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This talk: semi-inclusive DIS (SIDIS)
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y =
P ⋅ q
P ⋅ k

x =
Q2

2P ⋅ q

z =
P ⋅ Ph

P ⋅ q

ℓ(k) + p(P) → ℓ(k′ ) + h(Ph) + X

Q2 = − q2 = xys

Bjorken variable 
(momentum fraction of the parton)

Inelasticity (energy transfer) 
(related to polarisation of virtual photon)

*we assume only photon exchange ( )Q ≪ MZ

In Breit frame, is the fraction of the 
parton's longitudinal momentum 
carried of by the observed hadron



Outlook
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ℓ(k) p(P) → ℓ(k′ ) h(Ph) X
d3σh

dxdydz
=

4πα2

Q2 [ 1 + (1 − y)2

2y
ℱh

T(x, z, Q2) +
1 − y

y
ℱh

L(x, z, Q2)]

Unpolarised

Longitudinally polarised
⃗ℓ (k) ⃗p(P) → ℓ(k′ ) h(Ph) X

1
2 ( d3σh( ↑ ↑ )

dxdydz
−

d3σh( ↑ ↓ )
dxdydz ) =

4πα2

Q2

1 − (1 − y)2

2y
𝒢h

1(x, z, Q2)
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Motivation
Global fits of fragmentation functions (FFs)
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e+e−

ep

pp

One-particle inclusive processes are backbone of FF determination. Known up to:

- NNLO in  (SIA) [Rijken, Van Neerven ’96,’97] [Mitov, Moch, Vogt ’06]

- NLO in  (SIDIS) [Altarelli, Ellis, Martinelli, Pi ’79] [Baier, Fey ’79] (NNLO is this work)

- NLO in  [Aversa, Chiappetta, Greco, Guillet ’89]  

e+e−

ep
pp

Therefore, fits at NNLO so far limited to  data 
[Bertone, Carrazza, Hartland, Nocera, Rojo ’17] [Anderle, Ringer, Stratmann ’15] [xFitter ’21]

e+e−



Motivation
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Recent fits at aNNLO with  and  data [Borsa, Sassot, de Florian, Vogelsang ’22] [Abdul 
Khalek, Bertone, Khoudli, Nocera ’22], exploiting approximate NNLO results for SIDIS obtained 
from threshold resummation [Abele, De Florian, Vogelsang ’21,’22]

e+e− ep

Global fits of fragmentation functions (FFs)

[2202.05060]

e+e−

ep
ep

Our work will enable a consistent NNLO fit with SIDIS data.



Unpolarised SIDIS structure functions
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SIDIS @ NLO
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[Altarelli, Ellis, Martinelli, Pi ’79][Baier, Fey ’79]

Screenshots from 

[Anderle, Ringer, Vogelsang ’12]
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SIDIS @ NNLO

1.1 MB of size
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SIDIS @ NNLO
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SIDIS @ NNLO
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Details of the calculation

CRR
j←i ∝ ∫ dΦ3(kj, kk, kl; ki, q) δ (z − x

(ki + kj)2

Q2 ) ℳRR
2

CRV
j←i ∝ ∫ dΦ2(kj, kk; ki, q) δ (z − x

(ki + kj)2

Q2 ) ℳRV
2

∝ 𝒥(x, z) ℳRV
2
(x, z)

VV: well-known two-loop quark form factor in space-like kinematics

RV: one-loop squared matrix elements in terms of one-loop bubble and box integrals, which are 
known in exact form in . For fixed  and , the phase space integral is fully constrained:ε ̂x ̂z

Only expansions in the end-point distributions  and  are required.̂x = 1 ̂z = 1

RR: integrations over three-particle phase space with multi-loop techniques:

Reduction to master integrals using IBP identities, 13 integral families, 21 master integrals. 
Solved using differential equations, boundary terms obtained by integrating over   

and comparing to master integrals relevant to inclusive version.
̂z
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Analytic continuation in the real-virtual
To avoid ambiguities associated with the analytic continuation of boxes, we segment the 

 plane into four sectors, where manifestly real-valued expressions are obtained.(x, z)

Example: 

in  we useBox(s12, s23)

R1
R2

15

[Gehrmann, Schürmann ’22]
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Reduction to master integrals using IBP identities, 13 integral families, 21 master integrals. 
Solved using differential equations, boundary terms obtained by integrating over   

and comparing to master integrals relevant to inclusive version.
̂z



Real-real master integrals
[Bonino, Gehrmann, Schürmann, GS, in preparation]
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Integrals of families A, B, C already 
calculated in the context of antenna 
subtraction for photon fragmentation 
[Gehrmann, Schürmann ’22]

Some of them derived in closed 
form, the others up to finite part in .

Expansion in distributions after 
insertion of master integrals in 
reduced expressions.

ϵ

Notation:



Assembling and checking the result
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The sum VV+VR+RR still contain UV and IR pole terms. They are removed by:

- renormalising the strong coupling (in  ren. scheme)

- adding the mass factorisation counterterms, both initial- and final-state (in  fac. scheme) 

MS
MS

Checks:

- Scale dependent terms are found to be as predicted by RGE

- We used the underlying RR, RV and VV subprocess matrix elements to re-derive the 

inclusive NNLO coefficient functions.

- We integrated specific subprocess contributions over the final-state momentum  and 

we recovered the respective contributions to the inclusive coefficient function.

- Comparison to approximate results

- Comparison to partial results

̂z



Comparison to approximate results
By expanding the NNLL threshold resummation (i.e. resummation of dominant terms in the 

 and/or  limit) , approximate corrections have been derived at NNLO and at N3LÔx → 1 ̂z → 1
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Full agreement with our result

 [Abele, De Florian, Vogelsang ’21,’22]



Comparison to partial results

Very recently, the leading colour contribution to 
the  non-singlet channel was computed.q → q

We found analytical agreement for all 
terms involving distributions, and 

numerical agreement for the regular parts

e.g. piece contained in the transverse coefficient 
function with single distributions in  or  x z ⟶

20

[Goyal, Moch, Pathak, Rana, Ravindran ’23]



Impact of NNLO corrections
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Focus on COMPASS 2016 data for SIDIS charged pion production

(fixed-target experiment, muon beam scattering off an isoscalar target at 17.35 GeV)


COMPASS cuts:  > 1 GeV ,  (invariant mass of the hadronic system) 5 GeV 

s ≃

Q2 = xys 2 (P + q)2

Note: FF adopted are the ones of [Borsa, Sassot, De Florian, Stratmann, Vogelsang ’22]

Fit on  and SIDIS data (including this dataset) at NNLO, using the approximate NNLO for SIDISe+e−

21
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NNLO improves data 
description in some 
bins, but makes it 
worse in others 

Size of NNLO corrections call 
for a new global fit to assess 

the impact of SIDIS data
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ℓ(k) p(P) → ℓ(k′ ) h(Ph) X
d3σh

dxdydz
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2 ( d3σh( ↑ ↑ )
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Motivation

Christine Aidala @ DIS2024

, , u d s

Identified hadrons with polarised 
beams at the EIC are great 

handles on accessing individual  
quark helicity PDFs



Polarised SIDIS structure function
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 known up to NLO (see e.g. [De Florian, Stratmann, Vogelsang ’97])Δ𝒞p′ p
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Calculation: polarised vs. unpolarised case
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Prescription for γ5

Problem: projector of the hadronic tensor to isolate the  structure function is: 
 
 
 
In addition, we have polarised quark or gluon in the initial state: spin sum with explicit  or Levi-Civita

g1 = 𝒢1/2

γ5

explicit Levi-Civita tensor Required a consistent 
treatment in dim. reg.

We adopt the Larin prescription: setting

And evaluating traces in  dimensions, and contracting the two Levi-Civita into -dim metric tensors.D D

We carry out mass factorization with Larin space-like 
splitting functions and at the end in order to restore 
Ward identities we apply the transformation:
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Purely virtual contributions (virtual and double-virtual)

In operator matrix elements calculations, 
the  projector of the photon is usually 
absorbed into an operator insertion, 
rendering the photon coupling axial.

g1

Calculation: polarised vs. unpolarised case

Instead, in our case, the photon coupling is 
always vectorial and traces of quark-loops 
coupling to the polarized photon can be carried 
out consistently in  dimensions.D = 4 − 2ϵ
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New NNLO polarised PDFs

WG5 summary  
@ DIS2024

(they exploit approximate NNLO corrections for SIDIS predictions)

(note that the approximate NNLO corrections are the same for polarised and unpolarised SIDIS)
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Numerical results

Data points from CERN COMPASS and 
DESY HERMES for identified  produced 

over a range of -values. 
 

2-dim data points in :

larger (smaller)  implies larger (smaller)  

 
DSSV14 includes hadron collider data from 
RHIC that constrain the gluon PDF (dataset 

not included in MAPPDF10)

π+

z

(x, Q2)
x Q2

NNLO corrections can be sizeable, 
especially at low-x

Comparison to experimental points
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Conclusions
• We computed the NNLO QCD corrections to SIDIS coefficient functions in analytical form, 

both for unpolarised and longitudinally polarised beam and target. Our results allow for 

NNLO global fits of fragmentation functions and helicity PDFs. 

• After our paper, ref. [Goyal, Lee, Moch, Pathak, Rana, Ravindran 2404.09959] appeared, 

with calculation of NNLO polarised SIDIS. Comparison of results in progress


• Bonus: in the antenna subtraction formalism for fully differential NNLO calculations, matrix 

elements of simpler processes are used as subtraction terms. In case of an identified 

particle in the final state, we can recycle the SIDIS coefficient functions as integrated 

subtraction terms! Work in progress towards antenna subtraction for identified particles



Thank you!
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BACKUP



Motivation
Global fits of fragmentation functions (FFs)
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e+e−

ep

pp

Fits routinely done at NLO 
by different groups, using 
data from ,  and 
colliders e.g. very recent 
global fit by [Gao, Liu, Shen, 
Xing, Zhao ’24]. 

It exploits a new code 
FMNLO [Liu, Shen, Zhou, 
Gao ’23], a wrapper around 
MG5 aMC@NLO, to 
compute arbitrary processes 
at the LHC with 
fragmentation at NLO.

e+e− ep pp

[2401.02781]



Polarised SIDIS structure function
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𝒢h
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What the experiments measure is the longitudinal double-spin asymmetry A∥

A∥ =
dσ↑↑ − dσ↑↓

dσ↑↑ + dσ↑↓
≃ D A1 with a (known) kinematical factor .D

 is related to the photoabsorption cross sections ,  
with  is the spin of the intermediate photon-nucleon system:

A1 σJz

Jz

A1 =
σ1/2 − σ3/2

σ1/2 + σ3/2
=

𝒢1

ℱT

 known up to NLO (see e.g. [De Florian, Stratmann, Vogelsang ’97])Δ𝒞p′ p



Why ? Physical argumentA1 = 𝒢1/ℱT
from [F. Close, An Introduction to Quarks and Partons, 1979] 
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Quark moving along the -axis  
(i.e. ) 

z
kT = 0



Motivation
The proton spin puzzle
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EMC ‘spin crisis’ (1987):

contribution of quark and anti-quark 

spins constitute only a small fraction of 
the proton spin (~ 10%) 

 
Where is the rest?

polarised PDFs

Determined routinely at NLO through global fits  
e.g. [NNPDFpol1.0 ’14] [DSSV ’14] 
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Motivation
The proton spin puzzle

EIC will significantly extend the 
kinematical region covered by 

previous spin experiments

[EIC White Paper, 1212.1701] [Aschenauer, Stratmann, Sassot ’12]

EIC has potential to 
greatly constrain helicity 

distributions and first 
moments!



DIS: a second youth?
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WG4 summary talk @ DIS2024

Andrea Banfi @ DIS2024

A fresh look at HERA data with the expertise gained from LHC



DIS: a second youth?
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Enthusiasm driven by the future Electron-Ion Collider (EIC)

Charlotte Van Hulse @ DIS2024

Construction ~ 2025-2034



EIC impact on collinear PDFs
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from [R. Roberts, The structure of the proton, 1993] 
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