Motivation	Renormalons	Methods	Results	Summary

Power corrections and renormalons in pseudo- and quasi-GPDs

V. M. BRAUN

University of Regensburg

based on: VB, Maria Koller, Jakob Schönleber 2401.08012

Motivation	Renormalons	Methods	Results	Summary
Generalized Parton E	Distribution (GPD)			

⇐ The Wilson line between the quarks is implied

Kinematic variables

$$P = \frac{1}{2}(p + p'), \qquad \Delta = (p' - p), \qquad \xi = \frac{(np) - (np')}{(np) + (np')}$$

Motivation	Renormalons	Methods	Results	Summary
quasi-GPDs and p	seudo-GPDs			

Euclidean quantities, connected to GPDs via collinear factorization

• Position space

$$\begin{split} \langle p' | \bar{q}(\frac{z}{2}v) \gamma^{\mu} q(-\frac{z}{2}v) | p \rangle &= 2(vP) \frac{v^{\mu}}{v^2} \mathcal{I}_{\parallel}(\tau,\xi,z^2) + 2\left(P^{\mu} - (vP) \frac{v^{\mu}}{v^2}\right) \mathcal{I}_{\perp}(\tau,\xi,z^2) \\ &+ \Delta_{\perp}^{\mu} \mathcal{J}(\tau,\xi,z^2) \end{split}$$

Factorization theorem

$$\mathcal{I}(\tau,\xi;z^2) = \int_0^1 \!\! du \, T_{\mathcal{I}}(u,\tau,\xi,z^2,\mu_F^2) \, I(u\tau,\xi,\mu_F^2) \ + \ \text{power corrections}$$

Pseudo-GPDs

$$\mathcal{P}(x,\xi;z^2) = \int_{-\infty}^{\infty} d au e^{-i au x} \mathcal{I}(au,\xi;z^2)$$

• Quasi-GPDs

$$\mathcal{Q}(x,\xi;v\cdot P) = \int_{-\infty}^{\infty} \frac{d\tau}{2\pi} e^{-i\tau x} \mathcal{I}(\tau,\xi;\frac{\tau^2}{(vP)^2})$$

Motivation	Renormalons	Methods	Results	Summary
GPDs from qGPDs				

C. Alexandrou et al., PRL125 (2020) 262001

• Power corrections ?

Motivation	Renormalons	Methods	Results	Summary
Concept				

M. Beneke, Phys.Rept. 317 (1999) M. Beneke, VB, hep-ph/0010208

 Leading twist calculation "knows" about the necessity to add a power correction through a factorial divergence of the series in MS-type schemes

Example: Deep Inelastic Scattering

$$F_{2}(x,Q^{2}) = 2x \int_{x}^{1} \frac{dy}{y} C(y,Q^{2}/\mu^{2})q(\frac{x}{y},\mu^{2}) + \frac{1}{Q^{2}}D_{2}(x)$$
$$D_{2}(x) = \varkappa \Lambda_{\text{QCD}}^{2} 2x \int_{x}^{1} \frac{dy}{y} d_{2}(x)q(\frac{x}{y}), \qquad \varkappa = \mathcal{O}(1)$$

One-loop result:

$$d_2^{(q)} = -\frac{4}{[1-x]_+} + 4 + 2x + 12x^2 - 9\delta(1-x) - \delta'(1-x)$$

Motivation	Renormalons	Methods	Results	Summary

Main conclusions:

- ratio twist-4/twist-2 is target-independent (if renormalon dominance correct)
- enhancement at $x \to 1$:

ſ	Λ^2	n
L	$\overline{Q^2(1-x)}$	

Example: CCFR data on $F_3(x, Q^2)$:

Shape predicted; normalization arbitrary

Motivation	Renormalons	Methods	Results	Summary
Renormalons in	n Quasi- and Pseudo-dis	tributions		

• Pion pseudo-LCDA:

VB, E. Gardi, S. Gottwald: NPB685 (2004) 171

• Pion pseudo- and quasi-PDFs:

VB, A. Vladimirov, J.-H. Zhang, PRD99 (2019) 014013

- Power corrections for qPDFs have a generic behavior

$$\mathcal{Q}(x,p) = q(x) \left\{ 1 + \mathcal{O}\left(\frac{\Lambda^2}{p^2} \cdot \frac{1}{x^2(1-x)}\right) \right\}$$

- Power corrections for pPDFs have a generic behavior

$$\mathcal{P}(x,z) = q(x) \left\{ 1 + \mathcal{O}\left(z^2 \Lambda^2 \left(1 - x\right)\right) \right\}$$

- Normalization to zero momentum in both cases strongly reduces power corrections apart from the $x \to 1$ region where they are enhanced by extra power of 1/(1-x).
- pseudo- and quasi-GPDs:

this work

Motivation	Renormalons	Methods	Results	Summary
Methods				

• Borel transform: a convenient way to handle a divergent series

$$H = \delta(1-\alpha) + \sum_{k=0}^{\infty} h_k a_s^{k+1} , \qquad a_s = \frac{\alpha_s(\mu)}{4\pi} , \qquad h_k \propto k!$$

$$B[H](w) = \sum_{k=0}^{\infty} \frac{h_k}{k!} \left(\frac{w}{\beta_0}\right)^k \qquad H = \delta(1-\alpha) + \frac{1}{\beta_0} \int_0^\infty dw \, e^{-w/(\beta_0 a_s)} B[H](w)$$

• Integration may be obscured by singularites on the integration path - renormalons

Motivation	Renormalons	Methods	Results	Summary
Methods (2)				

Bubble-chain approximation

't Hooft, '77

Borel-transform of the effective gluon propagator

M. Beneke, NPB 405 (1993) 424

$$B[a_s D^{AB}(k)](w) = i\delta^{AB} \left(e^{5/3}\mu^2\right)^w \frac{g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}}{(-k^2 - i\epsilon)^{1+w}} \,.$$

• "Gluon mass" technique P. Ball, VB, M. Beneke, NPB 452 (1995) 563

$$\frac{1}{k^2 - \lambda^2} = \frac{1}{2\pi i} \frac{1}{k^2} \int_{-\frac{1}{2} - i\infty}^{-\frac{1}{2} + i\infty} dw \, \Gamma(-w) \Gamma(1+w) \left(-\frac{\lambda^2}{k^2}\right)^w$$

Motivation	Renormalons	Methods	Results	Summary

• Borel transform of the position-space quasi-distribution

$$\begin{split} B[\mathcal{I}(\tau,\xi,z^2)](w) &= 2C_F e^{5/3w} \left(\frac{-z^2 v^2 \mu^2}{4} + i0\right)^w \frac{\Gamma(-w)}{\Gamma(w+1)} \\ &\times \left\{\frac{2}{1+w} \int_0^1 d\alpha \,\alpha^{1+w} {}_2F_1(1,2-w,2+w,\alpha) \left[\cos(\bar{\alpha}\xi\tau)I(\alpha\tau,\xi;\mu) - I(\tau,\xi;\mu)\right] \\ &- \frac{1}{1+w}I(\tau,\xi;\mu) - \underbrace{\frac{1}{1-2w}I(\tau,\xi;\mu)}_{1-2w} + \left[1\mp w\right] \int_0^1 d\alpha \,\alpha^w \frac{\sin(\bar{\alpha}\xi\tau)}{\tau\xi}I(\alpha\tau,\xi;\mu) \right\}, \end{split}$$

• removed e.g. via normalization at zero momentum:

$$\widehat{\mathcal{I}}(\tau,\xi,z^2) \sim \frac{\langle p' | \bar{q}(\frac{z}{2}v)\gamma^{\mu}q(-\frac{z}{2}v) | p \rangle}{\langle 0 | \bar{q}(\frac{z}{2}v)\gamma^{\mu}q(-\frac{z}{2}v) | 0 \rangle}$$

Motivation	Renormalons	Methods	Results	Summary
Results(1): Th	e leading $w = 1$ renorma	alon ambiguity in pseu	udo-GPDs	

$$\begin{split} \mathcal{P}(x,\xi,z^2) &= H(x,\xi) \pm \mathcal{N}\left(\Lambda^2 z^2 |v^2|\right) \delta_R \mathcal{P}(x,\xi) \,, \\ 2\delta_R \mathcal{P}^{\parallel}(x,\xi) &= \theta(x > \xi) \left[\int_x^1 dy \frac{H(y,\xi)}{y-\xi} \Phi\left(\frac{x-\xi}{y-\xi}\right) + \int_x^1 dy \frac{H(y,\xi)}{y+\xi} \Phi\left(\frac{x+\xi}{y+\xi}\right) \right] \\ &\quad + \theta(-\xi < x < \xi) \left[-\int_{-1}^x dy \frac{H(y,\xi)}{y-\xi} \Phi\left(\frac{x-\xi}{y-\xi}\right) + \int_x^1 dy \frac{H(y,\xi)}{y+\xi} \Phi\left(\frac{x+\xi}{y+\xi}\right) \right] \\ &\quad + \theta(x < -\xi) \left[-\int_{-1}^x dy \frac{H(y,\xi)}{y-\xi} \Phi\left(\frac{x-\xi}{y-\xi}\right) - \int_{-1}^x dy \frac{H(y,\xi)}{y+\xi} \Phi\left(\frac{x+\xi}{y+\xi}\right) \right] \\ 2\delta_R \mathcal{P}^{\perp}(x,\xi) &= 2\delta_R \mathcal{P}^{\parallel}(x,\xi) + \dots \end{split}$$

$$\Phi(\alpha) = \alpha + (1 - \alpha)\ln(1 - \alpha)$$

Motivation	Renormalons	Methods	Results	Summary

Results(2): The leading w = 1 renormalon ambiguity in quasi-GPDs

$$\begin{split} \mathcal{Q}(x,\xi,(vP)) &= H(x,\xi) \pm \mathcal{N}\left(\frac{\Lambda^2 |v^2|}{(vP)^2}\right) \delta_R \mathcal{Q}(x,\xi) \\ &2\delta_R \mathcal{Q}^{\parallel}(x,\xi) = \left(1 - \frac{\pi^2}{6}\right) \delta(x-\xi) [H'(\xi+\epsilon,\xi) - H'(\xi-\epsilon,\xi)] \\ &+ \theta(x > \xi) \left[\frac{H'(x,\xi)}{x-\xi} + \frac{1}{(x-\xi)^2} \int_x^1 dy \left[\frac{x-\xi}{y-\xi} + \ln\left(1 - \frac{x-\xi}{y-\xi}\right)\right] H'(y,\xi)\right] \\ &+ \theta(x < \xi) \left[\frac{H'(x,\xi)}{x-\xi} - \frac{1}{(x-\xi)^2} \int_{-1}^x dy \left[\frac{x-\xi}{y-\xi} + \ln\left(1 - \frac{x-\xi}{y-\xi}\right)\right] H'(y,\xi)\right] \\ &+ \left(1 - \frac{\pi^2}{6}\right) \delta(x+\xi) [H'(-\xi+\epsilon,\xi) - H'(-\xi-\epsilon,\xi)] \\ &+ \theta(x > -\xi) \left[\frac{H'(x,\xi)}{x+\xi} + \frac{1}{(x+\xi)^2} \int_x^1 dy \left[\frac{x+\xi}{y+\xi} + \ln\left(1 - \frac{x+\xi}{y+\xi}\right)\right] H'(y,\xi)\right] \\ &+ \theta(x < -\xi) \left[\frac{H'(x,\xi)}{x+\xi} - \frac{1}{(x+\xi)^2} \int_{-1}^x dy \left[\frac{x+\xi}{y+\xi} + \ln\left(1 - \frac{x+\xi}{y+\xi}\right)\right] H'(y,\xi)\right] \end{split}$$

Motivation	Renormalons	Methods	Results	Summary
GPD model				

• Toy model:

$$H(x,\xi) = \theta(x > -\xi) \frac{2+\lambda}{4\xi^3} \left(\frac{x+\xi}{1+\xi}\right)^{\lambda} \left[\xi^2 - x + \lambda\xi(1-x)\right] \\ -\theta(x > \xi) \frac{2+\lambda}{4\xi^3} \left(\frac{x-\xi}{1-\xi}\right)^{\lambda} \left[\xi^2 - x - \lambda\xi(1-x)\right],$$

with $\lambda=3/2$ corresponding to the valence quark PDF $q(x)\sim (1-x)^3/\sqrt{x}$

Motivation	Renormalons	Methods	Results	Summary
D	h i i h			
Renormation am	ngijitv			

• position space ($\xi = 0.3$, $z \sim 1$ fm)

• pseudo-GPD ($\xi = 0.3, z \sim 1 \text{ fm}$)

Motivation	Renormalons	Methods	Results	Summary

Renormalon ambiguity

• quasi-GPD ($\xi = 0.3$)

- $\delta_R Q(x,\xi)/Q(x,\xi)$ in the end-point regions:
 - ERBL: $\ln(\xi x)$ for $x \to \xi$ $1/(x + \xi)^2$ for $x \to -\xi$

DGLAP:
$$1/\sqrt{x-\xi}$$
 for $x \to \xi$
 $1/(1-x)$ for $x \to 1$

Motivation	Renormalons	Methods	Results	Summary
The $x = \xi$ kinen	natic point in the quas	-GPD approach		

• Observe a series of singular terms

$$\ldots + \frac{1}{(vP)^2}\delta(x-\xi)\Delta H'(\xi,\xi) + \frac{1}{(vP)^4}\delta'(x-\xi)\Delta H''(\xi,\xi) + \ldots$$

• Change the order of limits:

first expand in $1/(vP)^k$, then send $x \to \xi \qquad \Rightarrow \qquad$ first set $x = \xi$, then expand in $1/(vP)^k$

• Result: New singularities (violet) at w = 1/2 and w = 1 - p/2 (for $q(x) \sim x^{-p}$)

 \Rightarrow Power corrections $1/(vP)^1$, $1/(vP)^{2-p}$ (at $x = \xi$)

• Coefficient of $1/(vP)^1$ is proportional to $H'(\xi+\epsilon,\xi) - H'(\xi-\epsilon,\xi)$

Motivation	Renormalons	Methods	Results	Summary
Intepretation				

- The $1/(Pv)^2$ power correction (= renormalon ambiguity) to a qGPD is a distribution:
 - contains a term $\delta(x-\xi)$ contains a contribution $\sim 1/\sqrt{x-\xi}$ from the DGLAP region
- Consider a qPDF smeared over a narrow interval $x-\xi\sim\Lambda/P$

$$\widetilde{\mathcal{Q}}(x,\xi) = \int dx' \,\Theta(x'-x)\mathcal{Q}(x',\xi) \qquad \qquad \int dx \,\Theta(x) = 1$$

E.g. Gaussian smearing

$$\Theta(x) = \frac{1}{\sqrt{\pi}} \frac{(Pv)}{\Lambda} \exp\left(-(Pv)^2 x^2 / \Lambda^2\right)$$

- If this smearing is applied:
 - the term with a $\delta\text{-function}$ gets promoted to a 1/(vP) correction
 - the term $\sim 1/\sqrt{x-\xi}$ (for our GPD model) produces a $1/(Pv)^{3/2}$ contribution
 - \leftarrow as found by the direct calculation at $x=\xi$

Motivation	Renormalons	Methods	Results	Summary
Cusp at $x = \xi$ from p	osition space viewpoint			

Assume that $H(x,\xi)$ is continuous and vanishes sufficiently fast at the end points, but has a cusp at $x=\xi$

$$\begin{split} f(\tau,\xi) &= -\frac{1}{\tau^2} \int_{-\xi}^{1} dx \, H(x,\xi) \frac{d^2}{dx^2} e^{i\tau x} \\ &= \frac{1}{\tau^2} \Big[H'(\xi - \epsilon, \xi) - H'(\xi + \epsilon, \xi) \Big] e^{i\tau \xi} \\ &- \frac{1}{\tau^2} \bigg(\int_{-\xi}^{\xi - \epsilon} + \int_{\xi + \epsilon}^{1} \bigg) dx \, e^{i\tau x} H''(x,\xi) \end{split}$$

The remaining integral is finite and decreases at $\tau \to \infty$ provided $H''(x, \tau)$ does not have a strong singularity $1/(x-\xi)^p$ with $p \ge 1$

- Cusp at $x = \xi$ gives rize to an oscillating $1/\tau^2 e^{i\tau\xi}$ tail at large loffe times
 - Not a problem for pGPDs
 - Nonperturbative corrections for qGPDs at $x = \xi$ come from large τ

Motivation	Renormalons	Methods	Results	Summary
Summary				

Renormalons allow one to study functional dependence of power corrections in specific kinematic limits

- Normalization at zero momentum leads to a strong reduction of power corrections apart from the $x \to 1$ limit, both for pGPDs and qGPDs
- Nonperturbative corrections to (normalized) pseudo-GPDs for $x \to \xi$ are expected to be small
- Nonperturbative corrections to quasi-GPDs remain finite for x → ξ, with the power changing from 1/(Pv)² at x ξ = O(1) to 1/(Pv) at x ξ ≤ O(Λ/(Pv))
- Finite- $t/(vP)^2$ corrections can be significant and have to be taken into account

