The Axial Current and its Divergence

Andreas Metz Temple University

Outline

- Introduction and motivation
- Perturbative calculations involving the axial current
 - parton distribution
 - local current and form factor
 - generalized parton distributions
- Summary

In collaboration with: Ignacio Castelli, Adam Freese, Cédric Lorcé, Barbara Pasquini, Simone Rodini

Introduction and Motivation

- Throughout we mostly consider QED, with one fermion type
- Vector current

$$J^{\mu}(x) = ar{\psi}(x) \, \gamma^{\mu} \, \psi(x)$$
 $\partial_{\mu} J^{\mu}(x) = 0$

• Axial current

$$J_5^\mu(x) = \psi(x) \, \gamma^\mu \gamma_5 \, \psi(x) \ \partial_\mu J_5^\mu(x) = 2im \, ar \psi(x) \, \gamma_5 \, \psi(x) \, - \, rac{lpha_{
m em}}{2\pi} \, F^{\mu
u}(x) \widetilde F_{\mu
u}(x)$$

- axial current not conserved due to (i) nonzero fermion mass and (ii) chiral anomaly (Adler, 1969 / Bell, Jackiw, 1969 / Adler, Bardeen, 1969 / ...)
- chiral anomaly can be derived, e.g., by evaluating $J^{\mu}_5(x)$ between photon states
- chiral anomaly was intensively discussed in hadronic physics soon after discovery of nucleon spin crisis through DIS measurements

- Pioneering work (Altarelli, Ross, 1988 (AR) / Carlitz, Collins, Mueller, 1988 (CCM) / ...)
 - considering process $\gamma^* + g
 ightarrow q + ar{q}$

- extracting leading power-term of $1/q^2$ expansion and integrating upon x
 - \rightarrow calculation of local axial current

- overall conclusion: difference between measured $(\Delta \Sigma)$ and "intrinsic" $(\Delta \widetilde{\Sigma})$ quark-spin contributions

$$\Delta \Sigma = \Delta \widetilde{\Sigma} - \frac{\alpha_{\rm s} N_f}{2\pi} \Delta G$$

- * term proportional to ΔG due to chiral anomaly (?)
- * explanation of nucleon spin crisis(?)

• Critique of pioneering papers (Jaffe, Manohar, 1989 / Bodwin, Qiu, 1989 / ...)

- main concern: result depends on infrared (IR) regulator AR: nonzero quark mass m in denominators of propagators CCM: nonzero off-shellness p^2 of gluons / find zero if $m \neq 0$ used throughout

- this concern, and need for very large ΔG , raised severe doubts
- Recent renewed interest in field

(Tarasov, Venugopalan, 2021, 2022 / Bhattacharya, Hatta, Vogelsang, 2022, 2023)

- considered also the x-dependence as opposed to x-integrated results only
- statements include:
 - * need off-forward kinematics to capture physics of anomaly
 - * GPDs may have more robust connection to anomaly than PDFs
 - * anomaly manifests in pole contribution for $t=\Delta^{\!2}\rightarrow 0$
 - * anomaly pole could challenge factorization (not stated in all papers)
- papers reached important conclusions based on perturbative calculations
- Our motivations
 - revisit dependence of perturbative calculations on IR regulator
 - what role is played by fermion mass?
 - relation between "classic papers" and more recent work?

Parton Distribution in Perturbation Theory

• Definition of PDF

$$\begin{split} F_{\lambda,\lambda'}^{[\gamma^+\gamma_5]}(x) &= \int \frac{dz^-}{4\pi} e^{ik\cdot z} \left\langle \gamma(p,\lambda') | \bar{\psi}(-\frac{z}{2}) \gamma^+\gamma_5 \psi(\frac{z}{2}) | \gamma(p,\lambda) \right\rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp} \\ &= \frac{i}{p^+} \varepsilon^{+\varepsilon \varepsilon' p} g_1(x) = \frac{i}{p\cdot n} \varepsilon^{n\varepsilon \varepsilon' p} g_1(x) \\ g_1(x) &\sim \left(F_{+,+}^{[\gamma^+\gamma_5]}(x) - F_{-,-}^{[\gamma^+\gamma_5]}(x) \right) \quad \text{circularly polarized photons} \end{split}$$

• Leading-order diagrams

– two diagrams contribute in different regions of \boldsymbol{x}

• Result for $m \neq 0$ and off-shellness $p^2 < 0$, for $0 \le x \le 1$ $(\bar{\mu}^2 = 4\pi e^{-\gamma_E} \mu^2)$

$$g_1(x,\mu) = \frac{\alpha_{\rm em}}{2\pi} \left[\left(\frac{1}{\varepsilon} + \ln \frac{\bar{\mu}^2}{m^2 - p^2 x (1-x)} \right) (1-2x) - \frac{p^2 x (1-x)}{m^2 - p^2 x (1-x)} \right] + \mathcal{O}(\varepsilon)$$

- $\int dx g_1$ provides total spin contribution
- UV behavior
 - $g_1(x,\mu)$ UV-divergent, divergence regulated using dimensional regularization (DR)
 - $\int dx g_1$ UV-finite, does not depend on UV regulator
- IR behavior
 - $g_1(x,\mu)$ IR-divergent, divergence regulated using nonzero m and p^2
 - result well behaved for m
 eq 0 and $p^2 = 0$
 - result well behaved for m=0 and $p^2 \neq 0$, except for endpoints x=0,1
 - also DR could be used as IR regulator; in that case

$$\int d^{n-2} \vec{k}_{\perp} \frac{1}{\vec{k}_{\perp}^{\,2}} \sim \frac{1}{\varepsilon_{\rm UV}} - \frac{1}{\varepsilon_{\rm IR}}$$

separation of UV and IR divergence needed, otherwise $g_1(x,\mu) = 0$

- $\int dx g_1$ IR-finite, and does depend on IR regulator

- Integral upon x
 - full result

$$\int_{-1}^{1} dx \, g_1(x,\mu) = \frac{\alpha_{\rm em}}{\pi} \int_{0}^{1} dx \, \frac{-p^2 x(1-x)}{m^2 - p^2 x(1-x)}$$
$$= \frac{\alpha_{\rm em}}{\pi} \left[1 - \int_{0}^{1} dx \, \frac{2m^2(1-x)}{m^2 - p^2 x(1-x)} \right]$$

– after $\alpha_{\rm em} \rightarrow \frac{1}{2}\,\alpha_{\rm s}\,N_f$, full agreement with CCM (1988)

- special cases

$$\int_{-1}^{1} dx \, g_1(x,\mu) \big|_{m \neq 0, \, p^2 = 0} = 0 \qquad \qquad \int_{-1}^{1} dx \, g_1(x,\mu) \big|_{m = 0, \, p^2 \neq 0} = \frac{\alpha_{\text{em}}}{\pi}$$

- one can understand origin of

$$\Delta \Sigma = \Delta \widetilde{\Sigma} - \frac{\alpha_{\rm s} N_f}{2\pi} \Delta G$$

- also result of AR (1988) can be obtained by computing $\int dx g_1$ in their scheme

Local Axial Current in Perturbation Theory

- Divergence of axial current
 - recall operator

$$\partial_\mu J^\mu_5(x) = 2im\, ar\psi(x)\, \gamma_5\, \psi(x)\, -\, rac{lpha_{
m em}}{2\pi}\, F^{\mu
u}(x) \widetilde F_{\mu
u}(x)$$

– matrix element of anomaly term $(P = \frac{1}{2}(p + p'), \Delta = p' - p)$

$$-\frac{\alpha_{\rm em}}{2\pi} \langle \gamma(p',\lambda') | F^{\mu\nu}(0) \widetilde{F}_{\mu\nu}(0) | \gamma(p,\lambda) \rangle = \frac{2 \,\alpha_{\rm em}}{\pi} \,\varepsilon^{\,\varepsilon \,\varepsilon' P \,\Delta} \to \Delta \neq 0 \text{ needed}$$

– matrix element of mass term $(au=-\Delta^2/m^2>0)$

$$2im \langle \gamma(p',\lambda') | \bar{\psi}(0) \gamma_5 \psi(0) | \gamma(p,\lambda) \rangle = -\frac{2 \alpha_{\rm em}}{\pi} \varepsilon^{\varepsilon \varepsilon' P \Delta} \frac{1}{\tau} \ln^2 \frac{\sqrt{\tau+4} - \sqrt{\tau}}{\sqrt{\tau+4} + \sqrt{\tau}}$$
$$\overset{\tau \to 0}{\to} -\frac{2 \alpha_{\rm em}}{\pi} \varepsilon^{\varepsilon \varepsilon' P \Delta} \quad \text{independent of } m \ (\neq 0)$$

 \rightarrow for $\Delta^{\!2}=0,$ exact cancellation between anomaly term and fermion mass term

• General structure of axial current

$$\begin{split} \Gamma_{5}^{\mu} &= \langle \gamma(p',\lambda') | J_{5}^{\mu}(0) | \gamma(p,\lambda) \rangle = \sum_{i=1}^{3} \widetilde{G}_{i}(\Delta^{2}) A_{i}^{\mu} \\ A_{1}^{\mu} &= i \, \varepsilon^{\mu \, \varepsilon \, \varepsilon' P} \\ A_{2}^{\mu} &= \frac{i}{2\Delta^{2}} \, \Delta^{\mu} \, \varepsilon^{\varepsilon \, \varepsilon' P \, \Delta} \\ A_{3}^{\mu} &= \frac{i}{\Delta^{2}} \left(\varepsilon \cdot P \, \varepsilon^{\mu \, \varepsilon' P \, \Delta} + \varepsilon' \cdot P \, \varepsilon^{\mu \, \varepsilon \, P \, \Delta} \right) \end{split}$$

 A_2 and A_3 do not exhibit a pole for $\Delta^{\!2} \rightarrow 0$

- Schouten identity

$$A_2^\mu = -rac{1}{2}A_1^\mu + A_3^\mu$$

- Ward identities related to incoming/outgoing photon provide one more constraint

$$\Gamma_5^{\mu} = G(\Delta^2) A_2^{\mu}$$

 \rightarrow local current is parametrized through just one form factor

- Axial current in perturbation theory
 - consider axial (anomalous) Ward identity

$$\langle J_5^{\mu}(x) \rangle = \Gamma_5^{\mu}(x) = \Gamma_5^{\mu} e^{i\Delta \cdot x}$$

 $\rightarrow \partial_{\mu} \Gamma_5^{\mu}(x) = i\Delta_{\mu} \Gamma_5^{\mu} e^{i\Delta \cdot x} = \langle \partial_{\mu} J_5^{\mu}(0) \rangle e^{i\Delta \cdot x}$

- here, axial current fully determined by its divergence
- final result ($m \neq 0$ as IR regulator)

$$\Gamma_5^{\mu} = G(\Delta^2) \frac{i}{2\Delta^2} \Delta^{\mu} \varepsilon^{\varepsilon \varepsilon' P \Delta}$$
$$G(\Delta^2) = \frac{4 \alpha_{\rm em}}{\pi} \left[\frac{1}{\tau} \ln^2 \frac{\sqrt{\tau + 4} - \sqrt{\tau}}{\sqrt{\tau + 4} + \sqrt{\tau}} - 1 \right] \stackrel{\tau \to 0}{\to} 0$$

- * anomaly makes form factor vanish for $\Delta^{\!2}=0$
- * matrix element Γ^{μ}_{5} vanishes for $\Delta=0$ for on-shell photons
- considering $\langle \, \partial_{\mu} J^{\mu}_5(0) \, \rangle$ is the easiest way to compute $G(\Delta^{\!2})$

- Considering the forward limit
 - relation between PDF g_1 and form factor G

$$\int_{-1}^{1} dx \, g_1(x,\mu) = - \frac{1}{4} \, G(0)$$

- by computing G(0) (for nonzero m and p^2) we (again) find result of CCM (1988)

$$\int_{-1}^{1} dx \, g_1(x,\mu) = \frac{\alpha_{\rm em}}{\pi} \left[1 - \int_0^1 dx \, \frac{2m^2(1-x)}{m^2 - p^2 x(1-x)} \right]$$

– result for $\int dx \, g_1$ depends on anomaly and fermion mass term in $\partial_\mu J_5^\mu$

- for $m\neq 0$ and $p^2=0,$ anomaly leads to $\Delta\Sigma=\Delta\widetilde{\Sigma}$
- in scheme of AR (1988), one would neglect quark mass term in $\partial_{\mu}J_{5}^{\mu}$

$$\int_{-1}^1 dx \, g_1(x,\mu) = rac{lpha_{
m em}}{\pi}$$

 \rightarrow explanation why (nonzero) results by AR (1988) and CCM (1988) agree (?)

Generalized Parton Distributions in Perturbation Theory

• Definition (using Schouten identities and Ward identities)

$$\begin{split} F_{\lambda,\lambda'}^{[\gamma^+\gamma_5]}(x,\Delta) &= \int \frac{dz^-}{4\pi} e^{ik\cdot z} \left\langle \gamma(p',\lambda') | \bar{\psi}(-\frac{z}{2}) \gamma^+\gamma_5 \psi(\frac{z}{2}) | \gamma(p,\lambda) \right\rangle \Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp} \\ &= B_1 \, \widetilde{H}_1(x,\xi,\Delta^2) + B_2 \, \widetilde{H}_2(x,\xi,\Delta^2) \end{split}$$

- agreement with BHV (2022, 2023) about number of independent terms
- structures B_i and gauge invariance (Ward identities)

$$B_1 \stackrel{\Delta \to 0}{\to} \frac{1}{P^+} A_1^+ \qquad B_2 = \frac{i}{2\Delta^2} \frac{\Delta \cdot n}{P \cdot n} \varepsilon^{\varepsilon \varepsilon' P \Delta} = \frac{1}{P^+} A_2^+$$
$$B_i(\varepsilon \to p) = B_i(\varepsilon' \to p') = 0$$

- to extract two GPDs, one can use circularly and linearly polarized photons

- Usage of nonzero Δ : (i) IR regulator; (ii) generates new structure
 - if no other IR regulator, one cannot recover forward limit of matrix element
- Forward limit, using (additional) IR regulator

$$\begin{split} \lim_{\Delta \to 0} F_{\lambda,\lambda'}^{[\gamma^+ \gamma_5]}(x,\Delta) &= F_{\lambda,\lambda'}^{[\gamma^+ \gamma_5]}(x) \\ \widetilde{H}_1(x,0,0) &= g_1(x) \end{split}$$

• Comparison with local current (form factor)

(see also Tarasov, Venugopalan, 2021, 2022 / Bhattacharya, Hatta, Vogelsang, 2022, 2023)

$$\begin{split} &\int_{-1}^{1} dx \, \widetilde{H}_{1}(x,\xi,\Delta^{2}) = 0 \\ &\int_{-1}^{1} dx \, \widetilde{H}_{2}(x,\xi,\Delta^{2}) = \frac{1}{2} \, G(\Delta^{2}) \to \text{relation with anomaly} \end{split}$$

• Our perturbative GPD results satisfy quoted constraints

• GPD results for m=0 and $\Delta_{\perp} \neq 0$ (shown for $\xi \leq x \leq 1$ only)

$$\begin{split} \widetilde{H}_1(x,\xi,\Delta^2) &\sim \frac{\alpha_{\rm em}}{2\pi} \bigg[\frac{1-2x+\xi^2}{1-\xi^2} \bigg(\frac{1}{\varepsilon} - \ln\left(-\frac{\Delta^2}{\overline{\mu}^2}\right) - \ln\frac{(1-x)^2}{1-\xi^2} \bigg) - 2\frac{1-x}{1-\xi^2} \bigg] \\ \widetilde{H}_2(x,\xi,\Delta^2) &\sim \frac{\alpha_{\rm em}}{2\pi} \bigg[-2\frac{1-x}{1-\xi^2} \bigg] \end{split}$$

- full agreement with results of BHV (2023)
- presence of $\ln(-\Delta^2/\bar{\mu}^2)$ prevents one from taking forward limit
- upon integration, results satisfy

$$\int_{-1}^{1} dx \, \widetilde{H}_{1}(x,\xi,\Delta^{2}) = 0 \qquad \int_{-1}^{1} dx \, \widetilde{H}_{2}(x,\xi,\Delta^{2}) = \frac{1}{2} \, G(\Delta^{2})$$

- $G(\Delta^2) = G(0)$ anomaly effect that was computed by CCM (1988) for $p^2 \neq 0$ - term ~ $\widetilde{H}_2(x,\xi,\Delta^2)$ in $F_{\lambda,\lambda'}^{[\gamma^+\gamma_5]}(x,\Delta)$ has no pole • GPD results for $m \neq 0$ and $\Delta_{\perp} = 0$ (implies $\Delta^2 = 0$)

$$\widetilde{H}_{1}^{\text{DGLAP}}(x,\xi,0) = \frac{\alpha_{\text{em}}}{2\pi} \left(\frac{1}{\varepsilon} + \ln\frac{\bar{\mu}^2}{m^2}\right) \frac{1 - 2x + \xi^2}{1 - \xi^2} \qquad (\xi \le x \le 1)$$

$$\widetilde{H}_{1}^{\text{ERBL}}(x,\xi,0) = \frac{\alpha_{\text{em}}}{2\pi} \left(\frac{1}{\varepsilon} + \ln\frac{\overline{\mu}^{2}}{m^{2}}\right) \frac{(1-\xi)(x+\xi)}{2\xi(1+\xi)} + (x \to -x)$$

$$\widetilde{H}_2^{ ext{DGLAP}}(x,\xi,0) = \widetilde{H}_2^{ ext{ERBL}}(x,\xi,0) = 0$$

– for
$$\xi
ightarrow 0$$
, we recover result for $g_1(x)$

-
$$\int dx \, \widetilde{H}_1 = \int dx \, \widetilde{H}_2 = 0$$
, in agreement with $G(0)|_{m
eq 0} = 0$

- $\bullet~\mbox{GPD}$ results for $m\neq 0$ and $\Delta_{\perp}\neq 0$
 - for $\Delta_\perp \to 0,$ we recover results above
 - again, we find agreement with

$$\int_{-1}^{1} dx \, \widetilde{H}_{1}(x,\xi,\Delta^{2}) = 0 \qquad \int_{-1}^{1} dx \, \widetilde{H}_{2}(x,\xi,\Delta^{2}) = \frac{1}{2} \, G(\Delta^{2})$$

Summary

- Potential imprints of chiral anomaly in polarized DIS and DVCS have been discussed in literature
- We confirm "classic" results by AR (1988) and CCM (1988) for DIS

$$\Delta \Sigma = \Delta \widetilde{\Sigma} - \frac{\alpha_{\rm s} N_f}{2\pi} \Delta G$$

- Perturbative results (for PDF, FF, GPDs) depend on IR scheme
- Going from m = 0 to $m \neq 0$ can qualitatively change results
- How to embed anomaly-related perturbative results in full process has been a matter of debate
- Additional contribution arises for ∆ ≠ 0 (Tarasov, Venugopalan, 2021, 2022 / Bhattacharya, Hatta, Vogelsang, 2022, 2023)
- Additional contribution has no pole for $\Delta \rightarrow 0$ (and no challenge for factorization)
- Perturbative calculations show that imprints of anomaly can be seen by (i) using off-shell photons and/or (ii) going to off-forward kinematics