

Search for a light sterile neutrino with the KATRIN experiment

NuMass 2024 Workshop, Genova

Shailaja Mohanty (shailaja.mohanty@kit.edu) for the KATRIN collaboration Institute for Astroparticle Physics | February 29, 2024

www.kit.edu

Non-standard or Sterile Neutrino

Sterile neutrino = SM neutral singlet fermion

 Existence could be revealed through effects of mass and mixing with active neutrinos (neutrino oscillations, β- decay, 0νββ-decay)

Non-standard or Sterile Neutrino

Sterile neutrino = SM neutral singlet fermion

- Existence could be revealed through effects of mass and mixing with active neutrinos (neutrino oscillations, β- decay, 0νββ-decay)
- Theoretical motivation:

- Singlet fermions naturally appear in the dark sector
- Members of dark sector could mix with active neutrinos via neutrino portal coupling
- Sterile neutrinos can live at any mass scales: GeV, keV,

Non-standard or Sterile Neutrino

Sterile neutrino = SM neutral singlet fermion

- Existence could be revealed through effects of mass and mixing with active neutrinos (neutrino oscillations, β- decay, 0νββ-decay)
- Theoretical motivation:

eV

DM e	exists	\Longrightarrow	uncharged	particles	under	SM	gauge	group
\implies	single	et fern	nions					

- Singlet fermions naturally appear in the dark sector
- Members of dark sector could mix with active neutrinos via neutrino portal coupling
- Sterile neutrinos can live at any mass scales: GeV, keV,

- Experimental hints for eV scale :
 - Appearance LSND (3 σ) and MiniBooNE (4.8 σ) excess observations Explained by ($\nu_{\mu} \rightarrow \nu_{s} \rightarrow \nu_{e}$)
 - Disappearance SAGE and GALLEX: Gallium anomaly (2.9 σ deficit) Explained by $\nu_e \rightarrow \nu_s$
 - The Gallium anomaly reaffirmed by BEST experiment

Interpretation

- SBL anomalies could be explained by an additional neutrino flavor (v_s)
- There must be at least one additional mass squared difference, $3\nu + 1$ framework $\Delta m_{SBI}^2 \approx (1-2) \text{ eV}^2$
- Allowed by solar, atmospheric and long baseline experiments, achieved with $|U_{e4}|^2 \ll 1$

Differential decay rate:

Single β -decay

$$R_{\beta}(E, m_{\nu}^{2}, m_{4}^{2}, |U_{e4}|^{2})$$

$$= \underbrace{(1 - |U_{e4}|^{2}) \cdot R_{\beta}(E, m_{\nu}^{2})}_{\text{Active branch}} + \underbrace{|U_{e4}|^{2} \cdot R_{\beta}(E, m_{4}^{2})}_{\text{Sterile branch}}$$

$$= \cos^{2} \theta \cdot R_{\beta}(E, m_{\nu}^{2}) + \sin^{2} \theta \cdot R_{\beta}(E, m_{4}^{2})$$
• A kink at $E_{0} - m_{4}$

$$m_{\nu}^{2} = \sum_{k=1}^{3} |U_{ek}|^{2} m_{k}^{2} \xrightarrow{3+1} \sum_{k=1}^{3}$$

$$m_{\nu}^{2} = \sum_{k=1}^{3} |U_{ek}|^{2} m_{k}^{2} \xrightarrow{3+1} \sum_{k=1}^{3}$$

$$m_{\mu}^{2} = 0.6$$

$$m_{4}^{2} = 0.4$$

0

2

 $|U_{ek}|^2$

Talk by V. Hannen

KATRIN Experiment

- Kinematics-based neutrino mass experiment (expected sensitivity: 0.3 eV (90% CL) after 1000 days of measurement time)
- Current result: m_β< 0.8 eV (90%) CL, (Nature Phys. 18 (2022) 2, 160-166)</p>

Sterile Signal in β -decay Spectrum

Measured integral spectrum N_{exp}(qU) is fitted to the model N_{model}(qU, Θ):

$$N_{ ext{model}}(qU,\Theta) = A \cdot \int R_{eta}(E,\Theta) \cdot f(E,qU) + Bg$$

- 6 model parameters:
 - A Signal amplitude
 - E₀ effective endpoint energy
 - m² effective mass of electron anti-neutrino
 - Bg Background rate
 - m₄² sterile neutrino mass
 - $|U_{e4}|^2$ sterile neutrino mixing

Dataset and Analysis Strategy

- Data selection and combination, active neutrino model configuration are the same as for the active neutrino mass analysis. Talk by W. Xu
- Unblinding procedure^a
 - Code validation on Monte Carlo twins
 - Tritium spectrum, model, systematics treatment and budget (pull term approach) same as active neutrino mass analysis
 - Two independent analysis teams with independent codes:
 - KaFit (exact model evaluation)
 - Netrium (use neural nets for swift model interpolation)

^aM. Aker et al. "Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign". In: *Phys. Rev. D* 105 (7 2022), p. 072004. DOI: 10.1103/PhysRevD.105.072004.

Analysis method

- Extend Tritium β- spectrum model to 3+1 framework
- Grid Scan: 50 \times 50 $\left[\log(|U_{e4}|^2), \log(m_4^2)\right]$ plane
- Contours are drawn at $\Delta \chi^2 = \chi^2 \chi^2_{BF}$ = 5.99 (95% CL, 2 dof)
- Energy range: [*E*₀ − 40, *E*₀ + 135] eV
- Sensitive to $m_4^2 \leq$ 1600 eV² and $|U_{e4}|^2 \leq$ 0.5
- Two complementing analyses
 - Case-I Fixed neutrino mass: m_{ν}^2 = 0 ($m_{1,2,3} \ll m_4$)
 - Case-II Free neutrino mass: m²_ν as nuisance parameter

Data collection status

Table: KATRIN Neutrino Mass Measurements (KNM)

Campaign	Time (hrs)	$ ho { m d} \sigma$ (m $^{-2}$)	Bg (mcps)	
KNM1	522	$1.11 imes 10^{21}$	370	
KNM2	294	$4.23 imes10^{21}$	278	
KNM3a	220	$2.08 imes 10^{21}$	137	
KNM3b	224	$3.75 imes10^{21}$	258	
KNM4	1267	$3.77 imes10^{21}$	150	
KNM5	1232	$3.78 imes10^{21}$	160	

KNM1, KNM2, KNM3b operated in Nominal Analyzing Plane (NAP) mode

Results from First Two Science Runs

• 5.24 \times 10⁶ electrons for 40 eV below E₀, 10^{3} 1265 hours of data Best fit: $-m_4^2 = 59.9 \text{ eV}^2$, $|U_{e4}|^2 = 0.011$, 10^{2} m_{4}^{2} (eV²) $m_{\nu}^2 = 0.0 \text{ eV}^2$ $-\Delta\chi^2_{null}=0.66$ Active neutrino mass set free $m_{\nu}^2 = 0 \text{ eV}^2$ $m_{\nu}^2 \text{ free}$KNM1KNM1 Best fit: $- m_4^2 = 87.4 \text{ eV}^2, |U_{e4}|^2 = 0.019,$ ---KNM2 ---KNM2 $m_{\nu}^2 = 0.57 \text{ eV}^2$ -KNM1+2 --- KNM1+2 $-\Delta \chi^2_{null} = 1.69$ Signal-to-background ratio of up to 235 10^{-2} $|U_{\mathcal{A}}|^2$

 10^{-1}

Data collection status

- Significant experimental development: Shifted Analyzing Plane (SAP) background reduction method Lokhov et al., EPJ C 82 (2022) 3, 258
- KNM1 to KNM5: 20 % of expected KATRIN data

Sensitivity Results From Five Science Runs

- **Case-I**: m_{ν}^2 = 0 eV²
- 40 eV fit range, $|U_{e4}|^2 \in [0, 0.5]$
- Stat. only + all systematics 95% CL
- Gain in overall sensitivity with increased statistics
 S. Mohanty, PoS EPS- HEP2023 (2024)

Campaign	KNM1	KNM2	KNM3a	KNM3b	KNM4	KNM5	KNM1-5
No. of signal electrons ($\times 10^6$)	2.0	4.3	1.1	1.4	10.2	16.8	35.8

Impact of Systematics

Calculating 68% CL uncertainty on
$$|U_{e4}|^2$$
: $\sigma_{syst} = \sqrt{\sigma_{Stat+Syst}^2 - \sigma_{Stat}^2}$

- Statistically dominated uncertainties
- Largest systematic contribution: Penning Bg (low m²₄), Column Density (high m²₄)

Sensitivity comparison to other experimental results

Translation of parameters:

 $\sin^2(2\theta) = 4|U_{e4}|^2(1-|U_{e4}|^2)$

- Large Δm²₄₁ solutions of RAA and BEST+GA anomalies excluded
- Current KATRIN data extends exclusion bounds from SBL oscillation experiments for $\Delta m_{41}^2 \ge 10 \text{ eV}^2$
- Probing large parameter space for light sterile neutrino anomalies
- Expected KNM1-5 sensitivity yields improved constraints in the sterile parameter space

Impact of active neutrino on sterile neutrino search

Possible treatments for m_{ν}^2 : Extension of Case-II

• Free m_{ν}^2

Correlation between m_4^2 and m_{ν}^2 .

Pull term using **0**±**1** eV²

Intermediate sensitivity between two extremes (fixed and free)

■ m²₄ > m²_ν ≥ 0: Limit m²_ν by mass of right-handed neutrino

Reasonable option of optimizing sensitivity in addition to free m_{ν}^2 case

- New physics beyond the SM can include sterile neutrinos at all mass scales
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis
- Results from first two science runs (KNM1 + KNM2):
 - No significant sterile-neutrino signal observed
 - Improved exclusion limits w.r.t. complementary experiments

- New physics beyond the SM can include sterile neutrinos at all mass scales
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis
- Results from first two science runs (KNM1 + KNM2):
 - No significant sterile-neutrino signal observed
 - Improved exclusion limits w.r.t. complementary experiments
- Sensitivity projection for five science runs (KNM1...5):
 - Increased dataset boosts sensitivity, potential to probe large parameter space of SBL anomalies and complementary to oscillation experiments
 - Sensitivity dominated by statistical uncertainties

- New physics beyond the SM can include sterile neutrinos at all mass scales
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis
- Results from first two science runs (KNM1 + KNM2):
 - No significant sterile-neutrino signal observed
 - Improved exclusion limits w.r.t. complementary experiments
- Sensitivity projection for five science runs (KNM1...5):
 - Increased dataset boosts sensitivity, potential to probe large parameter space of SBL anomalies and complementary to oscillation experiments
 - Sensitivity dominated by statistical uncertainties
- $m_{\nu}^2 = 0 \text{ eV}^2$ gives better constraints than m_{ν}^2 set free.
- $-\,$ Reasonable option for optimized sensitivity $m_4^2 > m_\nu^2 \ge 0\,$

- New physics beyond the SM can include sterile neutrinos at all mass scales
- KATRIN uniquely addresses SBL anomalies via spectral shape analysis
- Results from first two science runs (KNM1 + KNM2):
 - No significant sterile-neutrino signal observed
 - Improved exclusion limits w.r.t. complementary experiments
- Sensitivity projection for five science runs (KNM1...5):
 - Increased dataset boosts sensitivity, potential to probe large parameter space of SBL anomalies and complementary to oscillation experiments
 - Sensitivity dominated by statistical uncertainties
- $-m_{\nu}^2 = 0 \text{ eV}^2$ gives better constraints than m_{ν}^2 set free.
- $-\,$ Reasonable option for optimized sensitivity $m_4^2 > m_\nu^2 \ge 0\,$

Outlook:

- Analysis on data for first five science runs ongoing
- Stay tuned for upcoming release!

Backups

Institute for Astroparticle Physics

Experimental hints

- Appearance LSND (3σ) and MiniBooNE (4.8σ) excess observations. Explained by (ν_μ → ν_s → ν_e)
- Disappearance SAGE and GALLEX: Gallium anomaly (2.9 σ deficit). Explained by $\nu_e \rightarrow \nu_s$
- The Gallium anomaly reaffirmed by BEST experiment

Measurement time distribution - Standard vs Flat

Institute for Astroparticle Physics

Raster scan on different measured time distributions

Institute for Astroparticle Physics

Karlsruher Institut für Technologie

Monte Carlo breakdown

KNM4 systematic breakdown – Monte Carlo

Active neutrino correlation with sterile neutrino

FIG. 4. The correlation between active and sterile neutrino mass is approximately a linear slope $m_b^2 = \alpha_{\rm slope} \cdot m_A^2 + {\rm const}$ for various values of m_a^2 and $|\mathcal{L}_{cd}|^2$ by analyzing simulated spectra. The gradient indicates the magnitude of $\alpha_{\rm slope}$. For small mixing $|\mathcal{L}_{cd}|^2 < 0.01$, we observe small slope values $|\alpha_{\rm slope}| < 0.01$. For larger mixing, we find a strong negative correlation for larger $m_A^2 \lesssim 30 \ {\rm eV}^2$ and a weaker positive correlation for larger $m_A^2 \lesssim 30 \ {\rm eV}^2$

Institute for Astroparticle Physics

$m_{ u}^2 = 0 \; {f vs} \; m_4^2 > m_{ u}^2 \ge 0$

Institute for Astroparticle Physics

Impact of Measured Time Distribution

Objective: To investigate spikes in the raster contours.

Schematic overview of KaFit

- C++ based fitting framework used to analyse measured KATRIN data and simulated data
- Applicable for Frequentist (based on MINUIT class of ROOT) and Bayesian analysis
- Minimisation is performed with MINUIT by minimising the -2log(L)

Testing applicability of Wilks' Theorem

Previously done

- Generate O(10³) twins with statistical fluctuations for particular choice of MC truth
- Perform fitting for sterile parameter values on a grid and for MC truth for each sample (m²_ν = 0)
- Evaluate $\Delta \chi^2 = \chi^2_{\rm MC \ truth} \chi^2_{\rm best \ fit}$ for each sample
- Compare distribution of $\Delta \chi^2$ values to χ^2 -distribution with 2 dof

Taken from H.9 of Schlüter, L. (2022). Neutrino-Mass Analysis with subeV Sensitivity and Search for Light Sterile Neutrinos with the KATRIN Experiment. PhD Thesis, TU München, Garching bei München.