

¹⁶³Ho-implanted TES for a calorimetric m, measurement

Luca Origo on behalf of the **HOLMES** collaboration

_____ V

-HOLMES introduction

¹⁶³Ho + e⁻ \rightarrow ¹⁶³Dy^(*) + v

endpoint statistics

 Q-value ~2.8 keV
 M1 peak ~2 keV

 few nuclei needed

 t_{1/2} ~ 4570 yr

Luca Origo for

m, calorimetric measurement
 o purely kinematic assessment
 o embedded source

 \rightarrow direct approach \rightarrow systematics avoided — NuMass - Genova 2024 —

Outline

У

I. TES for the HOLMES experiment

.

II. TES fabrication

III. TES characterization

What's next?

 $\Delta E \rightarrow \Delta T_{abs} \rightarrow \Delta R_{TES} \rightarrow \dots$

I. TES for HOLMES microcalorimeters

Mo/Cu superconducting film linked to an Au absorber, very sensitive thermometers (low T variation \rightarrow high R jumps)

many reasons:

Luca Origo for

- state of the art performances
 - time, energy resolutions
- tunable devices
- suitable for multiplexing

- I. TES for HOLMES readout scheme

$$... \rightarrow \Delta I_{\text{TES}} \rightarrow \Delta L_{\text{SQUID}} \rightarrow \Delta f_{\text{res}} \rightarrow \Delta \phi$$

multiple TESs **readout** with a unique feedline (N depends on the HEMT amplifier bandwidth)

• rf-SQUIDs

Luca Origo for

- microwave resonators
- ramp (flux modulation)

Luca Origo for 📙

TESs without Ho (old characterization):

- ΔE_{FWHM} ~ 4eV (@6keV)
- τ_R ~ 20 μs
 - electrical parameters of the TES circuit
- τ_D ~ 300 μs
 - thermal parameters of the TES circuit
- Δt ~ 1.5 µs

Luca Origo fo

unresolved pile-up fraction of events

... how do they change after ¹⁶³Ho implantation?

— NuMass - Genova 2024 —

У

I. TES for the HOLMES experiment

.

II. TES fabrication

III. TES characterization

What's next?

Luca Origo for 📙 💽

— II. TES fabrication ¹⁶³Ho implantation

¹⁶³Ho ion-implantation @ Genova lab

- Ar plasma sputters the source target
- mass selector bending magnet
- FC read the selected current

sintered target Mo + Ho(NO₂)₂

Luca Origo for

TESs location for implantation

Faraday cup

dipole magnet

sputter ion source

— II. TES fabrication ¹⁶³Ho implantation

¹⁶³Ho ion-implantation @ Genova lab
Ar plasma sputters the source target
mass selector bending magnet
FC read the selected current

sintered target Mo + Ho(NO,),

araday cup

"The HOLMES low activity implantation" by Giovanni Gallucci

(second talk in the afternoon)

for implantation

sputter ion source

lipole magnet

Luca Origo for **H LMES**

still to be i

— II. TES fabrication finalization

— II. TES fabrication detector holder -

Luca Origo for HOL

— II. TES fabrication experimental setup

Luca Origo for

2 x 32 TESs readout:
x1 RF line
x1 HEMT

"bottom"

- x2 FPGAs

"top"

- DAC/ADC
- x2 IQ mixers
 - ↑/↓ conv.
- x2 LO generators

— NuMass - Genova 2024 —

Outline

У

I. TES for the HOLMES experiment

.

II. TES fabrication

III. TES characterization

What's next?

- III. TES charcaterization 2024 measurements

1st run

2nd run

Luca Origo for

spectral features calibration (with external sources)

measurement w/ 64 pixels without fluorescence source

- implanted ¹⁶³Ho activity
- TES performances (τ_D , τ_R and ΔE_{FWHM})
- estimation of G
- estimation of C_{Ho}

- III. TES charcaterization implanted activity

- 12 pixels not measured
- <A_{Ho}> ≅ 0.3 Bq
- A_{tot}≅16 Bq

Luca Origo for

• studying different implanted activities

- III. TES charcaterization signal decay times

non-uniform distribution

<τ_R> ~ 20 μs

sampling

= 4 µs

- <τ_D> ~ 700 μs (two times longer)
- combination of effects:

Luca Origo for

- \bigcirc **G** \leftarrow substrate etching procedure
- \sim C \leftarrow implanted activity of Ho

t_{window} ≅ 4 ms

(250 kHz ramp)

$$P(T_{bath}) = \frac{G}{n T_c^{n-1}} (T_c^n - T_{bath}^n)$$

- III. TES charcaterization thermal conductance

Luca Origo for

TES response at fixed $\rm R_{TES}$ (and therefore the P flowing through the bath) depends on $\rm T_{bath}$

<g> ≅ 200 pW/K</g>	σ _G ≅ 30 pW/K
<t<sub>c> ≅ 94 mK</t<sub>	σ _⊤ ≅ 0.8 mK

— NuMass - Genova 2024 —

I. TES for the HOLMES experiment II. TES fabrication III. TES characterization

What's next?

Luca Origo for

NOW!

Data collection is ongoing: first results with increased statistics will be soon available establishing the first m_v upper limit assessment of the HOLMES experiment

and

... SOON ion-implanter update

• electromagnetic focusing stage

• co-deposition target chamber

new TESs?

lowering the transition temperature would improve performances

new TES implantation run

- maximizing ¹⁶³Ho implanted activity
- more statistics and new m_v assessments...

— NuMass - Genova 2024 –

Thanks for the attention :)

.

— NuMass - Genova 2024

Backup slides...

Backup slides

• how we receive the chip:

Luca Origo for

• after implantation/deposition and photoresist lift-off:

2 techniques:

- KOH \rightarrow more space required between TESs, tested succesfully @ MiB
- Deep Reactive Ion Etching (DRIE)
 → perpendicular etching, not properly tuned yet

Backup slides

Luca Origo for HOLLM

25

Luca Origo for HOLL

– Backup slides

Backup slides

A spectral fit is performed over each TES dataset

Multi-spectrum analysis with neutrino mass as shared parameter

Stan-based software for bayesian inference through Markov Chain Monte Carlo

Luca Origo for

