

Analysis methods & tools at KATRIN

Weiran Xu for the KATRIN collaboration

Massachusetts Institute of Technology

NuMass workshop, Feb. 29, 2024

3

イロト 不得下 イヨト イヨト

- KATRIN analysis overview
- KATRIN analysis challenges and solutions
- Introduction to KATRIN analysis methods

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The KATRIN beamline

Pixel-wise field configuration and detector response For details, see Volker's talk, Monday 14:20

э

The KATRIN spectrum

Beta scans:

- Subruns: $10{\sim}1000$ seconds of data collected at fixed high voltage
 - Pixel-wise event rates corrected by detector efficiency
- Runs: combination of scans over all high voltage set points (\sim 3 hours)
 - Scan direction: up, down, random
- Beta scans form measurement campaigns: collection of runs with the same measurement configuration, several months
 - Five campaigns for the upcoming data release, with different field strengths, tritium column density and measurement time distribution
 - Golden runs selected with monitored slow control data

Calibration and monitoring scans:

- Electron gun measurement of column density and energy loss
- Krypton calibration of source and field

イロト 不得下 イヨト イヨト 二日

KATRIN systematics from calibration

See Joscha's talk, Monday 15:00 and Benedikt's talk, Friday 10:45

Stacking of KATRIN beta scan data

- ~1000 runs × 147 pixels, need a reduction of data size and number of fitting parameters
- Stack pixel-wise data at the same high voltage set point
- Combine detector pixels with similar transmission conditions into patches
- Negligible systematic contribution

The shifted analyzing plane configuration

- A shifted analyzing plane configuration has been adopted since April 2020, leading to a higher radial inhomogeneity in the magnetic fields
- Uniform pixel combination no longer valid; instead use 14 "patches" for each campaign \rightarrow model evaluation complicated

- Computation time increases more than linearly with respect to number of patches
 - 14 times more data points for each likelihood evaluation
 - 14 times more free fitting parameters A_{sig} , A_{bkg} and E_0
 - Slower convergency
- Two independent solutions
 - The KaFit team: highly optimized, direct model evaluation with block caching
 - The Netrium team: fast model prediction with a neural network

イロト 不得 トイラト イラト 二日

- Block caching of detector response function and tritium decay spectrum
- Convolution of multiple scattering energy loss in Fourier space
- Shared dependent models among detector pixels
- Numerical Gauss-Legendre integration
- Fitting time reduced by a factor of $\sim 10k$ for one campaign, O(100) CPU hours for combined analysis using O(10) cores

イロト 不得 トイラト イラト 二日

Model prediction with neural network

- Network training with O(10⁶) Monte Carlo spectra
 - ${\sim}100k$ CPU hours in network preparation
- Fast analytical model prediction in given parameter range
 - O(10) CPU hours in fitting
- Regenerate neural networks for new parameter ranges

See Eur. Phys. J. C 82, 439 (2022) for more details

Introduction to KATRIN analysis: blinding

- Blind neutrino mass from analysis
 - Artificial final state distributions generated to randomly shift neutrino mass in its uncertainty range
- Comparison between fitting teams with Monte Carlo data
 - Investigation on systematic effects
 - Upon agreement between teams, freeze all inputs to the model
- Run-wise fit on real data with $m_{\nu} = 0$ fixed
 - Check endpoint, signal and background stability
- Unblind neutrino mass with real data
 - Data analysis with artificial final state distributions
 - Upon agreement between teams, freeze all analysis methods and use true final state distributions for final results

イロト 不得 トイヨト イヨト 二日

The frequentist approach

• Likelihood function:

$$-2\log \mathcal{L}_{nap} = \sum_{i} \frac{(R^{calc}(qU_i) - R^{meas}(qU_i))^2}{\sigma_R^2},$$

$$\begin{split} -2\log\mathcal{L}_{\mathsf{sap}} &= \sum_{i,k} 2\left(\mathsf{R}_k^{\mathsf{calc}}(qU_i) \cdot t_i - \mathsf{N}_{i,k} \right. \\ &+ \mathsf{N}_{i,k} \cdot \mathsf{ln} \; \frac{\mathsf{N}_{i,k}}{\mathsf{R}_k^{\mathsf{calc}}(qU_i) \cdot t_i} \right), \end{split}$$

$$-2\log \mathcal{L}_{\text{sys}} = (\vec{\eta} - \vec{\eta}_{\text{ext}})^T \cdot \Theta_{\text{cov}}^{-1} \cdot (\vec{\eta} - \vec{\eta}_{\text{ext}}).$$

- Patch-wise model k for SAP
- Normal distribution for NAP
- Model extension for negative m_{ν}^2
- For beyond standard neutrino interaction searches, see Shailaja's talk, Thursday 11:25

< ロト < 同ト < ヨト < ヨト

Confidence belt: Lokhov-Tkachov construction

Estimator: max($\hat{m}_{\nu}^{2}, 0$). See Phys. Part. Nucl. 46, 347-365 (2015)

The Bayesian approach

• The Bayes' theorem:

$$\pi(heta_j|y) \propto \int_{ heta_1} \int_{ heta_2} ... \int_{ heta_{j-1}} \int_{ heta_{j+1}} ... \int_{ heta_n} \pi(y|ec{ heta}\,) \, \pi(heta_j) \cdot \prod_{i
eq j}^n \pi(heta_i) d heta_i$$

- Physical, non-negative priors on neutrino mass
- Markov Chain Monte Carlo method for multi-dimensional integration
 - Efficiency critical in parameter space of Dim. \sim 400
 - KaFit: Affine-invariant stretch move and parallel sampling (emcee) Require likelihood function evaluation
 - Netrium: Hamiltonian move with Netrium using **BAT** Require first derivatives of the likelihood function

イロト 不得下 イヨト イヨト

- Frequentist:
 - Fitted neutrino mass trend with different energy ranges
 - Split data set by scan direction and detector patches
 - Best-fit evolution w.r.t systematic contributions
- Bayesian:
 - Convergency criteria
 - Sampling error

Summary

- Software optimizations and neural network approach solve the KATRIN analysis challenge
- Frequentist results with blind analysis coming out soon
- Bayesian analysis in good path

Thanks for your attention!

Backup: Non-poissonian background overdispersion

- KeV electrons from ²¹⁹Rn decay trapped in main spectrometer
- Trapped electrons scatter off residual gas and produce correlated secondaries
- Described by a combination of Poisson and normal distribution, characterized by their ratio
- No longer observed in the asymmetric SAP setup

ヘロト ヘ回ト ヘヨト ヘヨト

Backup: prior dependency in Bayesian analysis

- Posterior weakly constrained by data with a strong prior
 - $-\sum_i m_i < 0.12 \,\mathrm{eV}$ from cosmology
- Weakly informative priors

 Gaussian prior from Mainz and Troitsk results
- Uninformative priors
 - Flat in m_{ν}^2
 - Flat positive in m_{ν}^2
 - Flat positive in $m_{
 u}$
- Least informative prior
 - Constructed to maximize constraint from data

- Flat positive prior in m_{ν}^2 suggested
 - Mode converging to the frequentist best-fit
 - No unphysical model extension
 - Equivalent to truncated flat prior in m_{ν}^2 after chain convergence

Posterior distribution with various priors