distribution in Perturbation Theory

• Definition of PDF

F
[γ
+
γ5]

λ,λ
′ (x) =

∫
dz

−

4π
e
ik·z ⟨γ(p, λ′

)|ψ̄(−z
2) γ

+
γ5ψ(

z
2)|γ(p, λ)⟩

∣∣∣
z
+
=0,z⃗⊥=0⃗⊥

=
i

p
+
ε
+ ε ε

′
p
g1(x) =

i

p · n
ε
n ε ε

′
p
g1(x)

g1(x) ∼
(
F

[γ
+
γ5]

+,+ (x) − F
[γ
+
γ5]

−,− (x)
)

circularly polarized photons

• Leading-order diagrams

– two diagrams contribute in different regions of x



• Result for m ̸= 0 and off-shellness p
2
< 0, for 0 ≤ x ≤ 1 (µ̄

2
= 4πe

−γEµ
2
)

g1(x, µ) =
αem

2π

[(
1

ε
+ ln

µ̄
2

m
2 − p

2
x(1 − x)

)
(1 − 2x) −

p
2
x(1 − x)

m
2 − p

2
x(1 − x)

]
+ O(ε)

–
∫
dx g1 provides total spin contribution

• UV behavior

– g1(x, µ) UV-divergent, divergence regulated using dimensional regularization (DR)

–
∫
dx g1 UV-finite, does not depend on UV regulator

• IR behavior

– g1(x, µ) IR-divergent, divergence regulated using nonzero m and p
2

– result well behaved for m ̸= 0 and p
2
= 0

– result well behaved for m = 0 and p
2 ̸= 0, except for endpoints x = 0, 1

– also DR could be used as IR regulator; in that case∫
d
n−2

k⃗⊥
1

k⃗
2
⊥

∼
1

εUV

−
1

εIR

separation of UV and IR divergence needed, otherwise g1(x, µ) = 0

–
∫
dx g1 IR-finite, and does depend on IR regulator



• Integral upon x

– full result ∫ 1

−1

dx g1(x, µ) =
αem

π

∫ 1

0

dx
−p2x(1 − x)

m
2 − p

2
x(1 − x)

=
αem

π

[
1 −

∫ 1

0

dx
2m

2
(1 − x)

m
2 − p

2
x(1 − x)

]

– after αem → 1
2 αsNf , full agreement with CCM (1988)

– special cases∫ 1

−1

dx g1(x, µ)
∣∣
m ̸=0, p

2
=0

= 0

∫ 1

−1

dx g1(x, µ)
∣∣
m=0, p

2 ̸=0
=
αem

π

– one can understand origin of

∆Σ = ∆Σ̃ −
αsNf

2π
∆G

– also result of AR (1988) can be obtained by computing
∫
dx g1 in their scheme



Local Axial Current in Perturbation Theory

• Divergence of axial current

– recall operator

∂µJ
µ
5 (x) = 2im ψ̄(x) γ5ψ(x) −

αem

2π
F
µν
(x)F̃µν(x)

– matrix element of anomaly term (P = 1
2 (p+ p

′
), ∆ = p

′ − p)

−
αem

2π
⟨γ(p′, λ′

)|F µν
(0)F̃µν(0)|γ(p, λ)⟩ =

2αem

π
ε
ε ε

′
P ∆ → ∆ ̸= 0 needed

– matrix element of mass term (τ = −∆
2
/m

2
> 0)

2im ⟨γ(p′, λ′
)|ψ̄(0) γ5ψ(0)|γ(p, λ)⟩ = −

2αem

π
ε
ε ε

′
P ∆ 1

τ
ln

2

√
τ + 4 −

√
τ

√
τ + 4 +

√
τ

τ→0→ −
2αem

π
ε
ε ε

′
P ∆

independent of m ( ̸= 0)

→ for ∆
2
= 0, exact cancellation between anomaly term and fermion mass term



• General structure of axial current

Γ
µ
5 = ⟨γ(p′, λ′

)| Jµ5 (0) |γ(p, λ)⟩ =
3∑
i=1

G̃i(∆
2
)A

µ
i

A
µ
1 = i ε

µ ε ε
′
P

A
µ
2 =

i

2∆
2
∆
µ
ε
ε ε

′
P ∆

A
µ
3 =

i

∆
2

(
ε · P εµ ε

′
P ∆

+ ε
′ · P εµ εP ∆)

A2 and A3 do not exhibit a pole for ∆
2 → 0

– Schouten identity

A
µ
2 = −

1

2
A
µ
1 + A

µ
3

– Ward identities related to incoming/outgoing photon provide one more constraint

Γ
µ
5 = G(∆

2
)A

µ
2

→ local current is parametrized through just one form factor



• Axial current in perturbation theory

– consider axial (anomalous) Ward identity

⟨ Jµ5 (x) ⟩ = Γ
µ
5(x) = Γ

µ
5 e

i∆·x

→ ∂µ Γ
µ
5(x) = i∆µ Γ

µ
5 e

i∆·x
= ⟨ ∂µJ

µ
5 (0) ⟩ e

i∆·x

– here, axial current fully determined by its divergence

– final result (m ̸= 0 as IR regulator)

Γ
µ
5 = G(∆

2
)
i

2∆
2
∆
µ
ε
ε ε

′
P ∆

G(∆
2
) =

4αem

π

[
1

τ
ln

2

√
τ + 4 −

√
τ

√
τ + 4 +

√
τ

− 1

]
τ→0→ 0

∗ anomaly makes form factor vanish for ∆
2
= 0

∗ matrix element Γ
µ
5 vanishes for ∆ = 0 for on-shell photons

– considering ⟨ ∂µJ
µ
5 (0) ⟩ is the easiest way to compute G(∆

2
)



• Considering the forward limit

– relation between PDF g1 and form factor G∫ 1

−1

dx g1(x, µ) = −
1

4
G(0)

– by computing G(0) (for nonzero m and p
2
) we (again) find result of CCM (1988)∫ 1

−1

dx g1(x, µ) =
αem

π

[
1 −

∫ 1

0

dx
2m

2
(1 − x)

m
2 − p

2
x(1 − x)

]

– result for
∫
dx g1 depends on anomaly and fermion mass term in ∂µJ

µ
5

– for m ̸= 0 and p
2
= 0, anomaly leads to ∆Σ = ∆Σ̃

– in scheme of AR (1988), one would neglect quark mass term in ∂µJ
µ
5∫ 1

−1

dx g1(x, µ) =
αem

π

→ explanation why (nonzero) results by AR (1988) and CCM (1988) agree (?)



Generalized Parton Distributions in Perturbation Theory

• Definition (using Schouten identities and Ward identities)

F
[γ
+
γ5]

λ,λ
′ (x,∆) =

∫
dz

−

4π
e
ik·z ⟨γ(p′, λ′

)|ψ̄(−z
2) γ

+
γ5ψ(

z
2)|γ(p, λ)⟩

∣∣∣
z
+
=0,z⃗⊥=0⃗⊥

= B1 H̃1(x, ξ,∆
2
) + B2 H̃2(x, ξ,∆

2
)

– agreement with BHV (2022, 2023) about number of independent terms

– structures Bi and gauge invariance (Ward identities)

B1
∆→0→

1

P
+
A

+
1 B2 =

i

2∆
2

∆ · n
P · n

ε
ε ε

′
P ∆

=
1

P
+
A

+
2

Bi(ε → p) = Bi(ε
′ → p

′
) = 0

– to extract two GPDs, one can use circularly and linearly polarized photons



• Usage of nonzero ∆: (i) IR regulator; (ii) generates new structure

– if no other IR regulator, one cannot recover forward limit of matrix element

• Forward limit, using (additional) IR regulator

lim
∆→0

F
[γ
+
γ5]

λ,λ
′ (x,∆) = F

[γ
+
γ5]

λ,λ
′ (x)

H̃1(x, 0, 0) = g1(x)

• Comparison with local current (form factor)

(see also Tarasov, Venugopalan, 2021, 2022 / Bhattacharya, Hatta, Vogelsang, 2022, 2023)∫ 1

−1

dx H̃1(x, ξ,∆
2
) = 0∫ 1

−1

dx H̃2(x, ξ,∆
2
) =

1

2
G(∆

2
) → relation with anomaly

• Our perturbative GPD results satisfy quoted constraints



• GPD results for m = 0 and ∆⊥ ̸= 0 (shown for ξ ≤ x ≤ 1 only)

H̃1(x, ξ,∆
2
) ∼

αem

2π

[
1 − 2x+ ξ

2

1 − ξ
2

(
1

ε
− ln

(
−

∆
2

µ̄
2

)
− ln

(1 − x)
2

1 − ξ
2

)
− 2

1 − x

1 − ξ
2

]

H̃2(x, ξ,∆
2
) ∼

αem

2π

[
− 2

1 − x

1 − ξ
2

]

– full agreement with results of BHV (2023)

– presence of ln(−∆
2
/µ̄

2
) prevents one from taking forward limit

– upon integration, results satisfy∫ 1

−1

dx H̃1(x, ξ,∆
2
) = 0

∫ 1

−1

dx H̃2(x, ξ,∆
2
) =

1

2
G(∆

2
)

– G(∆
2
) = G(0) anomaly effect that was computed by CCM (1988) for p

2 ̸= 0

– term ∼ H̃2(x, ξ,∆
2
) in F

[γ
+
γ5]

λ,λ
′ (x,∆) has no pole



• GPD results for m ̸= 0 and ∆⊥ = 0 (implies ∆
2
= 0)

H̃
DGLAP
1 (x, ξ, 0) =

αem

2π

(
1

ε
+ ln

µ̄
2

m
2

)
1 − 2x+ ξ

2

1 − ξ
2

(ξ ≤ x ≤ 1)

H̃
ERBL
1 (x, ξ, 0) =

αem

2π

(
1

ε
+ ln

µ̄
2

m
2

)
(1 − ξ)(x+ ξ)

2ξ(1 + ξ)
+ (x → −x)

H̃
DGLAP
2 (x, ξ, 0) = H̃

ERBL
2 (x, ξ, 0) = 0

– for ξ → 0, we recover result for g1(x)

–
∫
dx H̃1 =

∫
dx H̃2 = 0, in agreement with G(0)|m ̸=0 = 0

• GPD results for m ̸= 0 and ∆⊥ ̸= 0

– for ∆⊥ → 0, we recover results above

– again, we find agreement with∫ 1

−1

dx H̃1(x, ξ,∆
2
) = 0

∫ 1

−1

dx H̃2(x, ξ,∆
2
) =

1

2
G(∆

2
)



Summary

• Potential imprints of chiral anomaly in polarized DIS and DVCS have been

discussed in literature

• We confirm “classic” results by AR (1988) and CCM (1988) for DIS

∆Σ = ∆Σ̃ −
αsNf

2π
∆G

• Perturbative results (for PDF, FF, GPDs) depend on IR scheme

• Going from m = 0 to m ̸= 0 can qualitatively change results

• How to embed anomaly-related perturbative results in full process has been

a matter of debate

• Additional contribution arises for ∆ ̸= 0

(Tarasov, Venugopalan, 2021, 2022 / Bhattacharya, Hatta, Vogelsang, 2022, 2023)

• Additional contribution has no pole for ∆ → 0 (and no challenge for factorization)

• Perturbative calculations show that imprints of anomaly can be seen by

(i) using off-shell photons and/or (ii) going to off-forward kinematics


