Semi-inclusive DIS at NNLO in QCD

QCD Evolution, Pavia, 27.05.2024

Giovanni Stagnitto (Milano Bicocca University & INFN)

with Leonardo Bonino and Thomas Gehrmann [2401.16281] + Markus Löchner and Kay Schönwald [2404.08597]

This talk: semi-inclusive DIS (SIDIS) $\ell(k) + p(P) \to \ell(k') + h(P_h) + X$

*we assume only photon exchange ($Q \ll M_7$)

 $x = \frac{Q^2}{2P \cdot q}$ Bjorken variable (momentum fraction of the parton)

 $y = \frac{P \cdot q}{P \cdot k}$ *Inelasticity* (energy transfer) (related to polarisation of virtual photon)

 $z = \frac{P \cdot P_h}{P \cdot q}$ In Breit trame, is the first mean parton's longitudinal momentum carried of by the observed hadron

Outlook

Unpolarised $\begin{aligned} \ell(k) \, p(P) \to \ell(k') \\ \frac{\mathrm{d}^3 \sigma^h}{\mathrm{d}x \mathrm{d}y \mathrm{d}z} &= \frac{4\pi \alpha^2}{Q^2} \left[\frac{1 + (1 - y)^2}{2y} \mathscr{F}_T^h(x, z) \right] \end{aligned}$

Longitudinally polarised $\vec{p}(k) \vec{p}(P) \rightarrow \ell(k') h(P_k)$

 $\frac{\overrightarrow{\ell}(k)\overrightarrow{p}(P) \rightarrow}{2} \left(\frac{\mathrm{d}^{3}\sigma^{h}(\uparrow\uparrow)}{\mathrm{d}x\mathrm{d}y\mathrm{d}z} - \frac{\mathrm{d}^{3}\sigma^{h}(\uparrow\downarrow)}{\mathrm{d}x\mathrm{d}y\mathrm{d}z} \right)$

$$\rightarrow \ell(k') h(P_h) X$$

$$\frac{\partial^2}{\partial \mathcal{F}_T^h}(x, z, Q^2) + \frac{1 - y}{y} \mathcal{F}_L^h(x, z, Q^2)$$

$$\rightarrow \ell(k') h(P_h) X$$

$$\rightarrow \frac{4\pi\alpha^2}{Q^2} \frac{1 - (1 - y)^2}{2y} \mathscr{G}_1^h(x, z, Q^2)$$

Longitudinally polarised $\frac{\overrightarrow{\ell}(k)\overrightarrow{p}(P)}{2} \left(\frac{\mathrm{d}^{3}\sigma^{h}(\uparrow\uparrow)}{\mathrm{d}x\mathrm{d}y\mathrm{d}z} - \frac{\mathrm{d}^{3}\sigma^{h}(\uparrow\downarrow)}{\mathrm{d}x\mathrm{d}y\mathrm{d}z} \right)$

Outlook

polarised

$$\rightarrow \ell(k') h(P_h) X$$

$$^2_{-\mathcal{F}_T^h}(x, z, Q^2) + \frac{1-y}{y} \mathcal{F}_L^h(x, z, Q^2)$$

$$\rightarrow \ell(k') h(P_h) X$$

$$) \rightarrow = \frac{4\pi\alpha^2}{Q^2} \frac{1 - (1 - y)^2}{2y} \mathscr{G}_1^h(x, z, Q^2)$$

Motivation

One-particle inclusive processes are backbone of FF determination. Known up to:

- NNLO in e^+e^- (SIA) [Rijken, Van Neerven '96, '97] [Mitov, Moch, Vogt '06]
- NLO in *ep* (SIDIS) [Altarelli, Ellis, Martinelli, Pi '79] [Baier, Fey '79] (NNLO is this work) - NLO in *pp* [Aversa, Chiappetta, Greco, Guillet '89]

 \sim

Therefore, fits at NNLO so far limited to e^+e^- data

- Global fits of fragmentation functions (FFs)

[Bertone, Carrazza, Hartland, Nocera, Rojo '17] [Anderle, Ringer, Stratmann '15] [xFitter '21]

Motivation

Global fits of fragmentation functions (FFs)

from threshold resummation [Abele, De Florian, Vogelsang '21,'22]

	Experiment	Q^2 2	≥ 1.5 C	${ m GeV}^2$	$Q^2 \ge$	$\geq 2.0 \mathrm{C}$	${ m GeV}^2$	Q^2	≥ 2.3 (${ m GeV}^2$	Q^2 :	$\geq 3.0 \text{C}$	GeV^2				[2202.0	5060]		
e^+e^- ep		#data	NLO	NNLO	#data	NLO	NNLO	#data	NLO	NNLO	#data	NLO	NNLO	3 1		0.03 <	x < 0.04 [31		0.04 < x < 0.0)6 r
	SIA	288	1.05	0.96	288	0.91	0.87	288	0.90	0.91	288	0.93	0.86	\sim	$I = \frac{Q^2 = 5.9}{6}$	– • • • •	$- [\alpha = 3]$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	<u> </u>	[α =
	COMPASS	510	0.98	1.14	456	0.91	1.04	446	0.91	0.92	376	0.94	0.93	α + :	$Q^2 = 3.6$	¥ ቀቀቀቀቀቀቀቀ	$[\alpha = 2]$	$Q^2 = 5.2$	<u>ቀ ቀ ራ ቀ </u>	[α =
ep	HERMES	224	2.24	2.27	160	2.40	2.08	128	2.71	2.35	96	2.75	2.26	(NLO)	$Q^2 = 2.6$	<u> </u>	$\left[\alpha = 1\right]$	$Q^2 = 3.6$	• • • • • • • •	[α =
	TOTAL	1022	1.27	1.33	904	1.17	1.17	862	1.17	1.13	760	1.16	1.07	$M_{\mu \mathrm{d}}^{\pi^+(\mu)}$	$Q^2 = 1.8$	¢	$ \begin{array}{c} \mathbf{\dot{\gamma}} - \mathbf{\dot{\gamma}} - \mathbf{\dot{\gamma}} - \mathbf{\dot{\gamma}} - \mathbf{\dot{\gamma}} \\ \mathbf{\dot{\gamma}} - \mathbf{\dot{\gamma}} - \mathbf{\dot{\gamma}} \\ \mathbf{\dot{\gamma}} - \mathbf{\dot{\gamma}} - \mathbf{\dot{\gamma}} \\ \mathbf{\dot{\gamma}} - \mathbf{\dot{\gamma}} \\ \mathbf{\dot{\gamma}} - \mathbf{\dot{\gamma}} \\ \mathbf{\dot{\gamma}} } \\ \mathbf{\dot{\gamma}} \\ \mathbf{\dot{\gamma}$	$Q^2 = 2.6$		Υ } [α =
	It is very encouraging that our NNLO analysis based									NNLO C	$2^2 > 1.5 \mathrm{GeV}^2$ $2^2 > 3 \mathrm{GeV}^2$ NLO FFs)	<u> </u>	$Q^2 = 1.9$	م	·γ [α =					
	on the approximate NNLO corrections for SIDIS shows an overall improvement in χ^2 relative to NLO once we									$x \le 0.1$ $[\alpha = 3]$	$Q^2 = 20.0$	$\begin{array}{c c} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet &$	$\frac{1}{\alpha} = \frac{1}{\alpha}$							
		go	beyo	nd Q^2	$= 2 \mathrm{Ge}$	eV^2 .]	lt is an	intere	sting	questio	on,			+ ; ô	3	,	φ φ φ φ		• • • • • • • • • • • •	- [u -
	however, why the situation is opposite when the lower $\frac{1}{2} = 2 \frac{Q^2 = 5.6}{\sqrt{9} + \sqrt{9}}$								$[\alpha = 1]$	$Q^2 = 8.6$	* * * _* * * * *	[α =								
		\mathbf{cu}	t Q^2	$\geq 1.5 \mathrm{G}$	GeV^2 is	used.	We fit	rst not	e that	the la	$\mathbf{c}\mathbf{k}$			$^+_{ m I}/M_\mu^\pi$	$Q^2 = 4.0$	م م م	$ \mathbf{\dot{\gamma}} = \mathbf{\dot{\gamma}} - \mathbf{\dot{\gamma}} - \mathbf{\dot{\gamma}} $	$Q^2 = 6.1$	4 ₄ 4 4 4 4	 γ γ
														$(M_{\mu \mathrm{d}}^{\pi^{-}})$	$Q^2 = 3.0$		$ [\alpha = -1] $	$Q^2 = 4.7$		····Ύ [α =
				able			4 ~ ~ 4		^ f :	L					0.0 0.2	0.4	0.6 0.8	0.0 0.2	0.4 0.6	0.8

Our work will enable a consistent NNLO fit with SIDIS data.

Recent fits at aNNLO with e^+e^- and ep data [Borsa, Sassot, de Florian, Vogelsang '22] [Abdul Khalek, Bertone, Khoudli, Nocera '22], exploiting approximate NNLO results for SIDIS obtained

Unpolarised SIDIS structure functions

 $\mathscr{F}_{i}^{h}(x,z,Q^{2}) = \sum_{n,n'} \int_{x}^{1} \frac{\mathrm{d}\hat{x}}{\hat{x}} \int_{z}^{1} \frac{\mathrm{d}\hat{z}}{\hat{z}} f_{p}\left(\frac{x}{\hat{x}},\mu_{F}^{2}\right) D_{p'}^{h}\left(\frac{z}{\hat{z}},\mu_{A}^{2}\right) \mathscr{C}_{p'p}^{i}\left(\hat{x},\hat{z},Q^{2},\mu_{R}^{2},\mu_{F}^{2},\mu_{A}^{2}\right) , \quad i = T,L$

$$C_{qq}^{i} = C_{p'p}^{i,(0)} + \frac{\alpha_s(\mu_R^2)}{2\pi} C_{p'p}^{i,(1)} + \left(\frac{\alpha_s(\mu_R^2)}{2\pi}\right)^2 C_{p'p}^{i,(2)} + \mathcal{O}(x)$$

$$C_{qq}^{T,(0)} = e_q^2 \delta(1 - \hat{x}) \delta(1 - \hat{z})$$

$$C_{qq}^{L,(0)} = 0$$

SIDIS @ NLO

$$C_{qq}^{T,(1)}(\hat{x},\hat{z}) = e_q^2 C_F \left[-8\delta(1-\hat{x})\delta(1-\hat{z}) +\delta(1-\hat{x}) \left[\tilde{P}_{qq}(\hat{z}) \ln \frac{Q^2}{\mu_F^2} + L_1(\hat{z}) + L_2(\hat{z}) + (1-\hat{z}) \right] +\delta(1-\hat{z}) \left[\tilde{P}_{qq}(\hat{x}) \ln \frac{Q^2}{\mu_F^2} + L_1(\hat{x}) - L_2(\hat{x}) + (1-\hat{x}) \right] +\frac{2}{(1-\hat{x})_+(1-\hat{z})_+} - \frac{1+\hat{z}}{(1-\hat{x})_+} - \frac{1+\hat{x}}{(1-\hat{z})_+} +2(1+\hat{x}\hat{z}) \right],$$
(49)

 $C_{qq}^{L,(1)}(\hat{x},\hat{z}) = 4e_q^2 C_F \hat{x}\hat{z},$

[Altarelli, Ellis, Martinelli, Pi '79][Baier, Fey '79]

 $\tilde{P}_{qq}(\xi) = \frac{1+\xi^2}{(1-\xi)_+} + \frac{3}{2}\delta(1-\xi),$ $\tilde{P}_{gq}(\xi) = \frac{1 + (1 - \xi)^2}{\xi},$ $\tilde{P}_{qg}(\xi) = \xi^2 + (1 - \xi)^2,$ $L_1(\xi) = (1+\xi^2) \left(\frac{\ln(1-\xi)}{1-\xi}\right)_+,$ $L_2(\xi) = \frac{1+\xi^2}{1-\xi} \ln \xi,$

Screenshots from [Anderle, Ringer, Vogelsang '12]

SIDIS @ NLO

[Altarelli, Ellis, Martinelli, Pi '79][Baier, Fey '79]

$$C_{gq}^{T,(1)}(\hat{x},\hat{z}) = e_q^2 C_F \left[\tilde{P}_{gq}(\hat{z}) \left(\delta(1-\hat{x}) \ln\left(\frac{Q^2}{\mu_F^2} \hat{z}(1-\hat{z})\right) + \frac{1}{(1-\hat{x})_+} \right) + \hat{z}\delta(1-\hat{x}) + 2(1+\hat{x}-\hat{x}\hat{z}) - \frac{1+\hat{x}}{\hat{z}} \right],$$
(50)

$${}^{1)}(\hat{x},\hat{z}) = e_q^2 C_F \left[\tilde{P}_{gq}(\hat{z}) \left(\delta(1-\hat{x}) \ln\left(\frac{Q^2}{\mu_F^2} \hat{z}(1-\hat{z})\right) + \frac{1}{(1-\hat{x})_+} \right) + \hat{z}\delta(1-\hat{x}) + 2(1+\hat{x}-\hat{x}\hat{z}) - \frac{1+\hat{x}}{\hat{z}} \right],$$

$$(50)$$

$$C_{qg}^{T,(1)}(\hat{x},\hat{z}) = e_q^2 T_R \left[\delta(1-\hat{z}) \left[\tilde{P}_{qg}(\hat{x}) \ln\left(\frac{Q^2}{\mu_F^2} \frac{1-\hat{x}}{\hat{x}}\right) + 2\hat{x}(1-\hat{x}) \right] + \tilde{P}_{qg}(\hat{x}) \left\{ \frac{1}{(1-\hat{z})_+} + \frac{1}{\hat{z}} - 2 \right\} \right], \quad (51)$$

$$C_{gq}^{L,(1)}(\hat{x},\hat{z}) = 4e_q^2 C_F \hat{x}(1-\hat{z}),$$

$$C_{qg}^{L,(1)}(\hat{x},\hat{z}) = 8e_q^2 T_R \hat{x}(1-\hat{x}).$$

$$\begin{split} \tilde{P}_{qq}(\xi) &= \frac{1+\xi^2}{(1-\xi)_+} + \frac{3}{2}\delta(1-\xi), \\ \tilde{P}_{gq}(\xi) &= \frac{1+(1-\xi)^2}{\xi}, \\ \tilde{P}_{qg}(\xi) &= \xi^2 + (1-\xi)^2, \\ L_1(\xi) &= (1+\xi^2) \left(\frac{\ln(1-\xi)}{1-\xi}\right)_+, \\ L_2(\xi) &= \frac{1+\xi^2}{1-\xi} \ln \xi, \end{split}$$

Screenshots from [Anderle, Ringer, Vogelsang '12]


```
ancillary.inc
** SIDIS coefficient functions up to NNLO from:
**
** Semi-inclusive deep-inelastic scattering at NNLO in QCD
     Bonino, T. Gehrmann and G. Stagnitto
** L.
**
** FORM readable format
**
** Notation, according to eq.(6) of the paper:
           C[order][component][a2b][label] with
**
           - order: 1 = NL0, 2 = NNL0
**
           - component: L = Longitudinal, T = transverse
**
           – a2b: means a –> b, for a and b partons
**
           – label (it can be none, NS, PS, 1, 2, 3)
**
**
** Symbols:
          NC = 3: number of colours
**
          NF = 5: number of active flavours
**
**
                                                 1.1 MB of size
** Scales:
         LMUR = ln(muR^2/Q2)
**
         LMUF = ln(muF^{2}/Q2)
**
         LMUA = ln(muA^2/Q2)
**
         with Q2 = -q2, invariant mass of the photon
**
              muR: renormalisation scale
**
              muF: initial-state factorisation scale
**
              muA: final-state factorisation scale
**
**
** Functions:
            Li2(a) = PolyLog(2,a)
**
            Li3(a) = PolyLog(3,a)
**
            sqrtxz1 = sqrt(1 - 2*z + z*z + 4*x*z)
**
            poly2 = 1 + 2*x + x*x - 4*x*z
**
            sqrtxz2 = sqrt(poly2)
**
            sqrtxz3 = sqrt(x/z)
**
            InvTanInt(x) = int_0^x dt arctan(t)/t : Arctangent integral
**
            T(region): Heaviside Theta function
**
**
** Distributions:
           Dd([1-x]) is the Dirac delta function of argument [1-x]
**
           Dn(a,[1-x]) = (ln^a(1-x)/(1-x))_+ (plus-prescription) for a = 1,2,3
**
           same for z
**
**
** Kinematic regions in (x,z)-plane: as defined in 2201.06982
           ui = Ui for i = 1,2,3,4
**
           ri = Ri, ti = Ti for i = 1,2
**
           Ri, Ti and Ui defined in eq. (5.9), (5.12) and (5.16)
**
**
** Constants: pi, zeta3 = Zeta(3) with Zeta Riemann Zeta function
**
```

SIDIS @ NNLO

 $C_{qq}^{i,(2)} = C_{\bar{q}\bar{q}}^{i,(2)} = e_q^2 C_{qq}^{i,\text{NS}} + \left(\sum e_{q_j}^2\right) C_{qq}^{i,\text{PS}},$ $C^{i,(2)}_{\bar{q}q} = C^{i,(2)}_{q\bar{q}} = e_q^2 C^i_{\bar{q}q} \,,$ $C_{a'a}^{i,(2)} = C_{\bar{a}'\bar{a}}^{i,(2)} = e_a^2 C_{a'a}^{i,1} + e_{a'}^2 C_{a'a}^{i,2} + e_q e_{q'} C_{a'a}^{i,3},$ $C^{i,(2)}_{\bar{q}'q} = C^{i,(2)}_{q'\bar{q}} = e^2_q C^{i,1}_{q'q} + e^2_{q'} C^{i,2}_{q'q} - e_q e_{q'} C^{i,3}_{q'q},$ $C_{gq}^{i,(2)} = C_{g\bar{q}}^{i,(2)} = e_a^2 C_{aa}^i,$ $C^{i,(2)}_{qg} = C^{i,(2)}_{\bar{q}g} = e^2_q C^i_{qg} \,,$ $C_{aa}^{i,(2)} = \left(\sum e_{a}^{2}\right)$ $VC^i_{gg}\,,$ gg q_j

SIDIS @ NNLO

 $C_{qq}^{i,(2)} = C_{ar{q}ar{q}}^{i,(2)} = e_q^2 C_{qq}^{i, ext{NS}} + \left(\sum_i e_{q_j}^2\right) C_{qq}^{i, ext{PS}},$ $C^{i,(2)}_{\bar{a}a} = C^{i,(2)}_{a\bar{a}} = e^2_a C^i_{\bar{a}a},$ $C_{a'a}^{i,(2)} = C_{\bar{a}'\bar{a}}^{i,(2)} = e_q^2 C_{a'a}^{i,1} + e_{q'}^2 C_{a'q}^{i,2} + e_q e_{q'} C_{a'q}^{i,3},$ $C^{i,(2)}_{\bar{a}'a} = C^{i,(2)}_{a'\bar{a}} = e^2_a C^{i,1}_{a'a} + e^2_{a'} C^{i,2}_{a'a} - e_q e_{q'} C^{i,3}_{a'a},$ $C_{qq}^{i,(2)} = C_{q\bar{q}}^{i,(2)} = e_a^2 C_{qa}^i,$ $C_{qg}^{i,(2)} = C_{\bar{q}g}^{i,(2)} = e_q^2 C_{qg}^i,$ $C_{gg}^{i,(2)} = \left(\sum_{j} e_{q_j}^2\right) C_{gg}^i,$

 α

SIDIS @ NNLO

 $C_{qq}^{i,(2)} = C_{\bar{q}\bar{q}}^{i,(2)} = e_q^2 C_{qq}^{i,\text{NS}} + \left(\sum_i e_{q_j}^2\right) C_{qq}^{i,\text{PS}},$ $C^{i,(2)}_{\bar{a}a} = C^{i,(2)}_{a\bar{a}} = e^2_a C^i_{\bar{a}a},$ $C_{a'a}^{i,(2)} = C_{\bar{a}'\bar{a}}^{i,(2)} = e_{q}^{2}C_{a'a}^{i,1} + e_{q'}^{2}C_{a'a}^{i,2} + e_{q}e_{q'}C_{a'a}^{i,3},$ $C^{i,(2)}_{\bar{a}'a} = C^{i,(2)}_{a'\bar{a}} = e^2_a C^{i,1}_{a'a} + e^2_{a'} C^{i,2}_{a'a} - e_q e_{q'} C^{i,3}_{a'a},$ $C_{qq}^{i,(2)} = C_{q\bar{q}}^{i,(2)} = e_q^2 C_{qq}^i,$ $C_{qg}^{i,(2)} = C_{\bar{q}g}^{i,(2)} = e_q^2 C_{qg}^i,$ $C^{i,(2)}_{gg} = \left(\sum_j e^2_{q_j}\right) C^i_{gg},$

Details of the calculation

VV: well-known two-loop quark form factor in space-like kinematics

RV: one-loop squared matrix elements in terms of one-loop bubble and box integrals, which are known in exact form in ε . For fixed \hat{x} and \hat{z} , the phase space integral is fully constrained:

$$C_{j\leftarrow i}^{\mathrm{RV}} \propto \int \mathrm{d}\Phi_2(k_j, k_k; k_i, q) \,\delta\left(z - x \frac{(k_i + k_j)^2}{Q^2}\right) \left|\mathcal{M}^{\mathrm{RV}}\right|^2 \propto \mathcal{J}(x, z) \,\left|\mathcal{M}^{\mathrm{RV}}\right|^2(x, z)$$

Only expansions in the end-point distributions $\hat{x} = 1$ and $\hat{z} = 1$ are required.

RR: integrations over three-particle phase space with multi-loop techniques:

$$C_{j \leftarrow i}^{\text{RR}} \propto \int d\Phi_3(k_j, k_k, k_l; k_i, q) \,\delta\left(z - x \frac{(k_i + k_j)^2}{Q^2}\right) \left| \mathcal{M}^{\text{RR}} \right|^2$$

Reduction to master integrals using IBP identities, 13 integral families, 21 master integrals. Solved using differential equations, boundary terms obtained by integrating over \hat{z} and comparing to master integrals relevant to inclusive version.

Details of the calculation

VV: well-known two-loop quark form factor in space-like kinematics

RV: one-loop squared matrix elements in terms of one-loop bubble and box integrals, which are known in exact form in ε . For fixed \hat{x} and \hat{z} , the phase space integral is fully constrained:

$$C_{j\leftarrow i}^{\mathrm{RV}} \propto \int \mathrm{d}\Phi_2(k_j, k_k; k_i, q) \,\delta\left(z - x \frac{(k_i + k_j)^2}{Q^2}\right) \left|\mathscr{M}^{\mathrm{RV}}\right|^2 \propto \mathscr{J}(x, z) \,\left|\mathscr{M}^{\mathrm{RV}}\right|^2(x, z)$$

RR: integrations over three-particle phase space with multi-loop techniques:

$$C_{j \leftarrow i}^{\text{RR}} \propto \int d\Phi_3(k_j, k_k, k_l; k_i, q) \,\delta\left(z - x \frac{(k_i + k_j)^2}{Q^2}\right) \left| \mathcal{M}^{\text{RR}} \right|^2$$

Reduction to master integrals using IBP identities, 13 integral families, 21 master integrals. Solved using differential equations, boundary terms obtained by integrating over \hat{z} and comparing to master integrals relevant to inclusive version.

Only expansions in the end-point distributions $\hat{x} = 1$ and $\hat{z} = 1$ are required.

Analytic continuation in the real-virtual [Gehrmann, Schürmann '22]

To avoid ambiguities associated with the analytic continuation of boxes, we segment the (x, z) plane into four sectors, where manifestly real-valued expressions are obtained.

Example: in $Box(s_{12}, s_{23})$ we use

$$\begin{vmatrix} a_1(s_{12}, s_{23}) &= \frac{s_{123} - s_{12} - s_{23}}{s_{123} - s_{12}} = -\frac{z}{1 - x - z}, \\ a_2(s_{12}, s_{23}) &= \frac{s_{123} - s_{12} - s_{23}}{s_{123} - s_{23}} = z, \qquad R_1 \\ a_3(s_{12}, s_{23}) &= \frac{s_{123} s_{13}}{(s_{13} + s_{23})(s_{12} + s_{13})} = -\frac{x z}{1 - x - z} \end{vmatrix}$$

$$Box(s_{ij}, s_{ik}) = \frac{2(1-2\epsilon)}{\epsilon} A_{2,LO} \frac{1}{s_{ij}s_{ik}} \times \left[\left(\frac{s_{ij}s_{ik}}{s_{ij} - s_{ijk}} \right)^{-\epsilon} {}_{2}F_{1} \left(-\epsilon, -\epsilon; 1-\epsilon; \frac{s_{ijk} - s_{ij} - s_{ik}}{s_{ijk} - s_{ij}} \right) + \left(\frac{s_{ij}s_{ik}}{s_{ik} - s_{ijk}} \right)^{-\epsilon} {}_{2}F_{1} \left(-\epsilon, -\epsilon; 1-\epsilon; \frac{s_{ijk} - s_{ij} - s_{ik}}{s_{ijk} - s_{ik}} \right) - \left(\frac{-s_{ijk}s_{ij}s_{ik}}{(s_{ij} - s_{ijk})(s_{ik} - s_{ijk})} \right)^{-\epsilon} {}_{2}F_{1} \left(-\epsilon, -\epsilon; 1-\epsilon; \frac{s_{ijk}(s_{ijk} - s_{ij} - \epsilon_{ijk})}{s_{ijk} - s_{ik}} \right) - \left(\frac{-s_{ijk}s_{ij}s_{ik}}{(s_{ij} - s_{ijk})(s_{ik} - s_{ijk})} \right)^{-\epsilon} {}_{2}F_{1} \left(-\epsilon, -\epsilon; 1-\epsilon; \frac{s_{ijk}(s_{ijk} - s_{ij} - \epsilon_{ijk})}{(s_{ijk} - s_{ijk})(s_{ijk} - s_{ijk})} \right) - \left(\frac{-s_{ijk}s_{ijk}}{(s_{ijk} - s_{ijk})(s_{ik} - s_{ijk})} \right)^{-\epsilon} {}_{2}F_{1} \left(-\epsilon, -\epsilon; 1-\epsilon; \frac{s_{ijk}(s_{ijk} - s_{ij} - \epsilon_{ijk})}{(s_{ijk} - s_{ijk})(s_{ijk} - s_{ijk})} \right) - \left(\frac{-s_{ijk}s_{ijk}}{(s_{ijk} - s_{ijk})(s_{ijk} - s_{ijk})} \right)^{-\epsilon} {}_{2}F_{1} \left(-\epsilon, -\epsilon; 1-\epsilon; \frac{s_{ijk}(s_{ijk} - s_{ij})}{(s_{ijk} - s_{ij})(s_{ijk} - s_{ijk})} \right) - \left(\frac{-s_{ijk}s_{ijk}}{(s_{ijk} - s_{ijk})(s_{ik} - s_{ijk})} \right)^{-\epsilon} {}_{2}F_{1} \left(-\epsilon, -\epsilon; 1-\epsilon; \frac{s_{ijk}(s_{ijk} - s_{ij})}{(s_{ijk} - s_{ij})(s_{ijk} - s_{ijk})} \right) - \left(\frac{-s_{ijk}s_{ijk}}{(s_{ijk} - s_{ijk})(s_{ik} - s_{ijk})} \right)^{-\epsilon} {}_{2}F_{1} \left(-\epsilon, -\epsilon; 1-\epsilon; \frac{s_{ijk}(s_{ijk} - s_{ij})}{(s_{ijk} - s_{ij})(s_{ijk} - s_{ijk})} \right) - \left(\frac{-s_{ijk}s_{ijk}}{(s_{ijk} - s_{ijk})(s_{ik} - s_{ijk})} \right)^{-\epsilon} {}_{2}F_{1} \left(-\epsilon, -\epsilon; 1-\epsilon; \frac{s_{ijk}(s_{ijk} - s_{ij})}{(s_{ijk} - s_{ij})(s_{ijk} - s_{ijk})} \right) - \left(\frac{-s_{ijk}s_{ijk}}{(s_{ijk} - s_{ijk})(s_{ijk} - s_{ijk})} \right)^{-\epsilon} {}_{2}F_{1} \left(-\epsilon, -\epsilon; 1-\epsilon; \frac{s_{ijk}(s_{ijk} - s_{ij})}{(s_{ijk} - s_{ij})(s_{ijk} - s_{ijk})} \right) - \left(\frac{-s_{ijk}s_{ijk}}{(s_{ijk} - s_{ijk})(s_{ijk} - s_{ijk})} \right)^{-\epsilon} {}_{2}F_{1} \left(-\epsilon, -\epsilon; 1-\epsilon; \frac{s_{ijk}(s_{ijk} - s_{ijk})}{(s_{ijk} - s_{ijk})(s_{ijk} - s_{ijk})} \right)$$

$$\tilde{a}_1(s_{12}, s_{23}) = 1 - \frac{1}{a_1(s_{12}, s_{23})} = \frac{1 - x}{z}, \ R_2 \\ \tilde{a}_3(s_{12}, s_{23}) = 1 - \frac{1}{a_3(s_{12}, s_{23})} = \frac{(1 - x)(1 - x)}{xz}$$

Details of the calculation

VV: well-known two-loop quark form factor in space-like kinematics

RV: one-loop squared matrix elements in terms of one-loop bubble and box integrals, which are known in exact form in ε . For fixed \hat{x} and \hat{z} , the phase space integral is fully constrained:

$$C_{j\leftarrow i}^{\mathrm{RV}} \propto \int \mathrm{d}\Phi_2(k_j, k_k; k_i, q) \,\delta\left(z - x \frac{(k_i + k_j)^2}{Q^2}\right) \left|\mathscr{M}^{\mathrm{RV}}\right|^2 \propto \mathscr{J}(x, z) \,\left|\mathscr{M}^{\mathrm{RV}}\right|^2(x, z)$$

RR: integrations over three-particle phase space with multi-loop techniques:

$$C_{j \leftarrow i}^{\text{RR}} \propto \int d\Phi_3(k_j, k_k, k_l; k_i, q) \,\delta\left(z - x \frac{(k_i + k_j)^2}{Q^2}\right) \left| \mathcal{M}^{\text{RR}} \right|^2$$

Reduction to master integrals using IBP identities, 13 integral families, 21 master integrals. Solved using differential equations, boundary terms obtained by integrating over \hat{z} and comparing to master integrals relevant to inclusive version.

Only expansions in the end-point distributions $\hat{x} = 1$ and $\hat{z} = 1$ are required.

Real-real master integrals [Bonino, Gehrmann, Schürmann, GS, in preparation]

Notation:

 $I[-3,7] \propto \int d^d k_j d^d k_l \delta(D_9) \delta(D_{10}) \delta(D_{11}) \delta(D_{12}) \frac{D_3}{D_7}$

Integrals of families A, B, C already calculated in the context of antenna subtraction for photon fragmentation [Gehrmann, Schürmann '22]

Some of them derived in closed form, the others up to finite part in ϵ . Expansion in distributions after insertion of master integrals in reduced expressions.

$$egin{aligned} D_1 &= (q-k_j)^2\,,\ D_2 &= (p+q-k_j)^2\,,\ D_3 &= (p-k_l)^2\,,\ D_4 &= (q-k_l)^2\,,\ D_5 &= (p+q-k_l)^2\,,\ D_6 &= (q-k_j-k_l)^2\,,\ D_6 &= (q-k_j-k_l)^2\,,\ D_7 &= (p-k_j-k_l)^2\,,\ D_8 &= (k_j+k_l)^2\,,\ D_9 &= k_j^2\,,\ D_{10} &= k_l^2\,,\ D_{11} &= (q+p-k_j-k_l)^2\,,\ D_{12} &= (p-k_j)^2 + Q^2 rac{z}{x}\,, \end{aligned}$$

set of denominator factors

family	master	deepest pole	at $x = 1$	at $z = 1$				
	I[0]	ϵ^0	$(1-x)^{1-2\epsilon}$	$(1-z)^{1-2\epsilon}$				
٨	I[5]	ϵ^{-1}	$(1-x)^{-2\epsilon}$	$(1-z)^{1-2\epsilon}$				
A	I[2,3,5]	ϵ^{-2}	$(1-x)^{-1-2\epsilon}$	$(1-z)^{-1-2\epsilon}$				
	I[7]	ϵ^0	$(1-x)^{1-2\epsilon}$	$(1-z)^{1-2\epsilon}$				
P	I[-2,7]	ϵ^0	$(1-x)^{1-2\epsilon}$	$(1-z)^{1-2\epsilon}$				
Б	I[-3,7]	ϵ^0	$(1-x)^{1-2\epsilon}$	$(1-z)^{1-2\epsilon}$				
	I[2,3,7]	ϵ^{-2}	$(1-x)^{-2\epsilon}$	$(1-z)^{-1-2\epsilon}$				
C	I[5,7]	ϵ^{-1}	$(1-x)^{-2\epsilon}$	$(1-z)^{1-2\epsilon}$				
U	I[3,5,7]	ϵ^{-2}	$(1-x)^{-2\epsilon}$	$(1-z)^{-2\epsilon}$				
	I[1]	ϵ^0	$(1-x)^{-2\epsilon}$	$(1-z)^{-2\epsilon}$				
D	I[1,4]	ϵ^0	$(1-x)^{-2\epsilon}$	$(1-z)^{-2\epsilon}$				
	I[1,3,4]	ϵ^{-1}	$(1-x)^{-2\epsilon}$	$(1-z)^{-1-2\epsilon}$				
E	I[1,3,5]	ϵ^{-2}	$(1-x)^{-2\epsilon}$	$(1-z)^{-1-2\epsilon}$				
G	I[1,3,8]	ϵ^{-2}	$(1-x)^{-2\epsilon}$	$(1-z)^{-1-2\epsilon}$				
Н	I[1,4,5]	ϵ^{-1}	$(1-x)^{-1-2\epsilon}$	$(1-z)^{-2\epsilon}$				
Ι	I[2,4,5]	ϵ^{-2}	$(1-x)^{-1-2\epsilon}$	$(1-z)^{-2\epsilon}$				
т	I[4,7]	ϵ^0	$(1-x)^{-2\epsilon}$	$(1-z)^{-2\epsilon}$				
J	I[3,4,7]	ϵ^{-1}	$(1-x)^{-2\epsilon}$	$(1-z)^{-2\epsilon}$				
K	I[3,5,8]	ϵ^{-2}	$(1-x)^{-1-2\epsilon}$	$(1-z)^{-2\epsilon}$				
L	I[4, 5, 7]	ϵ^{-1}	$(1-x)^{-1-2\epsilon}$	$(1-z)^{-2\epsilon}$				
Μ	I[4, 5, 8]	ϵ^{-1}	$(1-x)^{-1-2\epsilon}$	$(1-z)^{-2\epsilon}$				
Table 1	Table 1. Summary of the double real radiation master integrals.							

Assembling and checking the result

The sum VV+VR+RR still contain UV and IR pole terms. They are removed by:

- renormalising the strong coupling (in \overline{MS} ren. scheme)
- adding the mass factorisation counterterms, both initial- and final-state (in MS fac. scheme)

Checks:

- Scale dependent terms are found to be as predicted by RGE
- We used the underlying RR, RV and VV subprocess matrix elements to re-derive the inclusive NNLO coefficient functions.
- We integrated specific subprocess contributions over the final-state momentum \hat{z} and we recovered the respective contributions to the inclusive coefficient function.
- Comparison to approximate results
- Comparison to partial results

Comparison to approximate results [Abele, De Florian, Vogelsang '21,'22]

We then h

$$\begin{split} & \text{m have for the leading-power part:} \\ \Delta \Delta_{qq,\text{LP}}^{(2),C_F} &= \frac{1}{2} \left(\delta_x \mathcal{D}_x^2 + \delta_z \mathcal{D}_x^3 \right) + \frac{3}{2} \left(\mathcal{D}_x^0 \mathcal{D}_z^2 + \mathcal{D}_x^0 \mathcal{D}_x^2 + 2\mathcal{D}_x^0 \mathcal{D}_x^1 + 2\mathcal{D}_x^0 \mathcal{D}_x^0 + 2\mathcal{D}_x^0 \mathcal{D}_x^1 + 2\mathcal{D}_x^0 \mathcal{D}_x^1 + 2\mathcal{D}_x^0 \mathcal{D}_x^0 + 2\mathcal{D}_x^0 \mathcal{D}_x^1 + 2\mathcal{D}_x^0 \mathcal{D}_x^0 + 2\mathcal{D}_x^$$

while th

$$\Delta_{qq,\text{NLP}}^{(2),C_F} = -\frac{3}{2} \left(\mathcal{D}_x^2 + \mathcal{D}_z^2 + 2 \mathcal{D}_x^1 \ell_z^1 + 2 \mathcal{D}_z^1 \ell_x^1 + \mathcal{D}_x^0 \ell_z^2 + \mathcal{D}_z^0 \ell_x^2 \right) - \frac{1}{2} \left(\delta_x \ell_z^3 \right)$$

Full agreement with our result

By expanding the NNLL threshold resummation (i.e. resummation of dominant terms in the $\hat{x} \rightarrow 1$ and/or $\hat{z} \rightarrow 1$ limit), approximate corrections have been derived at NNLO and at N3LO

(64)

(65)

Comparison to partial results

Very recently, the leading colour contribution to the $q \rightarrow q$ non-singlet channel was computed.

e.g. piece contained in the transverse coefficier function with single distributions in x or z —

We found analytical agreement for all terms involving distributions, and numerical agreement for the regular parts

[Goyal, Moch, Pathak, Rana, Ravindran '23]

$$\mathcal{F}_{1,1}^{(2)} = C_F^2 \Big[\delta_x \Big\{ 2l_1^2 (1-4\bar{x}) + 4(1-8\bar{x}) - 8\operatorname{Li}_3(\bar{x}) \bar{z} + \frac{25}{3} l_x^3 \bar{z} - 4l_x^2 \bar{z} - 4l_x^2 \bar{z} + 2S_{12}(\bar{x}) \bar{z} + \operatorname{Li}_2(\bar{x})(4(1-6\bar{x}) + 40l_x\bar{x}) + \frac{1}{\bar{x}} \Big(8\operatorname{Li}_3(\bar{x}) - 64\operatorname{Li}_2(\bar{x}) l_x - \frac{40}{3} l_x^3 + 12l_x l_x^2 - 88\operatorname{S}_{12}(\bar{x}) + l_x \Big(- 8\operatorname{Li}_2(\bar{x}) - 12l_x^2 \Big) + l_x \Big(- 64 + 24\zeta_2 \Big) \\ + l_{\bar{x}} \Big(14 + 24\bar{x} + 4l_x (1-2\bar{x}) + 8\operatorname{Li}_2(\bar{x}) \bar{z} + 10l_x^2 \bar{z} + 16\bar{z}\zeta_2 \Big) + l_x \Big(- 2 + 38\bar{x} - 16\bar{z}\zeta_2 \Big) + 8\bar{z}\zeta_2 - 16\bar{z}\zeta_3 \Big\} \\ + \mathcal{D}_{x,0} \Big\{ 12 + 24\bar{z} + 4l_x (1-3\bar{x}) + 12\operatorname{Li}_2(\bar{x}) \bar{z} + 16l_x^2 \bar{z} - 4l_x l_x \bar{z} - 12l_x^2 \bar{z} - \frac{1}{\bar{x}} \Big(16\operatorname{Li}_2(\bar{x}) + 24l_x^2 - 16l_x l_x \Big) \Big) + 16\bar{z} \\ + \mathcal{D}_{x,1} \Big\{ (4l_x \bar{z} - 24l_x \bar{z}) \Big\} - 12\bar{z} \mathcal{D}_{x,2} + \delta_{\bar{x}} \Big\{ -4 - 48\bar{x} - 2l_x^2 + \frac{11}{3} l_x^3 \bar{x} + 16l_x l_x^2 \bar{x} - 4l_x^3 \bar{x} - 24\operatorname{S}_{12}(\bar{x}) \bar{x} \Big) \\ + U_{x,1} \Big\{ (4k_x \bar{z} - 24l_x \bar{x}) \Big\} - 12\bar{z} \mathcal{D}_{x,2} + \delta_{\bar{x}} \Big\{ -4 - 48\bar{x} - 2l_x^2 + \frac{11}{3} l_x^3 \bar{x} + 16l_x l_x^2 \bar{x} - 4l_x^3 \bar{x} - 24\operatorname{S}_{12}(\bar{x}) \bar{x} \Big) \\ + U_{x,1} \Big\{ (4k_x \bar{x} - 24l_x \bar{x}) + \frac{1}{\bar{x}} \Big(-8\operatorname{Li}_3(\bar{x}) + 16\operatorname{Li}_2(\bar{x}) l_x - 4l_x^3 - 28l_x l_x^2 + 48\operatorname{S}_{12}(\bar{x}) + l_x \Big(8\operatorname{Li}_2(\bar{x}) + 32l_x^2 \Big) \\ + l_x \Big(64 + 32\zeta_2 \Big) \Big) + l_x \Big(14 + 26\bar{x} + 4l_x - 20l_x^2 \bar{x} + 16\bar{z}\zeta_2 + l_x \Big(-8 - 34\bar{x} - 20\bar{x}\zeta_2 \Big) + 8\bar{x}\zeta_2 - 16\bar{x}\zeta_3 \Big\} \\ + \mathcal{D}_{z,0} \Big\{ 12 + 28\bar{x} + 4l_x (1 + \bar{x}) - 4\operatorname{Li}_2(\bar{x}) \bar{x} - 12l_x^2 \bar{x}^2 + 28l_x l_x \bar{x} - 12l_x^2 \bar{x} + \frac{1}{\bar{x}} \Big(16\operatorname{Li}_2(\bar{x}) + 16l_x^2 - 48l_x l_x \Big) + 16\bar{z} \\ + \mathcal{D}_{z,0} \Big\{ 12 + 28\bar{x} + 4l_x (1 + \bar{x}) - 4\operatorname{Li}_2(\bar{x}) \bar{x} - 12l_x^2 \bar{x}^2 + 28l_x l_x \bar{x} - 12l_x^2 \bar{x} + \frac{1}{\bar{x}} \Big(16\operatorname{Li}_2(\bar{x}) + 16l_x^2 - 48l_x l_x \Big) + 16\bar{z} \\ + \mathcal{D}_{z,0} \Big\{ \frac{3}{2} \Big[12 + 20l_x \bar{x} - 24l_x \bar{x}^2 - \frac{1}{3} \Big] \frac{1}{2}\bar{z}^2 + 6\operatorname{S}_{12} \Big] \frac{1}{\bar{z}} \Big(6\operatorname{Li}_2(\bar{x}) + 8\operatorname{Li}_3(\bar{x}) + \frac{6}{2} \Big\{ \frac{1}{2} + \frac{4}{3} l_x^2 - 48l_x l_x \Big) + 16\bar{z} \\ + \mathcal{D}_{z,0} \Big\{ \frac{4}{9} \Big] \Big\{ 12 + 170\bar{x} - 44\bar{x} - 44\bar{x} \Big\} \Big\}$$

Impact of NNLO corrections

Note: FF adopted are the ones of [Borsa, Sassot, De Florian, Stratmann, Vogelsang '22] Fit on e^+e^- and SIDIS data (including this dataset) at NNLO, using the approximate NNLO for SIDIS

Focus on COMPASS 2016 data for SIDIS charged pion production (fixed-target experiment, muon beam scattering off an isoscalar target at $\sqrt{s} \simeq 17.35$ GeV)

Hadron multiplicities "ratio of SIDIS over DIS"

0.10 < x < 0.14

0.50 < y < 0.70

 $Q_{\rm avg} = 4.66 \,\,{\rm GeV}$

ratio to dM^h/dz (NLO)

$\frac{\mathrm{d}M^{h}}{\mathrm{d}z} = \frac{\mathrm{d}^{3}\sigma^{h}/\mathrm{d}x\mathrm{d}y\mathrm{d}z}{\mathrm{d}^{2}\sigma/\mathrm{d}x\mathrm{d}y}$ integrated over bins in x and y DIS from APFEL [Bertone '17]

NNLO improves data description in some bins, but makes it worse in others

Size of NNLO corrections call for a new global fit to assess the impact of SIDIS data

0.10 0.50	0.10 < x < 0.14 0.30 < y < 9	$\begin{array}{c} 0.14 < x < 0 \\ 0.30 < y < 0 \\ 50 \end{array} $	0.18 < x < 0.40 0.30 < y < 0.50
ł	<u>₽₽₽₽₽₽₽</u> ₽	T T T T T T T T T T T T T T T T T T T	₽ ₄ ₽₽₽ ₄ 4
GeV	$Q_{\rm avg} = 3.80~{ m GeV}$	$Q_{\rm avg} = 4.39 \; { m GeV}$	$Q_{\rm avg} = 5.91~{ m GeV}$
).10).30	$\begin{array}{l} 0.10 < x < 0.14 \\ 0.20 < y < 0.30 \end{array}$	$\begin{array}{c} 0.14 < x < 0.18 \\ 0.20 < y < 0.30 \end{array}$	0.18 < x < 0.40 0.20 < y < 0.30
••	$\overline{\Phi}\Phi\overline{\Phi}\overline{\Phi}\overline{\Phi}\overline{\Phi}\overline{\Phi}$	₽₽₽₽₽₽₽₽ ₽	
GeV	$Q_{\rm avg} = 3.01~{ m GeV}$	$Q_{\rm avg} = 3.47~{ m GeV}$	$Q_{\rm avg} = 4.67~{ m GeV}$
.10 $.20$	$\begin{array}{l} 0.10 < x < 0.14 \\ 0.15 < y < 0.20 \end{array}$	$\begin{array}{c} 0.14 < x < 0.18 \\ 0.15 < y < 0.20 \end{array}$	$\begin{array}{l} 0.18 < x < 0.40 \\ 0.15 < y < 0.20 \end{array}$
4	₽ ₽₽₽₽₽₽₽₽₽	₽₽₽₽ ₽₽₽₽₽₽₽	
GeV	$Q_{ m avg} = 2.51 { m ~GeV}$	$Q_{\rm avg} = 2.90 { m GeV}$	$Q_{\rm avg} = 3.91 \; {\rm GeV}$
0.10 0.15	$\begin{array}{l} 0.10 < x < 0.14 \\ 0.10 < y < 0.15 \end{array}$	$\begin{array}{l} 0.14 < x < 0.18 \\ 0.10 < y < 0.15 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
₽ ₽			
GeV	\mathbf{I}^{-} $Q_{\mathrm{avg}} = 2.12 \; \mathrm{GeV}$	$Q_{\text{avg}} = 2.45 \text{ GeV}$	Siz
0.8	0.2 0.4 0.6 0.8	0.2 0.4 0.6 0.8	for
	z	z	
			-

Outlook

Unpolarised $\begin{aligned} \ell(k) \, p(P) \to \ell(k') \\ \frac{\mathrm{d}^3 \sigma^h}{\mathrm{d}x \mathrm{d}y \mathrm{d}z} &= \frac{4\pi \alpha^2}{Q^2} \left[\frac{1 + (1 - y)^2}{2y} \mathcal{F}_T^h(x, z) \right] \end{aligned}$

$$\rightarrow \ell(k') h(P_h) X$$

$$\frac{\partial^2}{\partial \mathcal{F}_T^h(x, z, Q^2)} + \frac{1 - y}{y} \mathcal{F}_L^h(x, z, Q^2) \right]$$

linally polarised

$$\rightarrow \ell(k') h(P_h) X$$

$$= \frac{4\pi\alpha^2}{Q^2} \frac{1 - (1 - y)^2}{2y} \mathscr{G}_1^h(x, z, Q^2)$$

u, d, s

Identified hadrons with polarised beams at the EIC are great handles on accessing individual quark helicity PDFs

Motivation

EIC: Improving the flavor-separated helicity distributions of the proton sea through SIDIS **Christine Aidala @ DIS2024** PRD102, 094018 (2020) DSSV14: PRL113, 012001 (2014)

Access flavor through SIDIS measurements of identified charged pions and kaons. Current treatment of strangeness assumes $\Delta s = \Delta \bar{s}$ and incorporates constraints from hyperon β decay. In the future could use positive and negative kaons to separate Δs and $\Delta \bar{s}$.

Polarised SIDIS structure function

$$\mathcal{F}_{i}^{h}(x,z,Q^{2}) = \sum_{p,p'} \int_{x}^{1} \frac{\mathrm{d}\hat{x}}{\hat{x}} \int_{z}^{1} \frac{\mathrm{d}\hat{z}}{\hat{z}} f_{p}\left(\frac{x}{\hat{x}},\mu_{F}^{2}\right) D_{p'}^{h}\left(\frac{z}{\hat{z}},\mu_{A}^{2}\right) \,\mathcal{C}_{p'p}^{i}\left(\hat{x},\hat{z},Q^{2},\mu_{R}^{2},\mu_{F}^{2},\mu_{A}^{2}\right) \,, \quad i = T, J$$

Longitudinally polarised

$$\mathscr{G}_{1}^{h}(x,z,Q^{2}) = \sum_{p,p'} \int_{x}^{1} \frac{\mathrm{d}\hat{x}}{\hat{x}} \int_{z}^{1} \frac{\mathrm{d}\hat{z}}{\hat{z}} \Delta f_{p}\left(\frac{x}{\hat{x}},\mu_{F}^{2}\right) D_{p'}^{h}\left(\frac{z}{\hat{z}},\mu_{A}^{2}\right) \Delta \mathscr{C}_{p'p}\left(\hat{x},\hat{z},Q^{2},\mu_{R}^{2},\mu_{F}^{2},\mu_{A}^{2}\right)$$
$$\Delta \mathscr{C}_{p'p} \text{ known up to NLO (see e.g. [De Florian, Stratmann, Vogelsang '97])}$$

Unpolarised

Calculation: polarised vs. unpolarised case Prescription for γ_5

Problem: projector of the hadronic tensor to isolate the $g_1 = \mathcal{G}_1/2$ structure function is:

$$P_{g_1}^{\mu\nu} = \frac{i}{(D-2)(D-3)} \frac{2x}{Q^2} \varepsilon^{\mu\nu\rho\sigma} p_\rho q_\sigma \quad \epsilon$$

In addition, we have polarised quark or gluon in the initial state: spin sum with explicit γ_5 or Levi-Civita

We adopt the Larin prescription: setting $\gamma_{\mu}\gamma_{5}$ And evaluating traces in D dimensions, and contracting the two Levi-Civita into D-dim metric tensors.

We carry out mass factorization with Larin space-like $g_1 = \Delta \mathcal{C}^{\mathrm{MS}} \otimes \Delta f^{\mathrm{MS}}$ splitting functions and at the end in order to restore $= (\Delta \mathcal{C}^{\mathrm{L}} \otimes Z^{-1}) \otimes (Z \otimes \Delta f^{\mathrm{L}}) = \Delta \mathcal{C}^{\mathrm{L}} \otimes \Delta f^{\mathrm{L}}$ Ward identities we apply the transformation:

Required a consistent explicit Levi-Civita tensor treatment in dim. reg.

$$=\frac{i}{3!}\varepsilon_{\mu\nu\rho\sigma}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}$$

Calculation: polarised vs. unpolarised case

Purely virtual contributions (virtual and double-virtual)

In operator matrix elements calculations, the g_1 projector of the photon is usually absorbed into an operator insertion, rendering the photon coupling axial.

Instead, in our case, the photon coupling is always vectorial and traces of quark-loops coupling to the polarized photon can be carried out consistently in $D = 4 - 2\epsilon$ dimensions.

New NNLO polarised PDFs

(they exploit approximate NNLO corrections for SIDIS predictions) (note that the approximate NNLO corrections are the same for polarised and unpolarised SIDIS)

WG5 summary @ DIS2024

Numerical results

Comparison to experimental points

Data points from CERN COMPASS and DESY HERMES for identified π^+ produced over a range of *z*-values.

2-dim data points in (x, Q^2) :

larger (smaller) x implies larger (smaller) Q^2

DSSV14 includes hadron collider data from RHIC that constrain the gluon PDF (dataset not included in MAPPDF10)

NNLO corrections can be sizeable, especially at low-*x*

Numerical results

Channel decomposition and perturbative convergence

30

Conclusions

- We computed the NNLO QCD corrections to SIDIS coefficient functions in analytical form, both for unpolarised and longitudinally polarised beam and target. Our results allow for NNLO global fits of fragmentation functions and helicity PDFs.
- After our paper, ref. [Goyal, Lee, Moch, Pathak, Rana, Ravindran 2404.09959] appeared, with calculation of NNLO polarised SIDIS. Comparison of results in progress
- Bonus: in the antenna subtraction formalism for fully differential NNLO calculations, matrix elements of simpler processes are used as subtraction terms. In case of an identified particle in the final state, we can recycle the SIDIS coefficient functions as integrated subtraction terms! Work in progress towards antenna subtraction for identified particles

Thank you!

BACKUP

Motivation

	Experiments	N_{pt}	χ^2	$ \chi^2/N_{pt} $
	ATLAS jets [†]	446	350.8	0.79
	ATLAS Z/γ +jet [†]	15	31.8	2.12
	CMS Z/γ +jet [†]	15	17.3	1.15
	LHCb Z +jet	20	30.6	1.53
	ALICE inc. hadron	147	150.6	1.02
	STAR inc. hadron	60	42.2	0.70
pр	$pp \mathrm{sum}$	703	623.3	0.89
1 1	TASSO	8	7.0	0.88
	TPC	12	11.6	0.97
	OPAL	20	16.3	0.81
	OPAL (202 GeV) †	17	24.2	1.42
	ALEPH	42	31.4	0.75
	DELPHI	78	36.4	0.47
	DELPHI (189 GeV)	9	15.3	1.70
	SLD	198	211.6	1.07
e^+e^-	SIA sum	384	353.8	0.92
	$\rm H1$ †	16	12.5	0.78
	H1 (asy.) †	14	12.2	0.87
	ZEUS [†]	32	65.5	2.05
	COMPASS $(06I)$	124	107.3	0.87
	COMPASS $(16p)$	97	56.8	0.59
ep	SIDIS sum	283	254.4	0.90
1	Global total	1370	1231.5	0.90

 e^+

Fits routinely done at NLO by different groups, using data from e^+e^- , ep and ppcolliders e.g. very recent global fit by [Gao, Liu, Shen, Xing, Zhao '24].

It exploits a new code FMNLO [Liu, Shen, Zhou, Gao '23], a wrapper around MG5 aMC@NLO, to compute arbitrary processes at the LHC with fragmentation at NLO.

[2401.02781]

Global fits of fragmentation functions (FFs)

Polarised SIDIS structure function

$$\begin{split} \mathscr{G}_{1}^{h}(x,z,Q^{2}) &= \sum_{p,p'} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \int_{z}^{1} \frac{d\hat{z}}{\hat{z}} \Delta f_{p}\left(\frac{x}{\hat{x}},\mu_{F}^{2}\right) D_{p'}^{h}\left(\frac{z}{\hat{z}},\mu_{A}^{2}\right) \Delta \mathscr{C}_{p'p}\left(\hat{x},\hat{z},Q^{2},\mu_{R}^{2},\mu_{F}^{2},\mu_{A}^{2}\right) \\ \Delta \mathscr{C}_{p'p} \text{ known up to NLO (see e.g. [De Florian, Stratmann, Vogelsang '97]} \\ \end{split}$$

$$\begin{split} & \mathsf{What the experiments measure is the longitudinal double-spin asymmetry A_{I}} \\ & A_{II} = \frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\uparrow\downarrow}}{d\sigma^{\uparrow\uparrow} + d\sigma^{\uparrow\downarrow}} \simeq DA_{1} \quad \text{with a (known) kinematical factor } D. \\ & A_{I} \text{ is related to the photoabsorption cross sections } \sigma_{J_{z}}, \\ & \text{with } J_{z} \text{ is the spin of the intermediate photon-nucleon system:} \\ & A_{1} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{\mathscr{G}_{1}}{\mathscr{F}_{T}} \end{split}$$

from [F. Close, An Introduction to Quarks and Partons, 1979]

F	Before	After			
$J_{z}=\pm 1,0$	$J_{z} = \pm \frac{1}{2}$	$J_{z} = \pm \frac{1}{2}$	$J_{z} = \pm 1, 0$		
Initi	al state	Intermediate state	Final state		

	Initia	l state	state	Final state		
	γ_V	Р	Jz	$\boldsymbol{\gamma}_{V}$	Р	
(A)	+1	$+\frac{1}{2}$	$+\frac{3}{2}$	+1	$+\frac{1}{2}$	
(B) (C)	+1 +1	$-\frac{1}{2}$ $-\frac{1}{2}$	$+\frac{1}{2}$ $+\frac{1}{2}$	$+1 \\ 0$	$-\frac{1}{2}$ $+\frac{1}{2}$	
(\tilde{C}) (D)	0 0	$+\frac{1}{2}$ $+\frac{1}{2}$	$+\frac{1}{2}$ $+\frac{1}{2}$	1 0	$-\frac{1}{2}$ $+\frac{1}{2}$	

 $\gamma(J_z = +1): \gamma^{\uparrow} + \mathbf{P}^{\uparrow} \rightarrow \sigma_{3/2}$ $\gamma(J_z = -1): \quad \gamma_{\downarrow} + \mathbf{P}^{\uparrow} \rightarrow \sigma_{1/2}$

Why $A_1 = \mathcal{G}_1 / \mathcal{F}_T$? Physical argument

 $\gamma^{\mathrm{T}} + q_{\downarrow} \rightarrow q^{\mathrm{T}}$ Quark moving along the *z*-axis $\gamma_{\downarrow} + q^{\uparrow} \rightarrow q_{\downarrow}$ (i.e. $k_T = 0$)

$$q^{\uparrow} = \sqrt{\left(\frac{E+m}{2E}\right)} \begin{pmatrix} \chi^{\uparrow} \\ \frac{P_{z}\chi^{\uparrow} + (P_{x} + iP_{y})\chi_{\downarrow}}{E+m} \end{pmatrix} \quad \gamma_{\pm} = \begin{pmatrix} 0 \\ -\sigma_{\pm} \end{pmatrix}$$

$$\sigma_{1/2} \sim \gamma_{\downarrow} \mathbf{P}^{\uparrow} \sim \sum_{i} e_{i}^{2} q^{\uparrow} \quad \sigma_{3/2} \sim \gamma^{\uparrow} \mathbf{P}^{\uparrow} \sim \sum_{i} e_{i}^{2} q^{\uparrow}$$
$$A \equiv \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{\sum_{i} e_{i}^{2} [q_{i}^{\uparrow} - q_{i\downarrow}]}{\sum_{i} e_{i}^{2} [q_{i}^{\uparrow} + q_{i\downarrow}]}$$

Motivation

EMC 'spin crisis' (1987): contribution of quark and anti-quark spins constitute only a small fraction of the proton spin (~ 10%)

Where is the rest?

The proton spin puzzle

$$S_q(Q^2) = \frac{1}{2} \int_0^1 \Delta \Sigma(x, Q^2) dx \equiv \frac{1}{2} \int_0^1 \left(\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s} \right) (x, q) dx$$

$$S_g(Q^2) = \int_0^1 \Delta g(x, Q^2) dx ,$$
polarised PDFs

$$\Delta f(x, Q^2) \equiv f^+(x, Q^2) - f^-(x, Q^2)$$

Determined routinely at NLO through global fits e.g. [NNPDFpol1.0 '14] [DSSV '14]

Motivation

[EIC White Paper, 1212.1701] Current polarized DIS data: 10³ ○ CERN △ DESY ◇ JLab □ SLAC _{0.04}⊏ x∆ū Current polarized BNL-RHIC pp data: all uncertainties for $\Delta \chi^2 = 9$ ● PHENIX π⁰ ▲ STAR 1-jet 0.02 Q² (GeV²) 00 0 00 00 ዋ DSSV -0.02 10 -0.04 _{0.04}⊨ x∆s̄ 10⁻³ 10⁻⁴ 10⁻² 10⁻¹ 0.02 х

EIC will significantly extend the kinematical region covered by previous spin experiments

DSSV and & 5 GeV on 250 GeV 0 -0.02 $^{-0.04}$ Q² = 10 GeV² 10⁻² Х

The proton spin puzzle

moments!

DIS: a second youth?

A fresh look at HERA data with the expertise gained from LHC

WG4 summary talk @ DIS2024

- frame is empty
- errors

Andrea Banfi @ DIS2024

DIS: a second youth?

Enthusiasm driven by the future Electron-Ion Collider (EIC)

EIC impact on collinear PDFs

y>10-2 Impact of EIC data on global fits @NNLO

y>10-2

- Improvement significantly reduced compared with HERAPDF2.0
- Still significant effects present

biggest impact on up-

valence distribution

Small but valuable improvement on all parton species visible at all x and Q² values

from [R. Roberts, The structure of the proton, 1993]

$$\begin{split} MW_1(\nu, Q^2) &\longrightarrow F_1(x) \\ \nu W_2(\nu, Q^2) &\longrightarrow F_2(x) \\ \frac{\nu}{M}G_1(\nu, Q^2) &\longrightarrow g_1(x), \quad \frac{\nu^2}{M^2}G_2(\nu, Q^2) &\longrightarrow g_2(x) \\ D &= \frac{1 - (1 - y)\epsilon}{1 + \epsilon R}, \quad \eta = \frac{2M\epsilon\sqrt{Q^2}}{s[1 - (1 - y)]} \\ e^{-1} &= 1 + 2(1 + \frac{\nu^2}{Q^2}) \left[\frac{(s - M^2)(s - 2M\nu - M^2)}{M^2Q^2} - 1 \right]^{-1} \\ A &= \frac{\sigma_1 - \sigma_2}{2} - \frac{M\nu G_1 - Q^2 G_2}{M^2Q^2} \end{split}$$

$$\nu W_2(\nu, Q^2) \longrightarrow F_2(x) \qquad A = \frac{\mathrm{d}\sigma(\uparrow\downarrow - \uparrow\uparrow)}{\mathrm{d}\sigma(\uparrow\downarrow + \uparrow\uparrow)} = D[A_1 + \eta A_2] \\
\frac{\nu}{M}G_1(\nu, Q^2) \longrightarrow g_1(x), \quad \frac{\nu^2}{M^2}G_2(\nu, Q^2) \longrightarrow g_2(x) \\
D = \frac{1 - (1 - y)\epsilon}{1 + \epsilon R}, \quad \eta = \frac{2M\epsilon\sqrt{Q^2}}{s[1 - (1 - y)]} \\
^{-1} = 1 + 2(1 + \frac{\nu^2}{Q^2}) \left[\frac{(s - M^2)(s - 2M\nu - M^2)}{M^2Q^2} - 1\right]^{-1} \\
A_1 \longrightarrow \frac{g_1(x)}{F_1(x)}, \quad A_2 \longrightarrow 0$$

$$\nu W_{2}(\nu, Q^{2}) \longrightarrow F_{2}(x) \qquad A = \frac{\mathrm{d}\sigma(\uparrow\downarrow - \uparrow\uparrow)}{\mathrm{d}\sigma(\uparrow\downarrow + \uparrow\uparrow)} = D[A_{1} + \eta A_{2}]$$

$$\frac{\nu}{M}G_{1}(\nu, Q^{2}) \longrightarrow g_{1}(x), \quad \frac{\nu^{2}}{M^{2}}G_{2}(\nu, Q^{2}) \longrightarrow g_{2}(x) \qquad D = \frac{1 - (1 - y)\epsilon}{1 + \epsilon R}, \quad \eta = \frac{2M\epsilon\sqrt{Q^{2}}}{s[1 - (1 - y)]}$$

$$\epsilon^{-1} = 1 + 2(1 + \frac{\nu^{2}}{Q^{2}}) \left[\frac{(s - M^{2})(s - 2M\nu - M^{2})}{M^{2}Q^{2}} - 1\right]^{-1} \qquad A_{1} \longrightarrow \frac{g_{1}(x)}{F_{1}(x)}, \quad A_{2} \longrightarrow 0$$

$$A_{1} = \frac{\sigma_{\frac{1}{2}} - \sigma_{\frac{3}{2}}}{\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}} = \frac{M\nu G_{1} - Q^{2}}{M^{3}W_{1}}$$

