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Introduction

Exclusive quarkonium photoproduction and GPDs
Collinear factorisation at the amplitude level:

A =
∫ 1

−1
dx
∫ 1

0
dz H(x)ϕ(z)C(x , z)

H(x): Generalised parton distribution (GPD)
ϕ(z): Distribution amplitude
C(x , z): Coefficient function H

C

Mγ

p p′

φ

Q2

x + ξ x− ξ

z

1− z

x : Average longitudinal momentum fraction of nucleon carried by the partons

• H(x , ξ, t): Generalised (3-dimensional) parton distribution

ξ: Longitudinal momentum fraction transferred to hard part

t : momentum difference squared of nucleons

• GPDs reduce to PDFs in the forward limit:

Hq(x ,0,0; µF ) = q(x ; µF ), Hg(x ,0,0; µF ) = xg(x ; µF )

• No all-order proof of factorisation but correct IR-pole structure at NLO
[D. Ivanov, A. Schafer, L. Szymanowski, G. Krasnikov EPJC 34 (2004) 297]
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Leading order amplitude

Leading order amplitude

Exclusive J/ψ photoproduction
probes gluon GPDs only at LO.

Employ static limit (NRQCD):
=⇒ ϕ(z) ∼ δ(z − 1/2).

A = ϵ
µ
γϵ∗ν

M T µν

T µν
LO = −gµν

⊥

1∫
−1

dx
x

[
CLO

g

(
ξ

x

)
Hg(x , ξ, µF )

x

]

CLO
g

(
ξ

x

)
=

FLO[
1 + ξ

x − iδ sgn(x)
] [

1 − ξ
x + iδ sgn(x)

]

Mγ

x + ξ x− ξ

Hgp p′

CLO
g

FLO = 4παseeq
2TF
Nc


〈
O
[

3S[1]
1

]〉
3m3

c


1
2

, ξ =
M2

2W 2
γp − M2

∼ M2

2W 2
γp

Large Wγp (small x in inclusive physics) ↔ small ξ
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Leading order amplitude

Imaginary part of amplitude
DGLAP and ERBL regions

x
1ξ0−ξ−1

DGLAP1 ERBL DGLAP2

ξ − x −ξ − x x + ξ ξ − x x + ξ x− ξ

Evolution equations different in ERBL/DGLAP regions.

ERBL region shrinks as Wγp increases.
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Leading order amplitude

Imaginary part of amplitude
DGLAP and ERBL regions

x
1ξ0−ξ−1

DGLAP1 ERBL DGLAP2

ξ − x −ξ − x x + ξ ξ − x x + ξ x− ξ

For LO amplitude:

Picks up imaginary part at x = ±ξ.

ImCLO
g

(
ξ

x

)
= −π

FLO
2

[
δ

(
ξ

x
− 1

)
+ δ

(
ξ

x
+ 1

)]

ImT µν
LO = π

gµν
⊥ FLO

ξ
Hg(ξ, ξ)

Otherwise, amplitude fully real (principal value contribution).

J.P. Lansberg (IJCLab) Exclusive J/ψ and Υ photoproduction May 27, 2024 4 / 21



LO results

LO cross section
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LO CF: µR = ζR M, µF = M

H1 (2006)
GPD: GK + CTEQ6M, GPD evol.
M = 3.1 GeV
ζF,R ∈ [0.5:2.0]
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 GPD: Shuvaev transf. +  CTEQ6M

Used GPDs are based on the Goloskokov-Kroll model EPJC 50 (2007) 829, i.e. Radyushkin’s
double-distribution with CTEQ6M as the input PDFs to construct the GPDs.
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double-distribution with CTEQ6M as the input PDFs to construct the GPDs.

Full LO evolution of GPDs is performed with APFEL++.
V. Bertone, H. Dutrieux, C. Mezrag, J. M. Morgado and H. Moutarde, EPJC 82 (2022) 888
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Full LO evolution of GPDs is performed with APFEL++.
V. Bertone, H. Dutrieux, C. Mezrag, J. M. Morgado and H. Moutarde, EPJC 82 (2022) 888

The W dependence of the lower bound is for µF = M/2 and is due to an unwanted
feature of some gluon PDFs at low scale with a local minimum at x ≈ 10−3!

see JPL, M.A. Ozcelik, EPJC 81 (2021) 497
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Alternative (right) GPDs based on Shuvaev transform also using CTEQ6M
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GPD: Shuvaev transf. +  JR14NLO08VF

Weird behaviour absent with JR14 (right plot)
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NLO amplitude

NLO amplitude

NLO amplitude has contributions from both quark and gluon GPDs:

M

γ

x + ξ x− ξ

CNLO
q

Hqp p′

M

γ

x + ξ x− ξ

CNLO
g

Hgp p′

Imaginary part comes fully from the DGLAP region (ξ ≤ |x | ≤ 1)
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NLO results

NLO cross section
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Oscillating energy dependence combined with a fast increasing uncertainty

Confirmation of an issue already uncovered twenty years ago
[D. Ivanov, A. Schafer, L. Szymanowski, G. Krasnikov EPJC 34 (2004) 297]

Already occurs at W ≈ 10 ∼ 20 GeV !
how to solve this ?
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NLO results

Origin of the problem for NLO cross sections

T µν
NLO ⊃ iπ

gµν
⊥ FLO

ξ

Hg(ξ, ξ) +
αs(µR)CA

π
ln

(
M2

4µ2
F

) 1∫
ξ

dx
x

Hg(x , ξ)

+
αs(µR)CA

π

CF
CA

ln

(
M2

4µ2
F

) 1∫
ξ

dx (Hq(x , ξ)− Hq(−x , ξ))


Hg(x , ξ) ∼ const, as x → ξ for small ξ
=⇒ appearance of ln ξ (high-energy logs).

Same thing happens in the quark case, since H(+)
q (x , ξ) ≡ Hq(x , ξ)− Hq(−x , ξ) ∼ 1

x
as x , ξ → 0

Large ln ξ contributions are purely imaginary and come from the DGLAP region
(ξ < |x | < 1).

NLO correction of opposite sign to LO for µF = M(> M/2)
cancellation then strong µF dependence at large W
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(ξ < |x | < 1).

NLO correction of opposite sign to LO for µF = M(> M/2)
cancellation then strong µF dependence at large W
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NLO results

Why large scale uncertainties present?

In the DGLAP evolution of low ξ GPDs, the probability of emitting a new gluon
is strongly enhanced by the large value of ln ξ.

In contrast, the NLO coefficient function allows for the emission (and
reabsorption) of only one gluon.

=⇒ we cannot expect compensation between the contributions coming from
the GPD and the coefficient function as we vary the scale µF .

=⇒ Hints towards a solution through resummation of these
logarithms...
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Comparison with inclusive photoproduction case: γp → QX

Instabilities in inclusive cases, e.g. γp → Q+ X
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Perturbative instabilities leading to negative cross sections in inclusive quarkonium
production known since 90’s:

hadroproduction of ηc and χc
photoproduction of J/ψ

Understood recently; first solution via scale fixing
JPL, M.A. Ozcelik, EPJC 81 (2021) 6, 497; A. Colpani Serri et al. PLB 835 (2022) 137556

Solved by matching High Energy Factorisation (HEF) to Collinear Factorisation
J.P. Lansberg, M. Nefedov, M.A.Ozcelik, JHEP 05 (2022) 083 & EPJC 84 (2024) 351
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HEF

Multiple gluon emissions:
BFKL ladder and resummation

p+1 p+2 ≈ p+1

γ

M

Hgp p′

k+1

k+2

k+3

k+1 ≈ p+1

k+2 ≪ k+1

k+3 ≪ k+2

Logarithms are generated by
emission of gluons, with strong
ordering in + lightcone
momentum.

They become large at high
energies, and need to be
resummed.
We implement a resummation of
these BFKL-type logs using HEF,
consistent with fixed-order
evolution of GPD:
=⇒ Doubly-logarithmic

approximation (DLA)
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HEF

Implementation of resummation: CCF → CHEF

CHEF
g

(
ξ

x

)
=

−iπα̂sFLO

2
∣∣ ξ

x
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√

Lµ

Lx

{
I1
(

2
√

Lx Lµ

)
− 2

∞

∑
k=1

Li2k (−1)
(

Lx

Lµ

)k

I2k−1

(
2
√

Lx Lµ

)}
,

where Lµ = ln[M2/(4µ2
F )], Lx = α̂s ln

∣∣ x
ξ

∣∣ and α̂s = αs(µR)CA/π.

This yields, when expanded in αs,

CHEF
g

(
ξ

x

)
=

−iπFLO

2

(
δ

(∣∣∣∣ ξ

x

∣∣∣∣− 1
)
+

α̂s∣∣ ξ
x

∣∣ ln
(

M2

4µ2
F

)
︸ ︷︷ ︸

→Casy.
g

+
α̂2

s∣∣ ξ
x

∣∣ ln 1∣∣ ξ
x

∣∣
[

π2

6
+

1
2
ln2
(

M2

4µ2
F

)]
+ . . .

)

First two terms in αs corresponds to the LO/NLO CF computation at small x .

Cannot use scale fixing at NNLO to get rid of all the 1/ξ-enhanced contributions

Quark coefficient function:

CHEF
q

(
ξ

x

)
=

2CF
CA

CHEF
g

(
ξ

x

)
,
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HEF

Matching

We use subtractive matching:

Cmatch.
g,q
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= CNLO CF
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,
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=
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2CF
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=
−iπFLO

2

[
δ

(∣∣∣∣ ξ
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∣∣∣∣− 1
)
+

α̂s∣∣ ξ
x
∣∣ ln

(
M2

4µ2
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)]
.

Casy.
g

(
ξ
x

)
: first two terms in the αs expansion of CHEF

g

(
ξ
x

)
.

Matching performed before x-integration.
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HEF results

Results: scale uncertainties for J/ψ
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µF uncertainties (left)

NLO CF ⊕ DLA HEF much better than the pathological NLO CF
NLO CF ⊕ DLA HEF significantly better than LO CF, even at large W

µR uncertainties (right)

NLO CF ⊕ DLA HEF much better than the pathological NLO CF
NLO CF ⊕ DLA HEF gets worse at high energies compared to LO CF

[at large W , ∝ W αs(µR)]
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HEF results

Results: comparing different GPD inputs for LO CF
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HEF results

Different GPD inputs for NLO CF

 20

 40

 60

 80

 100

 120

 140

 7  7.5  8  8.5  9  9.5  10

d
σ

(γ
 p

 →
 J

/ψ
 p

)/
d
t|

t=
tm

in
 [
n
b
 G

e
V

-2
]

W
γp [GeV]

b=inf JR14
b=5 JR14
b=2 JR14
b=1 JR14

b=inf NNPDFsx
b=5 NNPDFsx
b=2 NNPDFsx
b=1 NNPDFsx

b=inf CTEQ
b=5 CTEQ
b=2 CTEQ
b=1 CTEQ

NLO CF
GPD: GK, GPD evol.
M = 3.1 GeV
µF = M, µR = M

10
1

10
2

10
3

10
4

10
5

10
1

10
2

d
σ

(γ
 p

 →
 J

/ψ
 p

)/
d
t|

t=
tm

in
 [
n
b
 G

e
V

-2
]

W
γp [GeV]

b=inf JR14
b=5 JR14
b=2 JR14
b=1 JR14

b=inf NNPDFsx
b=5 NNPDFsx
b=2 NNPDFsx

b=1 NNPDFsx
b=inf CTEQ
b=5 CTEQ
b=2 CTEQ
b=1 CTEQ
H1 (2006)

NLO CF
GPD: GK, GPD evol.

M = 3.1 GeV
µF = M, µR = M

GPD with PDF input using CTEQ6 (like GK) and 2 more modern PDFs not
showing a dip (JR14 and NNPDFsx)
Strength of ξ dependence of GPD from Double Distribution encoded in b

Low energies (left)

Similar observations than for LO
Higher energies (right) [log plot]

NLO results out of control at higher energies

J.P. Lansberg (IJCLab) Exclusive J/ψ and Υ photoproduction May 27, 2024 17 / 21



HEF results

Different GPD inputs for NLO CF

 20

 40

 60

 80

 100

 120

 140

 7  7.5  8  8.5  9  9.5  10

d
σ

(γ
 p

 →
 J

/ψ
 p

)/
d
t|

t=
tm

in
 [
n
b
 G

e
V

-2
]

W
γp [GeV]

b=inf JR14
b=5 JR14
b=2 JR14
b=1 JR14

b=inf NNPDFsx
b=5 NNPDFsx
b=2 NNPDFsx
b=1 NNPDFsx

b=inf CTEQ
b=5 CTEQ
b=2 CTEQ
b=1 CTEQ

NLO CF
GPD: GK, GPD evol.
M = 3.1 GeV
µF = M, µR = M

10
1

10
2

10
3

10
4

10
5

10
1

10
2

d
σ

(γ
 p

 →
 J

/ψ
 p

)/
d
t|

t=
tm

in
 [
n
b
 G

e
V

-2
]

W
γp [GeV]

b=inf JR14
b=5 JR14
b=2 JR14
b=1 JR14

b=inf NNPDFsx
b=5 NNPDFsx
b=2 NNPDFsx

b=1 NNPDFsx
b=inf CTEQ
b=5 CTEQ
b=2 CTEQ
b=1 CTEQ
H1 (2006)

NLO CF
GPD: GK, GPD evol.

M = 3.1 GeV
µF = M, µR = M

GPD with PDF input using CTEQ6 (like GK) and 2 more modern PDFs not
showing a dip (JR14 and NNPDFsx)
Strength of ξ dependence of GPD from Double Distribution encoded in b
Low energies (left)

Similar observations than for LO

Higher energies (right) [log plot]

NLO results out of control at higher energies

J.P. Lansberg (IJCLab) Exclusive J/ψ and Υ photoproduction May 27, 2024 17 / 21



HEF results

Different GPD inputs for NLO CF

 20

 40

 60

 80

 100

 120

 140

 7  7.5  8  8.5  9  9.5  10

d
σ

(γ
 p

 →
 J

/ψ
 p

)/
d
t|

t=
tm

in
 [
n
b
 G

e
V

-2
]

W
γp [GeV]

b=inf JR14
b=5 JR14
b=2 JR14
b=1 JR14

b=inf NNPDFsx
b=5 NNPDFsx
b=2 NNPDFsx
b=1 NNPDFsx

b=inf CTEQ
b=5 CTEQ
b=2 CTEQ
b=1 CTEQ

NLO CF
GPD: GK, GPD evol.
M = 3.1 GeV
µF = M, µR = M

10
1

10
2

10
3

10
4

10
5

10
1

10
2

d
σ

(γ
 p

 →
 J

/ψ
 p

)/
d
t|

t=
tm

in
 [
n
b
 G

e
V

-2
]

W
γp [GeV]

b=inf JR14
b=5 JR14
b=2 JR14
b=1 JR14

b=inf NNPDFsx
b=5 NNPDFsx
b=2 NNPDFsx

b=1 NNPDFsx
b=inf CTEQ
b=5 CTEQ
b=2 CTEQ
b=1 CTEQ
H1 (2006)

NLO CF
GPD: GK, GPD evol.

M = 3.1 GeV
µF = M, µR = M

GPD with PDF input using CTEQ6 (like GK) and 2 more modern PDFs not
showing a dip (JR14 and NNPDFsx)
Strength of ξ dependence of GPD from Double Distribution encoded in b
Low energies (left)

Similar observations than for LO
Higher energies (right) [log plot]

NLO results out of control at higher energies

J.P. Lansberg (IJCLab) Exclusive J/ψ and Υ photoproduction May 27, 2024 17 / 21



HEF results

Different GPD inputs for NLO CF ⊕ HEF DLA
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HEF results

Summarising our results
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NLO CF ⊕ HEF DLA cures the instabilities of NLO CF
Theory in the ballpark of the H1 data, but clearly less precise

We only considered data at small t

A priori better agreement if µR ≈ 2M (right plot) but

Impact of x/ξ GPD dependence unclear; varying b has negligible effect
Going beyond DD ?

Impact of DA (relativistic corrections) vs strict static limit of NRQCD ?
Now ready for a full PDF uncertainty study

Only comparisons of central PDFs
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HEF results

Results for exclusive Υ photoproduction
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GPD: GK + CTEQ6M, GPD evol.
M = 9.46 GeV
µF = ζF M, µR = M, ζF ∈ [0.5:2.0]

GPD based on CTEQ6M PDF input, full LO evolution of GPDs
Significant corrections wrt NLO and reduction of the uncertainties
Extrapolating dσ/dt |t=tmin from measurements at W = 100 GeV, one gets
0.7 nb GeV−2 in agreement with the red band ZEUS PLB 680 (2009) 4
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Conclusion

Conclusion

Exclusive J/ψ and Υ photoproduction at increasing Wγp suffers from
perturbative instabilities at NLO.

Similar situation to inclusive photoproduction and hadroproduction.

Scale fixing cures the issue at NLO, but insufficient beyond NLO.

First NLO study with GPD evolution done with APFEL++

We use High-Energy Factorisation matched to Collinear Factorisation to
perform a high-energy resummation of the large logarithms of ξ

No new non-perturbative ingredients are introduced !

Like in the inclusive case, the matched NLO+HEF results are stable and
agree with data within the (large) theoretical uncertainties.

The next step is to see how to fit (gluon) GPDs from such observables.

Topic for future synergies between both VAs of STRONG2020:
NLOAccess and PARTONS
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Backup

Implementation of high-energy resummation

HEF resummation of LLA contributions ∼ αn
s ln

n−1( x
ξ ) at integrand level to the

imaginary part of the Cg(
ξ
x ):

CHEF
g

(
ξ

x

)
=

−iπ
2

FLO(
ξ
x

) ∞∫
0

dq2
T Cgi

(
ξ

x
,q2

T , µF , µR

)
h(q2

T ),

h(q2
T ) =

M2

M2 + 4q2
T
.
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Backup

Implementation of high-energy resummation

Resummation factor, Cgi

(
ξ
x ,q

2
T , µF , µR

)
in the Doubly-Logarithmic

Approximation (DLA) (in order to be consistent with fixed-order evolution of
GPD) is given by the Blümlein-Collins-Ellis formula [hep-ph/9506403]

C(DL)
gg

(
ξ

x
,q2

T , µ2
F , µ2

R

)
=

α̂s

q2
T


J0

(
2

√
α̂s ln

(
x
ξ

)
ln

(
µ2

F
q2

T

))
if q2

T < µ2
F ,

I0

(
2

√
α̂s ln

(
x
ξ

)
ln

(
q2

T
µ2

F

))
if q2

T > µ2
F .

=⇒ resums terms scaling like
(
αs ln (x/ξ) ln(µ2

F /q2
T )
)n to all orders in

perturbation theory.

For the quark channel, the resummation factor is given in the DLA by:

Cgq

(
ξ

x
,q2

T , µ2
F , µ2

R

)
=

CF
CA

[
Cgg

(
ξ

x
,q2

T , µ2
F , µ2

R

)
− δ

(
1 − ξ

x

)
δ(q2

T )

]
.
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Backup

Implementation of high-energy resummation
Useful representation in Mellin space:

C(DL)
gg (N,q2

T , µ2
F , µ2

R) = R(γgg)
γgg

q2
T

(
q2

T
µ2

F

)γgg

.

γgg is the solution to the equation

α̂s

N
χ(γgg) = 1, χ(γ) = 2φ(1)− φ(γ)− φ(1 − γ), φ(γ) =

d ln Γ(γ)
dγ

γgg =
α̂s

N
+O

(
α̂4

s
N4

)
, R(γgg) = 1+O

(
α̂3

s

)

DLA =⇒ Drop terms in red: γgg → γN ≡ α̂s
N .

Mellin transform maps logarithms ln
(

x
ξ

)
to the poles at N = 0:

x
ξ
lnk−1

(
x
ξ

)
↔ (k − 1)!

Nk .
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Backup

Shuvaev transform

[0812.3558]

Hq(x , ξ) =
∫ 1

−1
dx ′

[
2
π

Im
∫ 1

0

ds
y(s)

√
1 − y(s)x ′

]
d

dx ′

(
q(x ′)
|x ′|

)
,

Hg(x , ξ) =
∫ 1

−1
dx ′

[
2
π

Im
∫ 1

0

ds(x + ξ(1 − 2s))
y(s)

√
1 − y(s)x ′

]
d

dx ′

(
g(x ′)
|x ′|

)
,

y(s) =
4s(1 − s)

x + ξ(1 − 2s)
.
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