Factorization of ep diffraction Stella Schindler

QCD Evolution Workshop Università di Pavia Friday, May 31, 2024

Collaborators
Iain Stewart (MIT) Kyle Lee (MIT)

Diffraction

Wide range of diffractive processes

Coherent or incoherent

$e A, A A, e p, p p$ collisions

Single or multi jet/gap

Tagged final states
Heavy mesons
Dijet photoproduction
Etc.

How well do we understand diffraction?

Figure: ATLAS, 1911.00453.

Kinematics

Single-gap diffractive ep scattering

Shared with DIS

$$
\begin{array}{rlrl}
\boldsymbol{Q}^{\mathbf{2}} & =-q^{2} & \boldsymbol{x} & =\frac{Q^{2}}{2 p \cdot q} \\
\boldsymbol{W}^{\mathbf{2}} & =(p+q)^{2} & \boldsymbol{y} & =\frac{p \cdot q}{p \cdot k}
\end{array}
$$

Specific to diffraction (use \boldsymbol{p} ')

$$
\begin{array}{lcc}
\boldsymbol{m}_{\boldsymbol{J}}^{\mathbf{2}}=p^{\prime 2}>0 & \boldsymbol{m}_{\boldsymbol{X}}^{\mathbf{2}}=p_{X}^{2}>0 & \boldsymbol{t}=\tau^{2}<0 \\
\boldsymbol{\beta}=\frac{Q^{2}}{2 q \cdot \tau} & \boldsymbol{\xi}=\frac{q \cdot \tau}{q \cdot p} & \boldsymbol{z}=\frac{p \cdot p^{\prime}}{p \cdot q}
\end{array} \overline{\boldsymbol{x}}=\frac{k \cdot \tau}{k \cdot p}
$$

Diffractive phase space

DIS invariants

$0<x<1, \quad 0<y<1, \quad 0<Q^{2}<s$
$\underset{\text { momentum fraction }}{\text { Longitudinal }} \bar{x}=\frac{k \cdot \tau}{k \cdot p}$

$$
\overline{\boldsymbol{x}}=\frac{k \cdot \tau}{k \cdot p}
$$

Diffractive invariants

$$
\begin{aligned}
& \frac{1}{1+\frac{-t}{Q^{2}}+\left(\frac{\bar{x}}{x}-y\right)(1-z)}<\beta<\frac{1}{1+\frac{-t}{Q^{2}}} \\
& \Lambda_{Q C D}^{2} \lesssim m_{J}^{2}<\frac{1-\bar{x}}{\bar{x}}(-t)
\end{aligned}
$$

$$
\frac{\bar{x}}{1-\bar{x}} \frac{m_{J}^{2}}{Q^{2}} \bigodot \frac{-t}{Q^{2}}<\frac{1-\beta}{\beta}
$$

$$
-1<\frac{\beta x y z-2 \beta x z+x-\beta \bar{x})}{2 \sqrt{\beta x z(1-y)(\beta x z-x+\beta)}}<1
$$

Etc.

Lee, Schindler, \& Stewart, in preparation.

Measure $p, p^{\prime}, q \Rightarrow 4$ structure functions

$$
\begin{aligned}
W^{\mu \nu}= & \left(-g^{\mu v}+\frac{q^{\mu} q^{v}}{q^{2}}\right) \boldsymbol{F}_{1}^{D}+\frac{1}{2 x} U^{\mu} U^{v} \boldsymbol{F}_{2}^{D} \\
& +\frac{1}{x}\left(X^{\mu} X^{v}-\frac{1}{2} U^{\mu} U^{v}\right) \boldsymbol{F}_{3}^{D}+\frac{1}{2 x}\left(U^{\mu} X^{v}+X^{\mu} U^{v}\right) \boldsymbol{F}_{4}^{D}
\end{aligned}
$$

Typically only talk about $F_{2} \& F_{L}$
Punchline: $\boldsymbol{F}_{3} \& F_{4}$ are big!

Arens et al., hep-ph/9605376. Also see e.g. Blumlein \& Robaschik hep-ph/0106037.

Coefficients of structures

$$
\begin{aligned}
L_{\mu \nu} W^{\mu \nu}= & -\frac{Q^{2}}{x} \boldsymbol{F}_{L}^{D}+Q^{2} \frac{1+(1-y)^{2}}{x y^{2}} F_{2}^{D} \\
& +\frac{4(\boldsymbol{k} \cdot \boldsymbol{X})^{2}+Q^{2}}{x} \boldsymbol{F}_{3}^{D}+\frac{4(\boldsymbol{k} \cdot \boldsymbol{X})(k \cdot U)}{x} \boldsymbol{F}_{4}^{D}
\end{aligned}
$$

$\bar{x} \& y$ are in coefficients, not in

$$
\boldsymbol{F}_{\boldsymbol{i}}^{\boldsymbol{D}}\left(x, Q^{2}, \beta, m_{J}^{2}, t\right)
$$

How to miss F_{3}, F_{4} :
$>$ Integrate over \bar{x}
$>$ Set $p^{\prime} \propto p$

Coefficients:

$>k \cdot X=Q^{2} \frac{x-\bar{x} \beta-(2-y) x z \beta}{2 N_{X} x y \beta}$
$k \cdot U=\frac{Q(2-y)}{2 y} \quad>z=\frac{x}{Q^{2}}\left(m_{J}^{2}-t\right)$
Lee, Schindler, \& Stewart, in preparation.

Factorization

Many power expansions in diffraction

Focus today:

$$
\lambda=\frac{Q}{\sqrt{S}} \quad \lambda_{t}=\frac{\sqrt{-t}}{Q}
$$

m_{J}^{2}
Lee, Schindler, \& Stewart, in preparation.

Constraints on diffraction

$$
-t \ll W^{2} \quad \Lambda_{\mathrm{QCD}}^{2} \ll m_{\mathrm{J}}^{2}, m_{X}^{2} \ll W^{2}
$$

Forward + Gap + Jets $\Rightarrow \lambda=\frac{Q}{\sqrt{s}} \ll \mathbf{1}$

Diffraction from SCET

Forward + Gap + Jets \Rightarrow Scaling of momenta

Simple case: only $\lambda=\frac{Q}{\sqrt{s}} \ll 1$

Mode	Momentum
Soft	$\sqrt{s}(\lambda, \lambda, \lambda)$
Glauber	$\sqrt{s}\left(\lambda^{a}, \lambda^{b}, \lambda\right)$
Collinear	$\sqrt{\boldsymbol{s}}\left(\boldsymbol{\lambda}^{2}, \mathbf{1}, \boldsymbol{\lambda}\right)$

$\mathcal{L}_{\text {SCET }}^{(\mathbf{0})}=\mathcal{L}_{\text {hard }}+\mathcal{L}_{\text {collinear }}+\mathcal{L}_{\text {soft }}+\mathcal{L}_{\text {Glauber }}$

Estimating coefficients of the F_{i}^{D} 's

Momentum	Scaling
k, k^{\prime}	$\left(1, \lambda^{2}, \lambda\right)$
q	$\left(\lambda, \lambda^{2}, \lambda\right)$
p_{X}	$(\lambda, \lambda, \lambda)$
τ	$\left(\lambda^{2}, \lambda, \lambda\right)$
p, p^{\prime}	$\left(\lambda^{2}, 1, \lambda\right)$

$$
\begin{aligned}
\boldsymbol{L}_{\boldsymbol{\mu} \boldsymbol{\nu}} \boldsymbol{W}^{\boldsymbol{\mu} \boldsymbol{\nu}} & =-\frac{Q^{2}}{x} F_{L}^{D}+Q^{2} \frac{1+(1-y)^{2}}{x y^{2}} F_{2}^{D}+\frac{4(k \cdot x)^{2}+Q^{2}}{x} F_{3}^{D}+\frac{4(k \cdot U)(k \cdot x)}{x}{ }_{F}^{D} \\
& \sim \boldsymbol{\lambda} \boldsymbol{F}_{\boldsymbol{L}}^{\boldsymbol{D}}+\boldsymbol{\lambda}^{\mathbf{1}} \boldsymbol{F}_{\mathbf{2}}^{\boldsymbol{D}}+\boldsymbol{\lambda}^{-1} \boldsymbol{F}_{\mathbf{3}}^{\boldsymbol{D}}+\boldsymbol{\lambda}^{-\mathbf{1}} \boldsymbol{F}_{\mathbf{4}}^{\boldsymbol{D}}
\end{aligned}
$$

How big is each F_{i}^{D} ?

$\lambda \ll 1$ factorization

$\boldsymbol{W}_{\boldsymbol{D}}^{\boldsymbol{\mu} \nu}=S^{\mu \nu} \otimes_{\perp} B$

2 Soft tensor $S^{\mu \nu}\left(q, \tau_{i}\right)$:

$>$ Vacuum-to-jet matrix element of SCET operators

Beam function $B\left(p, \tau_{i}\right)$:

> Coherent: color-singlet proton matrix element
> Incoherent: proton to jet (Can include color channel projector)

Comparison to literature

Factorization from EFT

$$
F_{j}^{D}\left(x, Q^{2}, \beta, t, m_{J}^{2}\right)=\mathcal{P}_{j}^{\mu v} S_{\mu v}\left(\boldsymbol{Q}^{2}, \boldsymbol{\beta}, t, \boldsymbol{\tau}_{i \perp}\right) \otimes_{\perp} \boldsymbol{B}\left(\boldsymbol{t}, \boldsymbol{m}_{J}^{2}, \boldsymbol{\tau}_{i \perp}\right)
$$

Projects out structure function F_{j}^{D}
$>$ Need $\lambda=\boldsymbol{Q} / \sqrt{s} \ll \mathbb{1}$ for forward + jet + gap

Comparison to literature

Factorization from EFT

$$
F_{j}^{D}\left(x, Q^{2}, \beta, t, m_{J}^{2}\right)=\mathcal{P}_{j}^{\mu v} S_{\mu \nu}\left(\boldsymbol{Q}^{2}, \boldsymbol{\beta}, \boldsymbol{t}, \tau_{i \perp}\right) \otimes_{\perp} \boldsymbol{B}\left(\boldsymbol{t}, m_{J}^{2}, \tau_{i \perp}\right)
$$

Collins' hard scattering approach

$$
F_{2 / L}^{D}\left(x, Q^{2}, \beta, t\right)=\sum_{i} \int_{\beta}^{1} \frac{d \zeta}{\zeta} H_{2 / L}^{(i)}\left(\frac{\beta}{\zeta}, Q^{2}\right) f_{i}^{D}\left(\zeta, Q^{2}, \frac{x}{\beta}, t\right)
$$

"Diffractive PDF" (dPDF)
$>$ Imposes only $\lambda_{t}=\sqrt{-t} / \mathbf{Q} \ll \mathbf{1}$
$>$ EFT also agrees with this for λ_{t} and $\lambda \ll \mathbb{1}$

Comparison to literature

Factorization from EFT

$$
F_{j}^{D}\left(x, Q^{2}, \beta, t, m_{J}^{2}\right)=\mathcal{P}_{j}^{\mu v} S_{\mu v}\left(\boldsymbol{Q}^{2}, \boldsymbol{\beta}, t, \boldsymbol{\tau}_{i \perp}\right) \otimes_{\perp} \boldsymbol{B}\left(\boldsymbol{t}, m_{J}^{2}, \boldsymbol{\tau}_{i \perp}\right)
$$

Collins' hard scattering approach

$$
F_{2 / L}^{D}\left(x, Q^{2}, \beta, t\right)=\sum_{i} \int_{\beta}^{1} \frac{d \zeta}{\zeta} \boldsymbol{H}_{2 / L}^{(i)}\left(\frac{\boldsymbol{\beta}}{\zeta}, Q^{2}\right) \boldsymbol{f}_{i}^{D}\left(\zeta, Q^{2}, \frac{x}{\boldsymbol{\beta}}, t\right)
$$

Ingelman-Schlein model

$$
f_{i}^{D}\left(\zeta, Q^{2}, \frac{x}{\beta}, t\right)=f_{i / \mathbb{P}}\left(\zeta, Q^{2}\right) \times f_{\mathbb{P} / p}\left(\frac{x}{\beta}, t\right)
$$

Perturbative predictions

$\lambda \& \lambda_{t} \ll 1$ at leading-soft order

$$
W_{D}^{\mu \nu}=S^{\mu \nu} \otimes_{\perp} B
$$

$$
W_{D}^{\mu \nu}=S^{\prime \mu \nu} \times B^{\prime}
$$

$>\lambda, \lambda_{t} \ll 1$: Glaubers only attach to bottom quark line
$>$ Glaubers attached to the same lines "collapse" \rightarrow universal B
$>$ Convolution \rightarrow multiplication
$>\boldsymbol{B}^{\prime}$ absorbs Glauber propagators \& color factors

LO predictions for F_{i} ratios

Take $Q^{2}, t \gg \Lambda_{\mathrm{QCD}}^{2}$

$$
f\left(\beta, \frac{t}{Q^{2}}\right)
$$

Ratios of F_{i}^{D} 's are perturbatively calculable!

LO ratio prediction

F_{3}^{D} and F_{4}^{D} may be visible at the EIC \& HERA in appropriate regions of parameter space

Conclusions and outlook

Our contributions to diffraction

$>\quad$ Importance of F_{3}^{D} and F_{4}^{D} for testing diffraction
$>$ Factorization in Glauber SCET
$>$ Perturbative predictions for HERA \& the EIC
> Universal hadronic functions \& systematically calculable soft function

Next steps

Full details of other cases:

$>$ Coherent vs. incoherent
$>p p, e A, \& A A$ collisions
$>$ (Adding spin is straightforward)
> Connection to saturation

Towards precision diffraction:

$>$ Beam refactorization
$>$ Resummation (small x, DGLAP)
$>$ Higher-order predictions

Backup slides

Mode	Momentum in $(+,-, \perp)$	
Hard	$(1,0,0)$	
Collinear	$\left(1, \lambda^{2}, \lambda\right)$ or $\left(\lambda^{2}, 1, \lambda\right)$	$\mu_{p} \simeq \Lambda_{\mathrm{QCD}}$
Soft	$(\lambda, \lambda, \lambda)$	1
Glauber	($\lambda^{a}, \lambda^{\boldsymbol{b}}, \lambda$) for $a+b>2$	$\ell_{\ell^{-}}^{J_{3}}$

$$
\mathcal{L}_{\text {SCET }}^{(0)}=\mathcal{L}_{\text {hard }}+\mathcal{L}_{\text {collinear }}+\mathcal{L}_{\text {soft }}+\mathcal{L}_{\text {Glauber }}
$$

> Hard: connects different sectors but only occurs once
> Glauber: Talks between soft \& collinear sectors

SCET Lagrangian

Like copies of QCD $\int \mathcal{L}_{\text {collinear }}^{(0)}=\bar{\xi}_{n}\left(i n \cdot D+i \not \wp_{n \perp} \frac{1}{i \bar{n} \cdot D_{n}} i \not \wp_{n \perp}\right) \frac{\chi}{2} \xi_{n}+\cdots$ for specific modes

$$
\mathcal{L}_{s}^{(0)}=\bar{\psi}_{s}(i \not \models-m) \psi_{s}+\frac{1}{4} G_{s \mu v} G_{s}^{\mu v}
$$

$$
\begin{aligned}
& \mathcal{L}_{\text {Glauber }}^{(0)}=\mathcal{O}_{n} \frac{1}{\partial_{\perp}^{2}} \mathcal{O}_{s}+\mathcal{O}_{n} \frac{1}{\partial_{\perp}^{2}} \mathcal{O}_{s} \frac{1}{\partial_{\perp}^{2}} \mathcal{O}_{\bar{n}} \\
& =\mathcal{O}_{s} \xrightarrow[\boldsymbol{O}_{\perp}^{-2}]{\square}+ \\
& \mathcal{O}_{n}^{q}=\frac{1}{2} \bar{\chi}_{n} T^{B} \not \supset \chi_{n} \quad \mathcal{O}_{s}^{q}=4 \pi \alpha_{s}\left(\psi_{s}^{\bar{n}} T^{B} n \psi \psi_{s}\right) \quad \mathcal{O}_{n}^{g}=[\ldots]
\end{aligned}
$$

Color exchange

Forward scattering

Coherent: Always color singlet
Incoherent: Studied in amplitudes community

$>$ Mediated by color-singlet "Pomeron" or color non-singlet "Reggeon"
$>$ Different use of term Reggeon from diffraction community (\neq color singlet)

Diffraction

$>$ Experiments always impose momentum cut to classify process as gapped (e.g. $200-800 \mathrm{MeV}$) [ATLAS, 1201.2808.]
$>$ Non-singlet not ruled out

The bottom line

$>$ Cannot a priori distinguish color singlet exchange from color non-singlet background
$>$ SCET can handle both cases

Resummation \& evolution

$>$ Much work already in the classic diffraction literature
$>$ In SCET, recent studies of small- x DIS give us tools to:

- Carry out small- x resummation (difference: in diffraction, t is fixed)
- Bridge from BFKL to the saturation regime
\(\left.\begin{array}{|c|}\hline Full QCD

Pomeron ladders

Reggeization\end{array}\right] \quad\)| Glauber SCET |
| :---: |
| RG evolution |
| Sum rapidity logs |

	DIS	Diffraction
Measurement	q, p	q, p, and p^{\prime}
Lorentz invariants	3	7
Unpolarized structure functions	2	4
Total structure functions	4	18

Projecting out structure functions

$$
\begin{aligned}
W^{\mu \nu}=(& \left.-g^{\mu \nu}+\frac{q^{\mu} q^{v}}{q^{2}}\right) \boldsymbol{F}_{1}^{D}+\frac{1}{2 x} U^{\mu} U^{v} \boldsymbol{F}_{2}^{D} \\
& +\frac{1}{x} X^{\mu} X^{v} \boldsymbol{F}_{3}^{D}+\frac{1}{2 x}\left(U^{\mu} X^{v}+X^{\mu} U^{v}\right) \boldsymbol{F}_{4}^{D}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{P}_{L, \mu \nu}=2 x U^{\mu} U^{v} \\
& \mathcal{P}_{2, \mu \nu}=2 x\left(-g^{\mu \nu}-X^{\mu} X^{v}+2 U^{\mu} U^{v}\right) \\
& \mathcal{P}_{3, \mu \nu}=x\left(g^{\mu \nu}+2 X^{\mu} X^{v}-U^{\mu} U^{v}\right) \\
& \mathcal{P}_{4, \mu \nu}=-x\left(U^{\mu} X^{v}+X^{\mu} U^{v}\right)
\end{aligned}
$$

Projectors

$$
\boldsymbol{F}_{i}^{D}=\mathcal{P}_{i, \mu \nu} W^{\mu \nu}
$$

Spin dependence in diffraction for $\lambda, \lambda_{t} \ll 1$

$>$ Similar analysis to unpolarized case
$>$ Four unpolarized + four polarized structure functions are nonzero at leading power, out of 18 possible

What is the diffractive analogue of a PDF?

$$
m_{J} \ll \sqrt{-\boldsymbol{t}}
$$

$$
\theta \sim \sqrt{\lambda} \lambda_{t}
$$

Recoiling jet

$$
m_{J} \sim \sqrt{-\boldsymbol{t}}
$$

Just a jet

$$
m_{J} \gg \sqrt{-\boldsymbol{t}}
$$

Fat jet

> Must refactorize beam function
> Not just a GPD in incoherent case, clear from presence of a jet
> Precise structure of the "dPDF" depends on parameter regime

Diffraction at the LHC?

(a)

(b)

(c)

$>$ Hadrons and/or central region can become a jet
$>$ Mediated by Glaubers
$>$ Universal with ep case or does factorization break? (Factorization breaking also is described by Glaubers!)

